Skip to main content

Prediction and Theoretical Characterization of p-Type Organic Semiconductor Crystals for Field-Effect Transistor Applications

  • Chapter
  • First Online:
Prediction and Calculation of Crystal Structures

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 345))

Abstract

The theoretical prediction and characterization of the solid-state structure of organic semiconductors has tremendous potential for the discovery of new high performance materials. To date, the theoretical analysis mostly relied on the availability of crystal structures obtained through X-ray diffraction. However, the theoretical prediction of the crystal structures of organic semiconductor molecules remains a challenge. This review highlights some of the recent advances in the determination of structure–property relationships of the known organic semiconductor single-crystals and summarizes a few available studies on the prediction of the crystal structures of p-type organic semiconductors for transistor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BTBT:

[1]Benzothieno[3,2-b][1]benzothiophene

BTBT-C8 :

2,7-Dioctyl[1]benzothieno[3,2-b][1]benzothiophene

DATT:

Dianthra[2,3-b:2′,3′-f]thieno[3,2-b]thiophene

DMA:

Distributed multipole analysis

DNTT:

Dinaphtha[2,3-b:2′,3′-f]thieno[3,2-b]thiophene

DPP:

Diketo-pyrrolo-pyrrole

DPP(TBFu)2 :

3,6-Bis(5-(benzofuran-2-yl)thiophen-2-yl)-2,5-bis(2- ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4-dione

DTT-Ph-C(8,12):

2,6-Bis(4-{octyl,dodecyl}phenyl)-dithieno[3,2-b′:2′,3′-d]thiophene

GA:

Genetic algorithms

ISC:

Inorganic semiconductor

OSC:

Organic semiconductor

PDIF-CN2 :

N,N′-1H,1H-Perfluorobutyldicyanoperylene-carboxydi-imide

Rubrene:

5,6,11,12-Tetraphenyltetracene

TbTH:

Tetraceno[2,3-b]thiophene

TcTH:

Tetraceno[2,3-c]thiophene

Tips-pentacene:

6,13-Bis(triisopropylsilylethynyl)pentacene

TMTSF:

Tetramethyltetraselenafulvalene

References

  1. Schwoerer M, Wolf HC (2007) Organic molecular solids. Wiley-VCH, Weinheim

    Google Scholar 

  2. Katz HE (2004) Recent advances in semiconductor performance and printing processes for organic transistor-based electronics. Chem Mater 16(23):4748–4756. doi:10.1021/cm049781j

    CAS  Google Scholar 

  3. Tsumura A, Koezuka H, Ando T (1986) Macromolecular electronic device: field-effect transistor with a polythiophene thin film. Appl Phys Lett 49(18):1210–1212

    CAS  Google Scholar 

  4. Feng X, Marcon V, Pisula W, Hansen MR, Kirkpatrick J, Grozema F, Andrienko D, Kremer K, Müllen K (2009) Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics. Nat Mater 8(5):421–426

    CAS  Google Scholar 

  5. Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Belletête M, Durocher G, Tao Y, Leclerc M (2007) Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. J Am Chem Soc 130(2):732–742. doi:10.1021/ja0771989

    Google Scholar 

  6. Sokolov A, Atahan-Evrenk S, Mondal R, Akkerman HB, Sanchez-Carrera RS, Granados-Focil S, Schrier J, Mannsfeld SCB, Zoombelt AP, Bao Z, Aspuru-Guzik A (2011) From computational discovery to experimental characterization of a high hole mobility organic crystal. Nat Commun 2:437

    Google Scholar 

  7. Jun L, Yan Z, Huei Shuan T, Yunlong G, Chong-An D, Gui Y, Yunqi L, Ming L, Suo Hon L, Yuhua Z, Haibin S, Beng SO (2012) A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci Rep 2:754. doi:10.1038/srep00754

    Google Scholar 

  8. Marien H, Steyeart M, Heremans P (2013) Analog organic electronics, building blocks for organic smart sensor systems on foil. Analog circuits and signal processing. Springer, New York

