Skip to main content

Selective Hydrogenolysis of C–O Bonds Using the Interaction of the Catalyst Surface and OH Groups

  • Chapter
  • First Online:
Selective Catalysis for Renewable Feedstocks and Chemicals

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 353))

Abstract

Hydrogenolysis of C–O bonds is becoming more and more important for the production of biomass-derived chemicals. Since substrates originated from biomass usually have high oxygen content and various kinds of C–O bonds, selective hydrogenolysis is required. Rhenium or molybdenum oxide modified rhodium and iridium metal catalysts (Rh-ReO x , Rh-MoO x , and Ir-ReO x ) have been reported to be effective for selective hydrogenolysis. This review introduces the catalytic performance and reaction kinetics of Rh-ReO x , Rh-MoO x , and Ir-ReO x in the hydrogenolysis of various substrates, where selectivity is especially characteristic. Based the model structure of the catalysts and the reaction mechanism, the role of the oxide components is to make the interaction between the OH groups in the substrates and the catalyst surface, and the role of metal components is to dissociate hydrogen molecule heterolytically to give hydride and proton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schlaf M (2006) Selective deoxygenation of sugar polyols to α, ω-diols and other oxygen content reduced materials—a new challenge to homogeneous ionic hydrogenation and hydrogenolysis catalysis. Dalton Trans 4645–4653

    Google Scholar 

  2. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554

    Article  CAS  Google Scholar 

  3. Cantrell DG, Gillie LJ, Lee AF, Wilson K (2005) Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis. Appl Catal A 287:183–190

    Article  CAS  Google Scholar 

  4. Ruppert AM, Weinberg K, Palkovits R (2012) Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int Ed 51:2564–2601

    Article  CAS  Google Scholar 

  5. Nakagawa Y, Tomishige K (2011) Heterogeneous catalysis of the glycerol hydrogenolysis. Catal Sci Technol 1:179–190

    Article  CAS  Google Scholar 

  6. Kusunoki Y, Miyazawa T, Kunimori K, Tomishige K (2005) Highly active metal-acid bifunctional catalyst system for hydrogenolysis of glycerol under mild reaction conditions. Catal Commun 6:645–649

    Article  CAS  Google Scholar 

  7. Miyazawa T, Kusunoki Y, Kunimori K, Tomishige K (2006) Glycerol conversion in the aqueous solution under hydrogen over Ru/C + an ion-exchange resin and its reaction mechanism. J Catal 240:213–221

    Article  CAS  Google Scholar 

  8. Miyazawa T, Koso S, Kunimori K, Tomishige K (2007) Catalyst development of Ru/C for glycerol hydrogenolysis in the combination with the ion exchange resin. Appl Catal A 318:244–251

    Article  CAS  Google Scholar 

  9. Miyazawa T, Koso S, Kunimori K, Tomishige K (2007) Glycerol hydrogenolysis to propylene glycol catalyzed by a heat-resistant ion-exchange resin combined with Ru/C. Appl Catal A 329:30–35

    Article  CAS  Google Scholar 

  10. Taher D, Thibault ME, Di Mondo D, Jennings M, Schlaf M (2009) Acid-, water- and high-temperature-stable ruthenium complexes for the total catalytic deoxygenation of glycerol to propane. Chem Eur J 15:10132–10143

    Article  CAS  Google Scholar 

  11. Lao DB, Owens ACE, Heinekey M, Goldberg KI (2013) Partial deoxygenation of glycerol catalyzed by iridium pincer complexes. ACS Catal 3:2391–2396

    Article  CAS  Google Scholar 

  12. Schlaf M, Ghosh P, Fagan PJ, Hauptman E, Bullock RM (2001) Metal-catalyzed selective deoxygenation of diols to alcohols. Angew Chem Int Ed 40:3887–3890

    Article  CAS  Google Scholar 

  13. Ghosh P, Fagan PJ, Marshall WJ, Hauptman E, Bullock RM (2009) Synthesis of ruthenium carbonyl complexes with phosphine or substituted Cp ligands, and their activity in the catalytic deoxygenation of 1,2-propanediol. Inorg Chem 48:6490–6500

