Skip to main content

Dynamical Mean Field Theory-Based Electronic Structure Calculations for Correlated Materials

  • Chapter
  • First Online:
First Principles Approaches to Spectroscopic Properties of Complex Materials

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 347))

  • 1863 Accesses

Abstract

We give an introduction to dynamical mean field approaches to correlated materials. Starting from the concept of electronic correlation, we explain why a theoretical description of correlations in spectroscopic properties needs to go beyond the single-particle picture of band theory.

We discuss the main ideas of dynamical mean field theory and its use within realistic electronic structure calculations, illustrated by examples of transition metals, transition metal oxides, and rare-earth compounds. Finally, we summarise recent progress on the calculation of effective Hubbard interactions and the description of dynamical screening effects in solids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a review of the Mott transition comprising a discussion of coherence–decoherence crossovers see, e.g. [5].

  2. 2.

    A many-body Hamiltonian is called separable if it can be written as a sum over operators each acting only on one electron.

  3. 3.

    Even though it is of course always possible to design an auxiliary one-particle system for the purpose of parametrising certain physical quantities, such as the density, as done in the Kohn-Sham construction of density functional theory.

  4. 4.

    We do not enter here into the subtle questions of frustrations leading to possible spin liquid phases.

  5. 5.

    Due to the presence of only two electrons, with different spins, the simple one-orbital model did not involve any effects of electronic exchange.

  6. 6.

    This also means that we are not entering into an exhaustive discussion of what should be the “best” starting one-body picture to build DMFT on. The section on GW + DMFT contains some implicit information on this issue, but systematic comparisons have not been performed so far (see however the discussion in [16]).

  7. 7.

    And not even a Slater determinant.

  8. 8.

    This part can in fact be thought of as comprising, apart from the kinetic energy, any one-body potential, e.g. the electrostatic potential created by the ions.

  9. 9.

    The interaction v screened(r,r′) is not simply the bare Coulomb interaction 1/(|r − r′ |) but rather a partially screened version of it. This issue will be the subject of Sect. 12, which describes recent developments in the field.

  10. 10.

    DMFT has been the subject of several extended review articles, see, e.g. [2426].

  11. 11.

    Calculating photoemission intensities strictly speaking involves further modelling steps, including in particular matrix elements describing the coupling of the light field to the electrons of the solid. We do not enter into this discussion here, but restrict ourselves to discussing the spectral function.

  12. 12.

    We note that, crystallographically, a tetragonally distorted fcc phase, is described as a bct lattice.

  13. 13.

    The same is true for quasi-one-dimensional systems, where one-dimensional chains provide natural entities to be treated as clusters; see the applications of “chain-DMFT” in [111114].

  14. 14.

    Thus non-local in the electronic structure sense.

  15. 15.

    Even though the latter is not derived from a local potential.

  16. 16.

    With n R = ΣL,σ n RLσ the number operator of electrons in localised orbitals L on atom R with spin σ.

  17. 17.

    The situation is somewhat more subtle when more exotic kinds of ordering are involved, such as orbital- or charge order. Still, the general remark about the resulting spectrum being strictly a band structure holds.

  18. 18.

    In fact, the ability to determine the full frequency-dependence is probably the most important conceptual advance over traditional strategies aiming at the calculation of the static interactions only. In this category, we mention “constrained LDA” techniques, pioneered in [129, 130] as well as linear response schemes [131133] and GW-inspired techniques [134].

References

  1. Alloul H (2010) Physics of electrons in solids. Springer, New York

    Google Scholar 

  2. Kotani T (2000) Ab initio random-phase-approximation calculation of the frequency-dependent effective interaction between 3d electrons: Ni, Fe, and MnO. J Phys Condens Matter 12(7):2413

    Google Scholar 

  3. Springer M, Aryasetiawan F (1998) Frequency-dependent screened interaction in Ni within the random-phase approximation. Phys Rev B 57(8):4364–4368

    Google Scholar 

  4. Yoshida T, Tanaka K, Yagi H, Ino A, Eisaki H, Fujimori A, Shen Z-X (2005) Direct observation of the mass renormalization in SrVO3. Phys Rev Lett 95:146404

    Google Scholar 

  5. Georges A, Florens S, Costi TA (2004) A brief review of recent advances on the Mott transition: unconventional transport, spectral weight transfers, and critical behaviour. J Phys IV 114:165

    Google Scholar 

  6. Imada M, Fujimori A, Tokura Y (1998) Metal–insulator transitions. Rev Mod Phys 70(4):1039–1263

    Google Scholar 

  7. Greenberg CB (1983) Thermochromic vanadium oxide with depressed switching temperature. US patent 4401690

    Google Scholar 

  8. Li S-Y, Niklasson GA, Granqvist CG (2012) Thermochromic fenestration with vo2-based materials: three challenges and how they can be met. Thin Solid Films 520(10):3823–3828

    Google Scholar 

  9. Tomczak JM, Biermann S (2009) Materials design using correlated oxides: optical properties of vanadium dioxide. Europhys Lett 86(3):37004