    Google Scholar 

  9. Gelinck G, Heremans P, Nomoto K, Anthopoulos TD (2010) Organic transistors in optical displays and microelectronic applications. Adv Mater 22(34):3778–3798. doi:10.1002/adma.200903559

    CAS  Google Scholar 

  10. Heeger AJ (2010) Semiconducting polymers: the third generation. Chem Soc Rev 39(7):2354–2371. doi:10.1039/b914956m

    CAS  Google Scholar 

  11. Zschieschang U, Yamamoto T, Takimiya K, Kuwabara H, Ikeda M, Sekitani T, Someya T, Klauk H (2011) Organic electronics on banknotes. Adv Mater 23(5):654–658. doi:10.1002/adma.201003374

    CAS  Google Scholar 

  12. Olivares-Amaya R, Amador-Bedolla C, Hachmann J, Atahan-Evrenk S, Sanchez-Carrera RS, Vogt L, Aspuru-Guzik A (2011) Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics. Energy Environ Sci 4:4849–4861

    CAS  Google Scholar 

  13. Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, Amador-Bedolla C, Sanchez-Carrera RS, Gold-Parker A, Vogt L, Brockway AM, Aspuru-Guzik A (2011) The Harvard clean energy project: large-scale computational screening and design of organic photovoltaics on the world community grid. J Phys Chem Lett 2(17):2241–2251

    CAS  Google Scholar 

  14. Hachmann J, Olivares-Amaya R, Jinich A, Appleton AL, Blood-Forsythe MA, Seress LR, Roman-Salgado C, Trepte K, Atahan-Evrenk S, Er S, Shrestha S, Mondal R, Sokolov A, Bao Z, Aspuru-Guzik A (2013) Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry – the Harvard clean energy project. Energy Environ Sci 7:698–704

    Google Scholar 

  15. Mei J, Diao Y, Appleton AL, Fang L, Bao Z (2013) Integrated materials design of organic semiconductors for field-effect transistors. J Am Chem Soc 135(18):6724–6746. doi:10.1021/ja400881n

    CAS  Google Scholar 

  16. Kanal IY, Owens SG, Bechtel JS, Hutchison GR (2013) Efficient computational screening of organic polymer photovoltaics. J Phys Chem Lett 4(10):1613–1623. doi:10.1021/jz400215j

    CAS  Google Scholar 

  17. O’Boyle NM, Campbell CM, Hutchison GR (2011) Computational design and selection of optimal organic photovoltaic materials. J Phys Chem C 115(32):16200–16210. doi:10.1021/jp202765c

    Google Scholar 

  18. Curtarolo S, Hart GLW, Nardelli MB, Mingo N, Sanvito S, Levy O (2013) The high-throughput highway to computational materials design. Nat Mater 12(3):191–201

    CAS  Google Scholar 

  19. Clancy P (2012) Chemical engineering in the electronics industry: progress towards the rational design of organic semiconductor heterojunctions. Curr Opin Chem Eng 1(2):117–122, 10.1016/j.coche.2012.01.001

    CAS  Google Scholar 

  20. Holliday S, Donaghey JE, McCulloch I (2013) Advances in charge carrier mobilities of semiconducting polymers used in organic transistors. Chem Mater 26:647–663. doi:10.1021/cm402421p

    Google Scholar 

  21. Wang C, Dong H, Hu W, Liu Y, Zhu D (2011) Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem Rev 112(4):2208–2267. doi:10.1021/cr100380z

    Google Scholar 

  22. Rivnay J, Mannsfeld SCB, Miller CE, Salleo A, Toney MF (2012) Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem Rev 112(10):5488–5519. doi:10.1021/cr3001109

    CAS  Google Scholar 

  23. Troisi A (2011) Charge transport in high mobility molecular semiconductors: classical models and new theories. Chem Soc Rev 40(5):2347–2358. doi:10.1039/c0cs00198h