    Article  CAS  Google Scholar 

  14. Foskey TJA, Heinekey DM, Goldberg KI (2012) Partial deoxygenation of 1,2-propanediol catalyzed by iridium pincer complexes. ACS Catal 2:1285–1289

    Article  Google Scholar 

  15. Ueda N, Nakagawa Y, Tomishige K (2010) Conversion of glycerol to ethylene glycol over Pt-modified Ni catalyst. Chem Lett 39:506–507

    Article  CAS  Google Scholar 

  16. Hirasawa S, Nakagawa Y, Tomishige K (2012) Selective oxidation of glycerol to dihydroxyacetone over Pd-Ag catalyst. Catal Sci Technol 2:1150–1152

    Article  CAS  Google Scholar 

  17. Hirasawa S, Watanabe H, Kizuka T, Nakagawa Y, Tomishige K (2013) Performance, structure and mechanism of Pd-Ag alloy catalyst for selective oxidation of glycerol to dihydroxyacetone. J Catal 300:205–216

    Article  CAS  Google Scholar 

  18. Murru S, Nicholas KM, Srivastava RS (2012) Ruthenium (II) sulfoxides-catalyzed hydrogenolysis of glycols and epoxides. J Mol Catal A 363–364:460–464

    Article  Google Scholar 

  19. Stanowski S, Nicholas KM, Srivastava RS (2012) [Cp*Ru(CO)2]2-catalyzed hydrodeoxygenation and hydrocracking of diols and epoxides. Organometallics 31:515–518

    Article  CAS  Google Scholar 

  20. Shiramizu M, Toste FD (2012) Deoxygenation of biomass-derived feedstocks: oxorhenium-catalyzed deoxydehydration of sugars and sugar alcohols. Angew Chem Int Ed 51:8082–8086

    Article  CAS  Google Scholar 

  21. Nakagawa Y, Nakazawa H, Watanabe H, Tomishige K (2012) Total hydrogenation of furfural over silica-supported nickel catalyst prepared by reduction of nickel nitrate precursor. ChemCatChem 4:1791–1797

    Article  CAS  Google Scholar 

  22. Nakagawa Y, Tomishige K (2010) Total hydrogenation of furan derivatives over silica-supported Ni-Pd alloy catalyst. Catal Commun 12:154–156

    Article  CAS  Google Scholar 

  23. Nakagawa Y, Tamura M, Tomishige K (2013) Catalytic reduction of biomass-derived furanic compounds with hydrogen. ACS Catal 3:2655–2668

    Article  CAS  Google Scholar 

  24. Adkins H, Conner R (1931) The catalytic hydrogenation of organic compounds over copper chromite. J Am Chem Soc 53:1091–1095

    Article  CAS  Google Scholar 

  25. Schniepp LE, Geller HH (1946) Preparation of dihydropyran, δ-hydroxyvaleraldehyde and 1,5-pentanediol from tetrahydrofurfuryl alcohol. J Am Chem Soc 68:1646–1648

    Article  CAS  Google Scholar 

  26. Wang A, Zhang T (2013) One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts. Acc Chem Res 46:1377–1386

    Article  CAS  Google Scholar 

  27. Yabushita M, Kobayashi H, Fukuoka A (2014) Catalytic transformation of cellulose into platform chemicals. Appl Catal B 145:1–9

    Article  CAS  Google Scholar 

  28. Liu Y, Luo C, Liu H (2012) Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst. Angew Chem Int Ed 51:3249–3253

    Article  CAS  Google Scholar 

  29. Furikado I, Miyazawa T, Koso S, Shimao A, Kunimori K, Tomishige K (2007) Catalytic performance of Rh/SiO2 catalysts in the glycerol reaction under hydrogen. Green Chem 9:582–588

    Article  CAS  Google Scholar 

  30. Yamagishi T, Ito S, Tomishige K, Kunimori K (2005) Selective formation of 1-propanol via ethylene hydroformylation over the catalyst originated from RhVO4. Catal Commun 6:421–425