    Google Scholar 

  10. Tomczak JM, Biermann S (2009) Optical properties of correlated materials – or why intelligent windows may look dirty. Phys Status Solidi B (feature article), 246(9):1996. Scientific Highlight of the Month of the Ψk Network, no. 88, Aug 2008

    Google Scholar 

  11. Anisimov VI, Aryasetiawan F, Lichtenstein AI (1997) First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method. J Phys Condens Matter 9(4):767

    Google Scholar 

  12. Tomczak JM, Haule K, Kotliar G (2012) Signatures of electronic correlations in iron silicide. Proc Natl Acad Sci U S A 109(9):3243–3246

    Google Scholar 

  13. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871

    Google Scholar 

  14. Kohn W (1999) Nobel lecture: electronic structure of matter-wave functions and density functionals. Rev Mod Phys 71(5):1253–1266

    Google Scholar 

  15. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138

    Google Scholar 

  16. Tomczak JM, Casula M, Miyake T, Biermann S (2013) Asymmetric band widening by screened exchange competing with local correlations in SrVO3: new surprises on an old compound from combined GW and dynamical mean field theory GW+DMFT PRB. Submitted arxiv1312.7546

    Google Scholar 

  17. Mott N (1961) The transition to the metallic state. Phil Mag 6:287

    Google Scholar 

  18. Gutzwiller MC (1963) Effect of correlation on the ferromagnetism of transition metals. Phys Rev Lett 10(5):159–162

    Google Scholar 

  19. Gutzwiller MC (1965) Correlation of electrons in a narrow s band. Phys Rev 137(6A):A1726–A1735

    Google Scholar 

  20. Hubbard J (1963) Electron correlations in narrow energy bands. R Soc Lond Proc A 276:238–257

    Google Scholar 

  21. Hubbard J (1964) Electron correlations in narrow energy bands. III. An improved solution. R Soc Lond Proc A 281:401–419

    Google Scholar 

  22. Kanamori J (1963) Electron correlation and ferromagnetism of transition metals. Progr Theor Phys 30(3):275–289

    Google Scholar 

  23. Metzner W, Vollhardt D (1989) Correlated lattice fermions in d = ∞ dimensions. Phys Rev Lett 62(3):324–327

    Google Scholar 

  24. Georges A, Kotliar G, Krauth W, Rozenberg MJ (1996) Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev Mod Phys 68(1):13

    Google Scholar 

  25. Pruschke T, Jarrell M, Freericks JK (1995) Anomalous normal-state properties of high-Tc superconductors: intrinsic properties of strongly correlated electron systems? Adv Phys 44(2):187

    Google Scholar 

  26. Vollhardt D (1991) Investigation of correlated electron systems using the limit of high dimensions. Lecture-notes for the 9th Jerusalem Winter School for Theoretical Physics, Jerusalem 30. Dec 1991–8. Jan 1992. Emery VJ (World Scientific, Singapore), Dec 1991

    Google Scholar 

  27. Gull E, Millis AJ, Lichtenstein AI, Rubtsov AN, Troyer M, Werner P (2011) Continuous-time Monte Carlo methods for quantum impurity models. Rev Mod Phys 83:349–404

    Google Scholar 

  28. Lichtenstein AI, Katsnelson MI (1998) Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach. Phys Rev B 57(12):6884–6895

    Google Scholar 

  29. Anisimov VI, Poteryaev AI, Korotin MA, Anokhin AO, Kotliar G (1997) First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory. J Phys Condens Matter 9(35):7359–7367

    Google Scholar 

  30. Lechermann F, Georges A, Poteryaev A, Biermann S, Posternak M, Yamasaki A, Andersen OK (2006) Dynamical mean-field theory using Wannier functions: a flexible route to electronic structure calculations of strongly correlated materials. Phys Rev B 74(12):125120

    Google Scholar 

  31. Anisimov VI, Kondakov DE, Kozhevnikov AV, Nekrasov IA, Pchelkina ZV, Allen JW, Mo S-K, Kim H-D, Metcalf P, Suga S, Sekiyama A, Keller G, Leonov I, Ren X, Vollhardt D (2005) Full orbital calculation scheme for materials with strongly correlated electrons. Phys Rev B 71(12):125119

    Google Scholar 

  32. Pourovskii LV, Amadon B, Biermann S, Georges A (2007) Self-consistency over the charge density in dynamical mean-field theory: a linear muffin-tin implementation and some physical implications. Phys Rev B 76(23):235101

    Google Scholar 

  33. Savrasov SY, Kotliar G, Abrahams E (2001) Correlated electrons in δ-plutonium within a dynamical mean-field picture. Nature 410(6830):793

    Google Scholar 

  34. Minár J, Chioncel L, Perlov A, Ebert H, Katsnelson MI, Lichtenstein AI (2005) Multiple-scattering formalism for correlated systems: a KKR-DMFT approach. Phys Rev B 72(4):045125

    Google Scholar 

  35. Biermann S, Dallmeyer A, Carbone C, Eberhardt W, Pampuch C, Rader O, Katsnelson MI, Lichtenstein AI (2004) Observation of Hubbard bands in gamma-manganese. JETP Lett 80(9):612