    CAS  Google Scholar 

  24. Wang L, Nan G, Yang X, Peng Q, Li Q, Shuai Z (2010) Computational methods for design of organic materials with high charge mobility. Chem Soc Rev 39(2):423–434. doi:10.1039/b816406c

    CAS  Google Scholar 

  25. Coropceanu V, Cornil J, Da Silva Filho DA, Olivier Y, Silbey R, Bredas J-L (2007) Charge transport in organic semiconductors. Chem Rev 107:926–952

    CAS  Google Scholar 

  26. Datta S, Grant DJW (2004) Crystal structures of drugs: advances in determination, prediction and engineering. Nat Rev Drug Discov 3(1):42–57

    CAS  Google Scholar 

  27. Bauer J, Spanton S, Henry R, Quick J, Dziki W, Porter W, Morris J (2001) Ritonavir: an extraordinary example of conformational polymorphism. Pharm Res 18(6):859–866. doi:10.1023/a:1011052932607

    CAS  Google Scholar 

  28. Della Valle RG, Brillante A, Venuti E, Farina L, Girlando A, Masino M (2004) Exploring the polymorphism of crystalline pentacene. Org Electron 5(1–3):1–6, 10.1016/j.orgel.2003.08.017

    CAS  Google Scholar 

  29. Jurchescu OD, Mourey DA, Subramanian S, Parkin SR, Vogel BM, Anthony JE, Jackson TN, Gundlach DJ (2009) Effects of polymorphism on charge transport in organic semiconductors. Phys Rev B 80(8):085201

    Google Scholar 

  30. Mei J, Bao Z (2014) Side chain engineering in solution-processible conjugated polymers for organic solar cells and field-effect transistors. Chem Mater 26(1):604–615. doi:10.1021/cm4020805

    CAS  Google Scholar 

  31. Sumrak JC, Sokolov AN, Macgillivray LR (2011) Crystal engineering organic semiconductors. In: Self-organized organic semiconductors. Wiley, New York, pp 1–19. doi:10.1002/9780470949122.ch1

  32. Głowacki ED, Irimia-Vladu M, Kaltenbrunner M, Gsiorowski J, White MS, Monkowius U, Romanazzi G, Suranna GP, Mastrorilli P, Sekitani T, Bauer S, Someya T, Torsi L, Sariciftci NS (2013) Hydrogen-bonded semiconducting pigments for air-stable field-effect transistors. Adv Mater 25(11):1563–1569. doi:10.1002/adma.201204039

    Google Scholar 

  33. Stone AJ (2008) Intermolecular potentials. Science 321(5890):787–789. doi:10.1126/science.1158006

    CAS  Google Scholar 

  34. Klimes J, Michaelides A (2012) Perspective: advances and challenges in treating van der Waals dispersion forces in density functional theory. J Chem Phys 137(12):120901

    Google Scholar 

  35. Hongo K, Watson MA, Sánchez-Carrera RS, Iitaka T, Aspuru-Guzik A (2010) Failure of conventional density functionals for the prediction of molecular crystal polymorphism: a quantum Monte Carlo study. J Phys Chem Lett 1(12):1789–1794. doi:10.1021/jz100418p

    CAS  Google Scholar 

  36. Reilly AM, Tkatchenko A (2013) Seamless and accurate modeling of organic molecular materials. J Phys Chem Lett 4(6):1028–1033. doi:10.1021/jz400226x

    CAS  Google Scholar 

  37. Bardwell DA, Adjiman CS, Arnautova YA, Bartashevich E, Boerrigter SXM, Braun DE, Cruz-Cabeza AJ, Day GM, Della Valle RG, Desiraju GR, van Eijck BP, Facelli JC, Ferraro MB, Grillo D, Habgood M, Hofmann DWM, Hofmann F, Jose KVJ, Karamertzanis PG, Kazantsev AV, Kendrick J, Kuleshova LN, Leusen FJJ, Maleev AV, Misquitta AJ, Mohamed S, Needs RJ, Neumann MA, Nikylov D, Orendt AM, Pal R, Pantelides CC, Pickard CJ, Price LS, Price SL, Scheraga HA, van de Streek J, Thakur TS, Tiwari S, Venuti E, Zhitkov IK (2011) Towards crystal structure prediction of complex organic compounds – a report on the fifth blind test. Acta Crystallogr B 67(6):535–551. doi:10.1107/S0108768111042868