    Article  CAS  Google Scholar 

  31. Tomishige K, Furikado I, Yamagishi T, Ito S, Kunimori K (2005) Promoting effect of Mo on alcohol formation in hydroformylation of propylene and ethylene on Mo-Rh/SiO2. Catal Lett 103:15–21

    Article  CAS  Google Scholar 

  32. Yamagishi T, Furikado I, Ito S, Miyao T, Naito S, Tomishige K, Kunimori K (2006) Catalyst performance and characterization of RhVO4/SiO2 for hydroformylation and CO hydrogenation. J Mol Catal A 244:201–212

    Article  CAS  Google Scholar 

  33. Shinmi Y, Koso S, Kubota T, Nakagawa Y, Tomishige K (2010) Modification of Rh/SiO2 catalyst for the hydrogenolysis of glycerol in water. Appl Catal B 94:318–326

    Article  CAS  Google Scholar 

  34. Shimao A, Koso S, Ueda N, Shinmi Y, Furikado I, Tomishige K (2009) Promoting effect of Re addition to Rh/SiO2 on glycerol hydrogenolysis. Chem Lett 38:540–541

    Article  CAS  Google Scholar 

  35. Nakagawa Y, Tomishige K (2011) Catalyst development for the hydrogenolysis of biomass-derived chemicals to value-added ones. Catal Surv Asia 15:111–116

    Article  CAS  Google Scholar 

  36. Amada Y, Koso S, Nakagawa Y, Tomishige K (2010) Hydrogenolysis of 1,2-propanediol for the production of biopropanols from glycerol. ChemSusChem 3:728–736

    Article  CAS  Google Scholar 

  37. Takeda Y, Nakagawa Y, Tomishige K (2012) Selective hydrogenation of higher saturated carboxylic acids to alcohols using ReOx-Pd/SiO2 catalyst. Catal Sci Technol 2:2221–2223

    Article  CAS  Google Scholar 

  38. Koso S, Furikado I, Shimao A, Miyazawa T, Kunimori K, Tomishige K (2009) Chemoselective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol. Chem Commun 2035–2037

    Google Scholar 

  39. Koso S, Ueda N, Shinmi Y, Okumura K, Kizuka T, Tomishige K (2009) Promoting effect of Mo on hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over Rh/SiO2. J Catal 267:89–92

    Article  CAS  Google Scholar 

  40. Chen K, Koso S, Kubota T, Nakagawa Y, Tomishige K (2010) Chemoselective hydrogenolysis of tetrahydropyran-2-methanol to 1,6-hexanediol over Re-modified carbon-supported Rh catalysts. ChemCatChem 2:547–555

    Article  Google Scholar 

  41. Koso S, Nakagawa Y, Tomishige K (2011) Mechanism of the hydrogenolysis of ethers over silica-supported rhodium catalyst modified with rhenium oxide. J Catal 280:221–229

    Article  CAS  Google Scholar 

  42. Koso S, Watanabe H, Okumura K, Nakagawa Y, Tomishige K (2012) Comparative study of Rh-MoOx and Rh-ReOx supported on SiO2 for the hydrogenolysis of ethers and polyols. Appl Catal B 111–112:27–37

    Article  Google Scholar 

  43. Koso S, Watanabe H, Okumura K, Nakagawa Y, Tomishige K (2012) Stable low-valence ReOx cluster attached on Rh metal particles formed by hydrogen reduction and its formation mechanism. J Phys Chem C 116:3079–3090

    Article  CAS  Google Scholar 

  44. Nakagawa Y, Tomishige K (2012) Production of 1,5-pentanediol from biomass via furfural and tetrahydrofurfuryl alcohol. Catal Today 195:136–143

    Article  CAS  Google Scholar 

  45. Chia M, Pagan-Torres YJ, Hibbitts D, Tan Q, Pham HN, Datye AK, Neurock M, Davis RJ, Dumesic JA (2011) J Am Chem Soc 133:12675–12689

    Article  CAS  Google Scholar 

  46. Amada Y, Shinmi Y, Koso S, Kubota T, Nakagawa Y, Tomishige K (2011) Reaction mechanism of the glycerol hydrogenolysis to 1,3-propandediol over Ir-ReOx/SiO2 catalyst. Appl Catal B 105:117–127