    Google Scholar 

  36. Biermann S (2000) Neuartige Ansätze zur Behandlung des Vielteilchenproblems in kondensierter Materie. PhD thesis, Universität Köln

    Google Scholar 

  37. Lichtenstein AI, Katsnelson MI, Kotliar G (2001) Finite-temperature magnetism of transition metals: an ab initio dynamical mean-field theory. Phys Rev Lett 87:067205

    Google Scholar 

  38. Augustinský P, Křápek V, Kuneš J (2013) Doping induced spin state transition in LaCoO3: dynamical mean-field study. Phys Rev Lett 110:267204

    Google Scholar 

  39. De Raychaudhury M, Pavarini E, Andersen OK (2007) Orbital fluctuations in the different phases of LaVO3 and YVO3. Phys Rev Lett 99:126402

    Google Scholar 

  40. Flesch A, Zhang G, Koch E, Pavarini E (2012) Orbital-order melting in rare-earth manganites: role of superexchange. Phys Rev B 85:035124

    Google Scholar 

  41. Gorelov E, Karolak M, Wehling TO, Lechermann F, Lichtenstein AI, Pavarini E (2010) Nature of the Mott transition in Ca2RuO4. Phys Rev Lett 104:226401

    Google Scholar 

  42. Hansmann P, Haverkort MW, Toschi A, Sangiovanni G, Rodolakis F, Rueff JP, Marsi M, Held K (2012) Atomic and itinerant effects at the transition-metal X-ray absorption k pre-edge exemplified in the case of V2O3. Phys Rev B 85:115136

    Google Scholar 

  43. Held K, Keller G, Eyert V, Vollhardt D, Anisimov VI (2001) Mott-Hubbard metal–insulator transition in paramagnetic V2O3: an LDA + DMFT(QMC) study. Phys Rev Lett 86(23):5345–5348

    Google Scholar 

  44. Keller G, Held K, Eyert V, Vollhardt D, Anisimov VI (2004) Electronic structure of paramagnetic V2O3: strongly correlated metallic and Mott insulating phase. Phys Rev B 70(20):205116

    Google Scholar 

  45. Kuneš J, Korotin DM, Korotin MA, Anisimov VI, Werner P (2009) Pressure-driven metal–insulator transition in hematite from dynamical mean-field theory. Phys Rev Lett 102:146402

    Google Scholar 

  46. Liebsch A (2003) Surface versus bulk coulomb correlations in photoemission spectra of SrVO3 and CaVO3. Phys Rev Lett 90(9):096401

    Google Scholar 

  47. Nekrasov IA, Held K, Keller G, Kondakov DE, Pruschke T, Kollar M, Andersen OK, Anisimov VI, Vollhardt D (2006) Momentum-resolved spectral functions of SrVO3 calculated by LDA + DMFT. Phys Rev B 73(15):155112

    Google Scholar 

  48. Nekrasov IA, Keller G, Kondakov DE, Kozhevnikov AV, Pruschke T, Held K, Vollhardt D, Anisimov VI (2005) Comparative study of correlation effects in CaVO3 and SrVO3. Phys Rev B 72:155106

    Google Scholar 

  49. Pavarini E, Biermann S, Poteryaev A, Lichtenstein AI, Georges A, Andersen OK (2004) Mott transition and suppression of orbital fluctuations in orthorhombic 3d1 perovskites. Phys Rev Lett 92(17):176403

    Google Scholar 

  50. Pavarini E, Koch E (2010) Origin of Jahn-Teller distortion and orbital order in LaMnO3. Phys Rev Lett 104:086402

    Google Scholar 

  51. Poteryaev AI, Tomczak JM, Biermann S, Georges A, Lichtenstein AI, Rubtsov AN, Saha-Dasgupta T, Andersen OK (2007) Enhanced crystal-field splitting and orbital-selective coherence induced by strong correlations in V2O3. Phys Rev B 76(8):085127

    Google Scholar 

  52. Rodolakis F, Hansmann P, Rueff J-P, Toschi A, Haverkort MW, Sangiovanni G, Tanaka A, Saha-Dasgupta T, Andersen OK, Held K, Sikora M, Alliot I, Itié J-P, Baudelet F, Wzietek P, Metcalf P, Marsi M (2010) Inequivalent routes across the Mott transition in V2O3 explored by X-ray absorption. Phys Rev Lett 104:047401

    Google Scholar 

  53. Saha-Dasgupta T, Lichtenstein A, Valentí R (2005) Correlation effects on the electronic structure of TiOCl: a NMTO + DMFT study. Phys Rev B 71:153108

    Google Scholar 

  54. Tomczak JM, Biermann S (2009) Multi-orbital effects in optical properties of vanadium sesquioxide. J Phys Condens Matter 21(064209)

    Google Scholar 

  55. Wang X, Han MJ, de’ Medici L, Park H, Marianetti CA, Millis AJ (2012) Covalency, double-counting, and the metal–insulator phase diagram in transition metal oxides. Phys Rev B 86:195136