    CAS  Google Scholar 

  38. Day GM, Cooper TG, Cruz-Cabeza AJ, Hejczyk KE, Ammon HL, Boerrigter SXM, Tan JS, Della Valle RG, Venuti E, Jose J, Gadre SR, Desiraju GR, Thakur TS, van Eijck BP, Facelli JC, Bazterra VE, Ferraro MB, Hofmann DWM, Neumann MA, Leusen FJJ, Kendrick J, Price SL, Misquitta AJ, Karamertzanis PG, Welch GWA, Scheraga HA, Arnautova YA, Schmidt MU, van de Streek J, Wolf AK, Schweizer B (2009) Significant progress in predicting the crystal structures of small organic molecules - a report on the fourth blind test. Acta Crystallogr B 65(2):107–125. doi:10.1107/S0108768109004066

    CAS  Google Scholar 

  39. Neumann MA (2008) Tailor-made force fields for crystal-structure prediction. J Phys Chem B 112(32):9810–9829. doi:10.1021/jp710575h

    CAS  Google Scholar 

  40. Kazantsev AV, Karamertzanis PG, Adjiman CS, Pantelides CC (2011) Efficient handling of molecular flexibility in lattice energy minimization of organic crystals. J Chem Theory Comput 7(6):1998–2016. doi:10.1021/ct100597e

    CAS  Google Scholar 

  41. Neumann MA, Perrin M-A (2005) Energy ranking of molecular crystals using density functional theory calculations and an empirical van der Waals correction. J Phys Chem B 109(32):15531–15541. doi:10.1021/jp050121r

    CAS  Google Scholar 

  42. Price SL, Leslie M, Welch GWA, Habgood M, Price LS, Karamertzanis PG, Day GM (2010) Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials. Phys Chem Chem Phys 12(30):8478–8490. doi:10.1039/c004164e

    CAS  Google Scholar 

  43. Silinsh EA, Capek V (1994) Organic molecular crystals: interaction, localization, and transport phenomena. American Institute of Physics, New York

    Google Scholar 

  44. Ortmann F, Bechstedt F, Hannewald K (2011) Charge transport in organic crystals: theory and modelling. Phys Status Solidi B 248(3):511–525. doi:10.1002/pssb.201046278

    CAS  Google Scholar 

  45. Cheng YC, Silbey RJ (2008) A unified theory for charge-carrier transport in organic crystals. J Chem Phys 128(11):114713. doi:10.1063.1.28948.0

    Google Scholar 

  46. Bao Z, Locklin JJ (2007) Organic field-effect transistors. CRC, Boca Raton

    Google Scholar 

  47. Madru M, Guillaud G, Sadoun MA, Maitrot M, Clarisse C, Contellec ML, André JJ, Simon J (1987) The first field effect transistor based on an intrinsic molecular semiconductor. Chem Phys Lett 142(1–2):103–105, 10.1016/0009-2614(87)87259-7

    CAS  Google Scholar 

  48. Sakanoue T, Sirringhaus H (2010) Band-like temperature dependence of mobility in a solution-processed organic semiconductor. Nat Mater 9(9):736–740. doi:10.1038/nmat2825

    CAS  Google Scholar 

  49. Takamiya M, Sekitani T, Ishida K, Someya T, Sakurai T (2013) Large area electronics with organic transistors. In: Cantatore E (ed) Applications of organic and printed electronics. Integrated circuits and systems. Springer, New York, pp 101–113. doi:10.1007/978-1-4614-3160-2_5

    Google Scholar 

  50. Katz HE, Bao Z (1999) The physical chemistry of organic field-effect transistors. J Phys Chem B 104(4):671–678. doi:10.1021/jp992853n