    Article  CAS  Google Scholar 

  47. Nakagawa Y, Shinmi Y, Koso S, Tomishige K (2010) Direct hydrogenolysis of glycerol into 1,3-propanediol over rhenium-modified supported iridium catalyst. J Catal 272:191–194

    Article  CAS  Google Scholar 

  48. Nakagawa Y, Ning X, Amada Y, Tomishige K (2012) Solid acid co-catalysts for the hydrogenolysis of glycerol to 1,3-propanediol over Ir-ReOx/SiO2. Appl Catal A: Gen 433–434:128–134

    Article  Google Scholar 

  49. Amada Y, Watanabe H, Tamura M, Nakagawa Y, Okumura K, Tomishige K (2012) Structure of ReOx clusters attached on Ir metal surface in Ir-ReOx/SiO2 for the hydrogenolysis reaction. J Phys Chem C 116:23503–23514

    Article  CAS  Google Scholar 

  50. Nakagawa Y, Mori K, Chen K, Amada Y, Tamura M, Tomishige K (2013) C-O hydrogenolysis of Re-modified Ir catalyst in alkane solvent. Appl Catal A 468:418–425

    Article  CAS  Google Scholar 

  51. Ueda R, Tomishige K, Fujimoto K (1999) Promoting effect of hydrogen spillover on pyridine migration adsorbed on Lewis acid site in USY zeolite. Catal Lett 57:145–149

    Article  CAS  Google Scholar 

  52. Ueda R, Kusakari T, Tomishige K, Fujimoto K (2000) Nature of spilt-over hydrogen on acid sites in zeolites: the observation of the behavior of adsorbed pyridine on zeolite catalysts by means of FTIR. J Catal 14–22:194

    Google Scholar 

  53. Kusakari T, Tomishige K, Fujimoto K (2002) Hydrogen spillover effect on cumene cracking and n-pentane isomerization over catalysts prepared by physical mixture of H-β with Pt/SiO2. Appl Catal A: Gen 224:219–228

    Article  CAS  Google Scholar 

  54. Tomishige K, Okabe A, Fujimoto K (2000) Effect of hydrogen on n-butane isomerization over Pt/SO4 2-–ZrO2 and Pt/SiO2+ SO4 2-–ZrO2. Appl Catal A Gen 194–195:383–393

    Article  Google Scholar 

  55. Ishida Y, Ebashi T, Ito S, Kubota T, Kunimori K, Tomishige K (2009) Preferential CO oxidation in a H2-rich stream promoted by ReOx species attached on Pt metal particles. Chem Commun 5308–5310

    Google Scholar 

  56. Ebashi T, Ishida Y, Nakagawa Y, Ito S, Kubota T, Tomishige K (2010) Preferential CO oxidation in H2-rich stream on Pt-ReOx/SiO2: catalyst structure and reaction mechanism. J Phys Chem C 114:6518–6526

    Article  CAS  Google Scholar 

  57. Chen K, Mori K, Watanabe H, Nakagawa Y, Tomishige K (2012) C-O bond hydrogenolysis of cyclic ethers with OH groups over rhenium-modified supported iridium catalysts. J Catal 243:171–183

    Article  Google Scholar 

  58. Amada Y, Watanabe H, Hirai Y, Kajikawa Y, Nakagawa Y, Tomishige K (2012) Production of biobutanediols by the hydrogenolysis of erythritol. ChemSusChem 5:1991–1999

    Article  CAS  Google Scholar 

  59. Moon HJ, Jeya M, Kim IW, Lee JK (2010) Biotechnological production of erythritol and its applications. Appl Microbiol Biotechnol 86:1017–1025

    Article  CAS  Google Scholar 

  60. Jeya M, Lee KM, Tiwari MK, Kim JS, Gunasekaran P, Kim SY, Kim IW, Lee JK (2009) Isolation of a novel high erythritol-producing Pseudozyma tsukubaensis and scale-up of erythritol fermentation to industrial level. Appl Microbiol Biotechnol 83:225–231

    Article  CAS  Google Scholar 

  61. Rymowicz W, Rywińska A, Marcinkiewicz M (2009) High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnol Lett 31:377–380