    Google Scholar 

  56. Zhang G, Gorelov E, Koch E, Pavarini E (2012) Importance of exchange anisotropy and superexchange for the spin-state transitions in RCoO3 (R = rare earth) cobaltates. Phys Rev B 86:184413

    Google Scholar 

  57. Lechermann F, Biermann S, Georges A (2005) Importance of interorbital charge transfers for the metal-to-insulator transition of BaVS3. Phys Rev Lett 94(16):166402

    Google Scholar 

  58. Lechermann F, Biermann S, Georges A (2007) Competing itinerant and localized states in strongly correlated BaVS3. Phys Rev B 76(8):085101

    Google Scholar 

  59. Amadon B, Biermann S, Georges A, Aryasetiawan F (2006) The alpha-gamma transition of cerium is entropy driven. Phys Rev Lett 96(6):066402

    Google Scholar 

  60. Held K, McMahan AK, Scalettar RT (2001) Cerium volume collapse: results from the merger of dynamical mean-field theory and local density approximation. Phys Rev Lett 87(27):276404

    Google Scholar 

  61. Shim JH, Haule K, Savrasov S, Kotliar G (2008) Screening of magnetic moments in PuAm alloy: local density approximation and dynamical mean field theory study. Phys Rev Lett 101:126403

    Google Scholar 

  62. Zölfl MB, Nekrasov IA, Pruschke T, Anisimov VI, Keller J (2001) Spectral and magnetic properties of α- and γ-Ce from dynamical mean-field theory and local density approximation. Phys Rev Lett 87(27):276403

    Google Scholar 

  63. Aichhorn M, Biermann S, Miyake T, Georges A, Imada M (2010) Theoretical evidence for strong correlations and incoherent metallic state in FeSe. Phys Rev B 82:064504

    Google Scholar 

  64. Aichhorn M, Pourovskii L, Vildosola V, Ferrero M, Parcollet O, Miyake T, Georges A, Biermann S (2009) Dynamical mean-field theory within an augmented plane-wave framework: assessing electronic correlations in the iron pnictide LaFeAsO. Phys Rev B 80:085101

    Google Scholar 

  65. Anisimov VI, Korotin DM, Korotin MA, Kozhevnikov AV, Kunes J, Shorikov AO, Skornyakov SL, Streltsov SV (2009) Coulomb repulsion and correlation strength in LaFeAsO from density functional and dynamical mean-field theories. J Phys Condens Matter 21(7):075602

    Google Scholar 

  66. Ferber J, Foyevtsova K, Valentí R, Jeschke HO (2012) LDA + DMFT study of the effects of correlation in LiFeAs. Phys Rev B 85:094505

    Google Scholar 

  67. Hansmann P, Arita R, Toschi A, Sakai S, Sangiovanni G, Held K (2010) Dichotomy between large local and small ordered magnetic moments in iron-based superconductors. Phys Rev Lett 104:197002

    Google Scholar 

  68. Haule K, Shim JH, Kotliar G (2008) Correlated electronic structure of LaO1−xFxFeAs. Phys Rev Lett 100:226402

    Google Scholar 

  69. Lee H, Zhang Y-Z, Jeschke HO, Valentí R (2010) Possible origin of the reduced ordered magnetic moment in iron pnictides: a dynamical mean-field theory study. Phys Rev B 81:220506

    Google Scholar 

  70. Skornyakov SL, Efremov AV, Skorikov NA, Korotin MA, YuIzyumov YA, Anisimov VI, Kozhevnikov AV, Vollhardt D (2009) Classification of the electronic correlation strength in the iron pnictides: the case of the parent compound BaFe2As2. Phys Rev B 80:092501

    Google Scholar 

  71. Ruff A, Sing M, Claessen R, Lee H, Tomić M, Jeschke HO, Valentí R (2013) Absence of metallicity in K-doped picene: importance of electronic correlations. Phys Rev Lett 110:216403

    Google Scholar 

  72. Arita R, Kuroki K, Held K, Lukoyanov AV, Skornyakov S, Anisimov VI (2008) Origin of large thermopower in LiRh2O4: calculation of the Seebeck coefficient by the combination of local density approximation and dynamical mean-field theory. Phys Rev B 78(11):115121

    Google Scholar 

  73. Held K, Arita R, Anisimov VI, Kuroki K (2009) The LDA+DMFT route to identify good thermoelectrics. In: Zlatic V, Hewson AC (eds) Properties and applications of thermoelectric materials, NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Amsterdam, pp 141–157. doi:10.1007/978-90-481-2892-1_9

    Google Scholar 

  74. Weber C, O’Regan DD, Hine NDM, Littlewood PB, Kotliar G, Payne MC (2013) Importance of many-body effects in the kernel of hemoglobin for ligand binding. Phys Rev Lett 110:106402

    Google Scholar 

  75. Han MJ, Wang X, Marianetti CA, Millis AJ (2011) Dynamical mean-field theory of nickelate superlattices. Phys Rev Lett 107:206804

    Google Scholar 

  76. Hansmann P, Toschi A, Yang X, Andersen OK, Held K (2010) Electronic structure of nickelates: from two-dimensional heterostructures to three-dimensional bulk materials. Phys Rev B 82:235123