    Google Scholar 

  51. Horowitz G (2006) Organic transistors. In: Klauk H (ed) Organic electronics, materials, manufacturing and applications. Wiley-VCH, Weinheim, pp 3–32

    Google Scholar 

  52. Ito Y, Virkar AA, Mannsfeld S, Oh JH, Toney M, Locklin J, Bao Z (2009) Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. J Am Chem Soc 131(26):9396–9404. doi:10.1021/ja9029957

    CAS  Google Scholar 

  53. Ukah NB, Granstrom J, Gari RRS, King GM, Guha S (2011) Low-operating voltage and stable organic field-effect transistors with poly (methyl methacrylate) gate dielectric solution deposited from a high dipole moment solvent. Appl Phys Lett 99(24):243302–243303

    Google Scholar 

  54. Zschieschang U, Kang MJ, Takimiya K, Sekitani T, Someya T, Canzler TW, Werner A, Blochwitz-Nimoth J, Klauk H (2012) Flexible low-voltage organic thin-film transistors and circuits based on C10-DNTT. J Mater Chem 22(10):4273–4277. doi:10.1039/c1jm14917b

    CAS  Google Scholar 

  55. Horowitz G (1998) Organic field-effect transistors. Adv Mater 10(5):365–377

    CAS  Google Scholar 

  56. Anthony JE, Brooks JS, Eaton DL, Parkin SR (2001) Functionalized pentacene: improved electronic properties from control of solid-state order. J Am Chem Soc 123:9482–9483. doi:10.1021/ja0162459

    CAS  Google Scholar 

  57. Yang YS, Yasuda T, Kakizoe H, Mieno H, Kino H, Tateyama Y, Adachi C (2013) High performance organic field-effect transistors based on single-crystal microribbons and microsheets of solution-processed dithieno[3,2-b:2′,3′-d]thiophene derivatives. Chem Commun 49(58):6483–6485. doi:10.1039/c3cc42114g

    CAS  Google Scholar 

  58. Podzorov V, Menard E, Borissov A, Kiryukhin V, Rogers JA, Gershenson ME (2004) Intrinsic charge transport on the surface of organic semiconductors. Phys Rev Lett 93(8):086602

    CAS  Google Scholar 

  59. Diao Y, Tee BCK, Giri G, Xu J, Kim DH, Becerril HA, Stoltenberg RM, Lee TH, Xue G, Mannsfeld SCB, Bao Z (2013) Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nat Mater 12(7):665–671. doi:10.1038/nmat3650, http://www.nature.com/nmat/journal/v12/n7/abs/nmat3650.html - supplementary-information

    CAS  Google Scholar 

  60. Leclerc M, Morin J-F (eds) (2010) Design and synthesis of conjugated polymers. WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim

    Google Scholar 

  61. Li J, Zhao Y, Tan HS, Guo Y, Di C-A, Yu G, Liu Y, Lin M, Lim SH, Zhou Y, Su H, Ong BS (2012) A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci Rep 2:754, http://www.nature.com/srep/2012/121018/srep00754/abs/srep00754.html - supplementary-information

    Google Scholar 

  62. Noriega R, Rivnay J, Vandewal K, Koch FPV, Stingelin N, Smith P, Toney MF, Salleo A (2013) A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat Mater 12(11):1038–1044

    CAS  Google Scholar 

  63. Bassler H, Kohler A (eds) (2012) Charge transport in organic semiconductors, vol 312. Top Curr Chem. Springer, Berlin

    Google Scholar 

  64. Brédas JL, Beljonne D, Coropceanu V, Cornil J (2004) Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: a molecular picture. Chem Rev 104(11):4971–5003. doi:10.1021/Cr040084k

    Google Scholar 

  65. Ostroverkhova O, Cooke DG, Shcherbyna S, Egerton RF, Hegmann FA, Tykwinski RR, Anthony JE (2005) Bandlike transport in pentacene and functionalized pentacene thin films revealed by subpicosecond transient photoconductivity measurements. Phys Rev B 71(3):035204