    Article  CAS  Google Scholar 

  62. Montassier C, Ménézo JC, Hoang LC, Renaud C, Barbier J (1991) Aqueous polyol conversions on ruthenium and on sulfur-modified ruthenium. J Mol Catal 70:99–110

    Article  CAS  Google Scholar 

  63. Yamaguchi A, Hiyoshi N, Sato O, Bando KK, Shirai M (2009) Enhancement of cyclic ether formation from polyalcohol compounds in high temperature liquid water by high pressure carbon dioxide. Green Chem 11:48–52

    Article  CAS  Google Scholar 

  64. Manzer LE (2006) Hydrogenation of tetrahydroxybutane to tetrahydrofuran. US Patent, 7 019 155 B2

    Google Scholar 

  65. Huber GW, Cortright RD, Dumesic JA (2004) Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates. Angew Chem Int Ed 43:1549–1551

    Article  CAS  Google Scholar 

  66. Zhang Q, Jiang T, Li B, Wang T, Zhang X, Zhang Q, Ma L (2012) Highly selective sorbitol hydrogenolysis to liquid alkanes over Ni/HZSM-5 catalysts modified with pure silica MCM-41. ChemCatChem 4:1084–1087

    Article  CAS  Google Scholar 

  67. Kim YT, Dumesic JA, Huber GW (2013) Aqueous-phase hydrodeoxygenation of sorbitol: a comparative study of Pt/Zr phosphate and Pt-ReOx/C. J Catal 304:72–85

    Article  CAS  Google Scholar 

  68. Chen K, Tamura M, Yuan Z, Nakagawa Y, Tomishige K (2013) One pot conversion of sugar and sugar polyols to n-alkanes without C–C dissociation over Ir-ReOx/SiO2 catalyst combined with H-ZSM-5. ChemSusChem 6:613–621

    Article  CAS  Google Scholar 

  69. Tamura M, Tokonami K, Nakagawa Y, Tomishige K (2013) Rapid synthesis of unsaturated alcohol in mild conditions by highly selective hydrogenation. Chem Commun 49:7034–7036

    Article  CAS  Google Scholar 

  70. Sato H, Tamura M, Nakagawa Y, Tomishige K (2014) Synthesis of α-hydroxy ketones from vicinal diols by selective dehydrogenation over Ir-ReOx/SiO2 catalyst. Chem Lett 43:334–336

    Google Scholar 

  71. Buntara T, Noel S, Phua PH, Melin-Cabrera I, de Vries JG, Heeres HJ (2011) Caprolactam from renewable resources: catalytic conversion of 5-hydroxymethylfurfural into caprolactone. Angew Chem Int Ed 50:7083–7087

    Article  CAS  Google Scholar 

  72. Liu S, Amada Y, Tamura M, Nakagawa Y, Tomishige K (2014) One-pot selective conversion of furfural into 1,5-pentanediol over Pd-added Ir-ReOx/SiO2 bifunctional catalyst. Green Chem 16:617–626

    Google Scholar 

  73. Tamura M, Amada Y, Liu S, Yuan Z, Nakagawa Y, Tomishige K (2014) Promoting effect of Ru on Ir-ReOx/SiO2 catalyst in hydrogenolysis of glycerol. J Mol Catal A Chem doi: org/10.1016/j.molcata.2013.09.006

    Google Scholar 

  74. Chia M, O’Neill BJ, Alamillo R, Dietrich PJ, Ribeiro FH, Miller JT, Dumesic JA (2013) Bimetallic RhRe/C catalysts for the production of biomass-derived chemicals. J Catal 308:226–236

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichi Tomishige .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tomishige, K., Nakagawa, Y., Tamura, M. (2014). Selective Hydrogenolysis of C–O Bonds Using the Interaction of the Catalyst Surface and OH Groups. In: Nicholas, K. (eds) Selective Catalysis for Renewable Feedstocks and Chemicals. Topics in Current Chemistry, vol 353. Springer, Cham. https://doi.org/10.1007/128_2014_538

Download citation

Publish with us

Policies and ethics