    Google Scholar 

  77. Lechermann F, Boehnke L, Grieger D (2013) Formation of orbital-selective electron states in LaTiO3/SrTiO3 superlattices. Phys Rev B 87:241101

    Google Scholar 

  78. Kotliar G, Savrasov SY, Haule K, Oudovenko VS, Parcollet O, Marianetti CA (2006) Electronic structure calculations with dynamical mean-field theory. Rev Mod Phys 78(3):865–951

    Google Scholar 

  79. Anisimov VI (2000) Strong coulomb correlations in electronic structure calculations: beyond the local density approximation. Gordon and Breach Science Publishers, Amsterdam

    Google Scholar 

  80. Biermann S (2006) Electronic structure of transition metal compounds: DFT-DMFT approach. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, Veyssire P (eds) Encyclopedia of materials: science and technology. Elsevier, Oxford, pp 1–9

    Google Scholar 

  81. Held K, Nekrasov IA, Keller G, Eyert V, Blümer N, McMahan AK, Scalettar RT, Pruschke T, Anisimov VI, Vollhardt D (2003) Realistic investigations of correlated electron systems within LDA+DMFT. Phys Status Solid (B), 243(2599), 2006. Psi-k Newsl 56 (65) 2003

    Google Scholar 

  82. Kotliar G, Vollhardt D (2004) Strongly correlated materials: insights from dynamical mean-field theory. Phys Today 57(3):53

    Google Scholar 

  83. Tomczak JM, Poteryaev AI, Biermann S (2009) Momentum-resolved spectroscopy of correlated metals: a view from dynamical mean field theory. Compt Rend Phys 10(6):537–547

    Google Scholar 

  84. Braun J, Minár J, Ebert H, Katsnelson MI, Lichtenstein AI (2006) Spectral function of ferromagnetic 3d metals: a self-consistent LSDA + DMFT approach combined with the one-step model of photoemission. Phys Rev Lett 97(22):227601

    Google Scholar 

  85. Grechnev A, Di Marco I, Katsnelson MI, Lichtenstein AI, Wills J, Eriksson O (2007) Theory of bulk and surface quasiparticle spectra for Fe, Co, and Ni. Phys Rev B 76:035107

    Google Scholar 

  86. Kolorenč J, Poteryaev AI, Lichtenstein AI (2012) Valence-band satellite in ferromagnetic nickel: LDA+DMFT study with exact diagonalization. Phys Rev B 85:235136

    Google Scholar 

  87. Sánchez-Barriga J, Braun J, Minár J, Di Marco I, Varykhalov A, Rader O, Boni V, Bellini V, Manghi F, Ebert H, Katsnelson MI, Lichtenstein AI, Eriksson O, Eberhardt W, Dürr HA, Fink J (2012) Effects of spin-dependent quasiparticle renormalization in Fe, Co, and Ni photoemission spectra: an experimental and theoretical study. Phys Rev B 85:205109

    Google Scholar 

  88. Sánchez-Barriga J, Fink J, Boni V, Di Marco I, Braun J, Minár J, Varykhalov A, Rader O, Bellini V, Manghi F, Ebert H, Katsnelson MI, Lichtenstein AI, Eriksson O, Eberhardt W, Dürr HA (2009) Strength of correlation effects in the electronic structure of iron. Phys Rev Lett 103:267203

    Google Scholar 

  89. Sánchez-Barriga J, Minár J, Braun J, Varykhalov A, Boni V, Di Marco I, Rader O, Bellini V, Manghi F, Ebert H, Katsnelson MI, Lichtenstein AI, Eriksson O, Eberhardt W, Dürr HA, Fink J (2010) Quantitative determination of spin-dependent quasiparticle lifetimes and electronic correlations in HCP cobalt. Phys Rev B 82:104414

    Google Scholar 

  90. Gazzara CP, Middleton RM, Weiss RJ, Hall EO (1967) A refinement of the parameters of a manganese. Acta Crystallogr 22:859

    Google Scholar 

  91. Medici L, Mravlje J, Georges A (2011) Janus-faced influence of Hund’s rule coupling in strongly correlated materials. Phys Rev Lett 107:256401

    Google Scholar 

  92. Werner P, Casula M, Miyake T, Aryasetiawan F, Millis AJ, Biermann S (2012) Satellites and large doping and temperature dependence of electronic properties in hole-doped BaFe2As2. Nat Phys 8:331–337

    Google Scholar 

  93. Di Marco I, Minár J, Chadov S, Katsnelson MI, Ebert H, Lichtenstein AI (2009) Correlation effects in the total energy, the bulk modulus, and the lattice constant of a transition metal: combined local-density approximation and dynamical mean-field theory applied to Ni and Mn. Phys Rev B 79:115111

    Google Scholar 

  94. Di Marco I, Minár J, Braun J, Katsnelson MI, Grechnev A, Ebert H, Lichtenstein AI, Eriksson O (2009) γ-Mn at the border between weak and strong correlations. Eur Phys J B 72(4):473–478