    Google Scholar 

  66. Karl N (2003) Charge carrier transport in organic semiconductors. Synth Met 133–134:649–657, 10.1016/S0379-6779(02)00398-3

    Google Scholar 

  67. Brédas JL, Calbert JP, da Silva Filho DA, Cornil J (2002) Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. Proc Natl Acad Sci U S A 99(9):5804–5809. doi:10.1073/pnas.092143399

    Google Scholar 

  68. Hatch RC, Huber DL, Höchst H (2009) HOMO band structure and anisotropic effective hole mass in thin crystalline pentacene films. Phys Rev B 80(8):081411

    Google Scholar 

  69. Ruhle V, Kirkpatrick J, Andrienko D (2010) A multiscale description of charge transport in conjugated oligomers. J Chem Phys 132(13):134103

    Google Scholar 

  70. Norton JE, Brédas JL (2008) Theoretical characterization of titanyl phthalocyanine as a p-type organic semiconductor: short intermolecular pi–pi interactions yield large electronic couplings and hole transport bandwidths. J Chem Phys 128(3):034701. doi:10.1063.1.28068.3

    Google Scholar 

  71. Senthilkumar K, Grozema FC, Bickelhaupt FM, Siebbeles LDA (2003) Charge transport in columnar stacked triphenylenes: effects of conformational fluctuations on charge transfer integrals and site energies. J Chem Phys 119(18):9809–9817

    CAS  Google Scholar 

  72. Kirkpatrick J (2008) An approximate method for calculating transfer integrals based on the ZINDO Hamiltonian. Int J Quantum Chem 108(1):51–56. doi:10.1002/qua.21378

    CAS  Google Scholar 

  73. Hannewald K, Stojanovic VM, Schellekens JMT, Bobbert PA, Kresse G, Hafner J (2004) Theory of polaron bandwidth narrowing in organic molecular crystals. Phys Rev B 69(7):075211

    Google Scholar 

  74. Ferretti A, Ruini A, Molinari E, Caldas MJ (2003) Electronic properties of polymer crystals: the effect of interchain interactions. Phys Rev Lett 90(8):086401

    Google Scholar 

  75. Huang JS, Kertesz M (2004) Intermolecular transfer integrals for organic molecular materials: can basis set convergence be achieved? Chem Phys Lett 390(1–3):110–115. doi:10.1016/j.cplett.2004.03.141

    CAS  Google Scholar 

  76. Mikołajczyk M, Zaleśny R, Czyżnikowska Ż, Toman P, Leszczynski J, Bartkowiak W (2011) Long-range corrected DFT calculations of charge-transfer integrals in model metal-free phthalocyanine complexes. J Mol Model 17(9):2143–2149. doi:10.1007/s00894-010-0865-7

    Google Scholar 

  77. Sancho-Garcia JC, Horowitz G, Bredas JL, Cornil J (2003) Effect of an external electric field on the charge transport parameters in organic molecular semiconductors. J Chem Phys 119(23):12563–12568

    CAS  Google Scholar 

  78. Kojima H, Mori T (2011) Dihedral angle dependence of transfer integrals in organic semiconductors with herringbone structures. Bull Chem Soc Jpn 84(10):1049–1056

    CAS  Google Scholar 

  79. Lee JY, Roth S, Park YW (2006) Anisotropic field effect mobility in single crystal pentacene. Appl Phys Lett 88(25):252106

    Google Scholar 

  80. Haddon RC, Siegrist T, Fleming RM, Bridenbaugh PM, Laudise RA (1995) Band structures of organic thin-film-transistor materials. J Mater Chem 5(10):1719–1724

    CAS  Google Scholar 

  81. Huang JS, Kertesz M (2005) Validation of intermolecular transfer integral and bandwidth calculations for organic molecular materials. J Chem Phys 122(23):234707. doi:10.1063.1.19256.1

    Google Scholar 

  82. Hotta C (2003) Classification of quasi-two dimensional organic conductors based on a new minimal model. J Phys Soc Jpn 72:840