    Google Scholar 

  95. Florens S, Georges A, Kotliar G, Parcollet O (2002) Mott transition at large orbital degeneracy: dynamical mean-field theory. Phys Rev B 66:205102

    Google Scholar 

  96. Cao G, Bolivar J, McCall S, Crow JE, Guertin RP (1998) Weak ferromagnetism, metal-to-nonmetal transition, and negative differential resistivity in single-crystal Sr2IrOs4. Phys Rev B 57(18), R11039

    Google Scholar 

  97. Arita R, Kuneš J, Kozhevnikov AV, Eguiluz AG, Imada M (2012) Ab initio studies on the interplay between spin-orbit interaction and coulomb correlation in Sr2IrO4 and Ba2IrO4. Phys Rev Lett 108:086403

    Google Scholar 

  98. Jin H, Jeong H, Ozaki T, Yu J (2009) Anisotropic exchange interactions of spin-orbit-integrated states in Sr2IrO4. Phys Rev B 80(7):075112

    Google Scholar 

  99. Kim BJ, Hosub Jin SJ, Moon J-Y, Kim B-G, Park CS, Leem JY, Noh TW, Kim C, Oh S-J, Park J-H, Durairaj V, Cao G, Rotenberg E (2008) Novel Jeff = 1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4. Phys Rev Lett 101(7):076402

    Google Scholar 

  100. Kim BJ, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H, Arima T (2009) Phase-sensitive observation of a spin-orbital Mott state in Sr2IrO4. Science 323(5919):1329

    Google Scholar 

  101. Watanabe H, Shirakawa T, Yunoki S (2010) Microscopic study of a spin-orbit-induced Mott insulator in Ir oxides. Phys Rev Lett 105(21):216410

    Google Scholar 

  102. Martins C, Aichhorn M, Vaugier L, Biermann S (2011) Reduced effective spin-orbital degeneracy and spin-orbital ordering in paramagnetic transition-metal oxides: Sr2IrO4 versus Sr2RhO4. Phys Rev Lett 107:266404

    Google Scholar 

  103. Moon SJ, Jin H, Choi WS, Lee JS, Seo SSA, Yu J, Cao G, Noh TW, Lee YS (2009) Temperature dependence of the electronic structure of the Jeff = 1/2 Mott insulator Sr2IrO4 studied by optical spectroscopy. Phys Rev B 80(19):195110

    Google Scholar 

  104. Poyurovskii L, Vildosola V, Biermann S, Georges A (2008) Local moment behavior versus Kondo behavior of the 4f-electrons in rare-earth iron oxypnictides. Europhys Lett 84:37006

    Google Scholar 

  105. Tomczak JM, Pourovskii LV, Vaugier L, Georges A, Biermann S (2012) Colours from first-principles: heavy-metal vs. rare-earth pigments. Submitted

    Google Scholar 

  106. Karolak M, Ulm G, Wehling TO, Mazurenko V, Poteryaev A, Lichtenstein Double AI (2010) Counting in LDA+DMFT – the example of NiO. J Electron Spectr Relat Phenom 181(1):11–15

    Google Scholar 

  107. Maier T, Jarrell M, Pruschke T, Hettler MH (2005) Quantum cluster theories. Rev Mod Phys 77:1027–1080

    Google Scholar 

  108. Biermann S, Poteryaev A, Lichtenstein AI, Georges A (2005) Dynamical singlets and correlation-assisted Peierls transition in VO2. Phys Rev Lett 94(2):026404

    Google Scholar 

  109. Mazurenko VV, Lichtenstein AI, Katsnelson MI, Dasgupta I, Saha-Dasgupta T, Anisimov VI (2002) Nature of insulating state in NaV2O5 above charge-ordering transition: a cluster dynamical mean-field study. Phys Rev B 66:081104

    Google Scholar 

  110. Poteryaev AI, Lichtenstein AI, Kotliar G (2004) Nonlocal coulomb interactions and metal–insulator transition in Ti2O3: a cluster LDA + DMFT approach. Phys Rev Lett 93:086401

    Google Scholar 

  111. Berthod C, Giamarchi T, Biermann S, Georges A (2006) Breakup of the fermi surface near the Mott transition in low-dimensional systems. Phys Rev Lett 97(13):136401

    Google Scholar 

  112. Biermann S, Georges A, Lichtenstein A, Giamarchi T (2001) Deconfinement transition and Luttinger to Fermi liquid crossover in quasi-one-dimensional systems. Phys Rev Lett 87(27):276405

    Google Scholar 

  113. Biermann S, Georges A, Lichtenstein A, Giamarchi T (2002) Quasi-one-dimensional organic conductors: dimensional crossover and some puzzles. In: Lerner IV et al (eds) Strongly correlated fermions and bosons in low-dimensional and disordered systems. Kluwer, Dordrecht, p 035312

    Google Scholar 

  114. Giamarchi T, Biermann S, Georges A, Lichtenstein AI (2004) Dimensional crossover and deconfinement in Bechgaard salts. J Phys IV France 114:23

    Google Scholar 

  115. Laad MS, Craco L, Müller-Hartmann E (2005) VO2: a two-fluid incoherent metal? Europhys Lett 69(6):984–989

    Google Scholar 

  116. Liebsch A, Ishida H, Bihlmayer G (2005) Coulomb correlations and orbital polarization in the metal–insulator transition of VO2. Phys Rev B 71(8):085109

    Google Scholar 

  117. Tomczak JM, Biermann S (2007) Effective band structure of correlated materials: the case of VO2. J Phys Condens Matter 19(36):365206

    Google Scholar 

  118. Tomczak JM, Aryasetiawan F, Biermann S (2008) Effective bandstructure in the insulating phase versus strong dynamical correlations in metallic VO2. Phys Rev B 78(11):115103

    Google Scholar 

  119. Tomczak JM, Biermann S (2009) Optical properties of correlated materials: generalized Peierls approach and its application to VO2. Phys Rev B 80(8):085117

    Google Scholar 

  120. Sangiovanni G, Toschi A, Koch E, Held K, Capone M, Castellani C, Gunnarsson O, Mo S-K, Allen JW, Kim H-D, Sekiyama A, Yamasaki A, Suga PS (2006) Metcalf static vs. dynamical mean field theory of Mott antiferromagnets. Phys Rev B 73:205121

    Google Scholar 

  121. Chantis AN, van Schilfgaarde M, Kotani T (2007) GW method applied to localized 4f electron systems. Phys Rev B 76:165126

    Google Scholar 

  122. Jiang H, Gomez-Abal RI, Rinke P, Scheffler M (2009) Localized and itinerant states in lanthanide oxides united by GW@LDA+U. Phys Rev Lett 102:126403

    Google Scholar 

  123. Hong J, Ricardo G-A, Patrick R, Matthias S (2010) First-principles modeling of localized d states with the GW@LDA+U approach. Phys Rev B 82:045108

    Google Scholar 

  124. Hong J, Patrick R, Matthias S (2012) Electronic properties of lanthanide oxides from the GW perspective. Phys Rev B 86:125115

    Google Scholar 

  125. Löwdin P-O (1951) A note on the quantum-mechanical perturbation theory. J Chem Phys 19(11):1396

    Google Scholar 

  126. Saha-Dasgupta T, Andersen OK, Poteryaev A (2007) Wannier orbitals and first-principles modeling of V2O3: an NMTO study (unpublished)

    Google Scholar 

  127. Aryasetiawan F, Tomczak JM, Miyake T, Sakuma R (2009) Downfolded self-energy of many-electron systems. Phys Rev Lett 102(17):176402

    Google Scholar 

  128. Aryasetiawan F, Imada M, Georges A, Kotliar G, Biermann S, Lichtenstein AI (2004) Frequency-dependent local interactions and low-energy effective models from electronic structure calculations. Phys Rev B 70(19):195104

    Google Scholar 

  129. Anisimov VI, Gunnarsson O (1991) Density-functional calculation of effective coulomb interactions in metals. Phys Rev B 43:7570–7574

    Google Scholar 

  130. Dederichs PH, Blügel S, Zeller R, Akai H (1984) Ground states of constrained systems: application to cerium impurities. Phys Rev Lett 53:2512–2515

    Google Scholar 

  131. Cococcioni M (2002) A LDA+U study of selected iron compounds. PhD thesis, Trieste

    Google Scholar 

  132. Cococcioni M, de Gironcoli S (2005) Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys Rev B 71(3):035105

    Google Scholar 

  133. Pickett WE, Erwin SC, Ethridge EC (1998) Reformulation of the LDA + u method for a local-orbital basis. Phys Rev B 58:1201–1209

    Google Scholar 

  134. Kutepov A, Haule K, Savrasov SY, Kotliar G (2010) Self-consistent GW determination of the interaction strength: application to the iron arsenide superconductors. Phys Rev B 82:045105

    Google Scholar 

  135. Aryasetiawan F, Karlsson K, Jepsen O, Schönberger U (2006) Calculations of Hubbard u from first-principles. Phys Rev B 74:125106

    Google Scholar 

  136. Miyake T, Aryasetiawan F (2008) Screened coulomb interaction in the maximally localized Wannier basis. Phys Rev B 77(8):085122

    Google Scholar 

  137. Tomczak JM, Miyake T, Aryasetiawan F (2010) Realistic many-body models for manganese monoxide under pressure. Phys Rev B 81(11):115116

    Google Scholar 

  138. Vaugier L, Jiang H, Biermann S (2012) Hubbard u and Hund exchange j in transition metal oxides: screening versus localization trends from constrained random phase approximation. Phys Rev B 86:165105

    Google Scholar 

  139. Tomczak JM, Miyake T, Sakuma R, Aryasetiawan F (2009) Effective Coulomb interactions in solids under pressure. Phys Rev B 79(23):235133

    Google Scholar 

  140. Miyake T, Nakamura K, Arita R, Imada M (2010) Comparison of ab initio low-energy models for LaFePO, LaFeAsO, BaFe2As2, LiFeAs. FeSe and FeTe: electron correlation and covalency. J Phys Soc Jpn 79:044705

    Google Scholar 

  141. Miyake T, Pourovskii L, Vildosola V, Biermann S, Georges A (2008) d- and f-orbital correlations in the REFeAsO compounds. J Phys Soc Jpn 77(C):99

    Google Scholar 

  142. Miyake T, Pourovskii L, Vildosola V, Biermann S, Georges A (2008) Importance of electronic correlations for structural and magnetic properties of the iron pnictide superconductor LaFeAsO. J Phys Soc Jap C 77:99

    Google Scholar 

  143. Nakamura K, Arita R, Imada M (2008) Ab initio derivation of low-energy model for iron-based superconductors LaFeAsO and LaFePO. J Phys Soc Jpn 77:093711

    Google Scholar 

  144. Solovyev IV, Imada M (2005) Screening of Coulomb interactions in transition metals. Phys Rev B 71(4):045103

    Google Scholar 

  145. Şaşıoğlu E, Friedrich C, Blügel S (2011) Effective Coulomb interaction in transition metals from constrained random-phase approximation. Phys Rev B 83(12):121101

    Google Scholar 

  146. Casula M, Werner P, Vaugier L, Aryasetiawan F, Miyake T, Millis AJ, Biermann S (2012) Low-energy models for correlated materials: bandwidth renormalization from coulombic screening. Phys Rev Lett 109:126408

    Google Scholar 

  147. Casula M, Rubtsov A, Biermann S (2012) Dynamical screening effects in correlated materials: plasmon satellites and spectral weight transfers from a Green’s function ansatz to extended dynamical mean field theory. Phys Rev B 85:035115

    Google Scholar 

  148. Tomczak JM, Casula M, Miyake T, Aryasetiawan F, Biermann S (2012) Combined GW and dynamical mean field theory: dynamical screening effects in transition metal oxides. EPL 100:67001

    Google Scholar 

  149. Huang L, Wang Y (2012) Dynamical screening in strongly correlated SrVO3. Europhys Lett 99:67003

    Google Scholar 

  150. Aryasetiawan F, Biermann S, Georges A (2004) A first principles scheme for calculating the electronic structure of strongly correlated materials: GW+DMFT. Proceedings of the conference “Coincidence Studies of Surfaces, Thin Films and Nanostructures”, Ringberg Castle, Sept 2003

    Google Scholar 

  151. Biermann S, Aryasetiawan F, Georges A (2003) First-principles approach to the electronic structure of strongly correlated systems: combining the gw approximation and dynamical mean-field theory. Phys Rev Lett 90:086402

    Google Scholar 

  152. Biermann S, Aryasetiawan F, Georges A (2004) Electronic structure of strongly correlated materials: towards a first principles scheme. Proceedings of the NATO Advanced Research Workshop on “Physics of Spin in Solids: Materials, Methods, and Applications” in Baku, Azerbaijan, Oct 2003. NATO Science Series II, Kluwer, Dordrecht

    Google Scholar 

  153. Hansmann P, Ayral T, Vaugier L, Werner P, Biermann S (2013) Long-range Coulomb interactions in surface systems: a first-principles description within self-consistently combined GW and dynamical mean-field theory. Phys Rev Lett 110:166401

    Google Scholar 

  154. Ayral T, Biermann S, Werner P (2013) Screening and nonlocal correlations in the extended Hubbard model from self-consistent combined gw and dynamical mean field theory. Phys Rev B 87:125149

    Google Scholar 

  155. Ayral T, Werner P, Biermann S (2012) Spectral properties of correlated materials: local vertex and nonlocal two-particle correlations from combined gw and dynamical mean field theory. Phys Rev Lett 109:226401

    Google Scholar 

  156. Biermann S (2014) Dynamical screening effects in correlated electron materials – a progress report on combined many-body perturbation and dynamical mean field theory: “GW+DMFT”. J Phys Condens Matt

    Google Scholar 

  157. Hedin L, Lundqvist S (1969) Solid state physics, vol 23. Academic, New York

    Google Scholar 

Download references

Acknowledgements

My view on the field, and specifically on the work summarised here, has been influenced over the years by discussions and collaborations with numerous colleagues. I thank in particular M. Aichhorn, F. Aryasetiawan, M. Casula, M. Ferrero, A. Georges, M. Katsnelson, F. Lechermann, A.I. Lichtenstein, C. Martins, O. Parcollet, L. Pourovskii, A. Rubtsov, J.M. Tomczak, L. Vaugier and V. Vildosola most warmly for the fruitful and enjoyable collaborations. I also thank P. Seth for her careful reading of the manuscript.

This work was supported by the French ANR under projects SURMOTT and PNICTIDES, and IDRIS/GENCI under project 139313.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silke Biermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Biermann, S. (2014). Dynamical Mean Field Theory-Based Electronic Structure Calculations for Correlated Materials. In: Di Valentin, C., Botti, S., Cococcioni, M. (eds) First Principles Approaches to Spectroscopic Properties of Complex Materials. Topics in Current Chemistry, vol 347. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2014_530

Download citation

Publish with us

Policies and ethics