    CAS  Google Scholar 

  83. Mori T, Mori H, Tanaka S (1999) Structural genealogy of BEDT-TTF-based organic conductors II. Inclined molecules: theta, alpha, and kappa phases. Bull Chem Soc Jpn 72(2):179–197

    CAS  Google Scholar 

  84. Vehoff T, Baumeier B, Troisi A, Andrienko D (2010) Charge transport in organic crystals: role of disorder and topological connectivity. J Am Chem Soc 132(33):11702–11708. doi:10.1021/ja104380c

    CAS  Google Scholar 

  85. Marcus RA (1993) Electron transfer reactions in chemistry. Theory and experiment. Rev Mod Phys 65(3):599–610

    CAS  Google Scholar 

  86. Reimers JR (2001) A practical method for the use of curvilinear coordinates in calculations of normal-mode-projected displacements and Duschinsky rotation matrices for large molecules. J Chem Phys 115(20):9103–9109

    CAS  Google Scholar 

  87. McMahon DP, Troisi A (2010) Evaluation of the external reorganization energy of polyacenes. J Phys Chem Lett 1(6):941–946. doi:10.1021/jz1001049

    CAS  Google Scholar 

  88. Norton JE, Brédas JL (2008) Polarization energies in oligoacene semiconductor crystals. J Am Chem Soc 130(37):12377–12384. doi:10.1021/Ja8017797

    CAS  Google Scholar 

  89. Duhm S, Xin Q, Hosoumi S, Fukagawa H, Sato K, Ueno N, Kera S (2012) Charge reorganization energy and small polaron binding energy of rubrene thin films by ultraviolet photoelectron spectroscopy. Adv Mater 24(7):901–905. doi:10.1002/adma.201103262

    CAS  Google Scholar 

  90. Kera S, Hosoumi S, Sato K, Fukagawa H, Nagamatsu S-I, Sakamoto Y, Suzuki T, Huang H, Chen W, Wee ATS, Coropceanu V, Ueno N (2013) Experimental reorganization energies of pentacene and perfluoropentacene: effects of perfluorination. J Phys Chem C 117(43):22428–22437. doi:10.1021/jp4032089

    CAS  Google Scholar 

  91. da Silva Filho DA, Coropceanu V, Fichou D, Gruhn NE, Bill TG, Gierschner J, Cornil J, Brédas JL (2007) Hole-vibronic coupling in oligothiophenes: impact of backbone torsional flexibility on relaxation energies. Philos Trans R Soc A 365(1855):1435–1452. doi:10.1098/rsta.2007.2025

    Google Scholar 

  92. Martinelli NG, Olivier Y, Athanasopoulos S, Ruiz-Delgado MC, Pigg KR, da Silva DA, Sánchez-Carrera RS, Venuti E, Della Valle RG, Brédas JL, Beljonne D, Cornil J (2009) Influence of intermolecular vibrations on the electronic coupling in organic semiconductors: the case of anthracene and perfluoropentacene. ChemPhysChem 10(13):2265–2273. doi:10.1002/cphc.200900298

    CAS  Google Scholar 

  93. Nan G, Li Z (2012) Influence of lattice dynamics on charge transport in the dianthra[2,3-b:2′,3′-f]-thieno[3,2-b]thiophene organic crystals from a theoretical study. Phys Chem Chem Phys 14(26):9451–9459. doi:10.1039/c2cp40857k

    CAS  Google Scholar 

  94. Troisi A, Orlandi G (2006) Dynamics of the intermolecular transfer integral in crystalline organic semiconductors. J Phys Chem A 110(11):4065–4070. doi:10.1021/Jp055432g

    CAS  Google Scholar 

  95. Sánchez-Carrera RS, Atahan S, Schrier J, Aspuru-Guzik A (2010) Theoretical characterization of the air-stable, high-mobility dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]-thiophene organic semiconductor. J Phys Chem C 114(5):2334–2340. doi:10.1021/jp910102f

    Google Scholar 

  96. Sánchez-Carrera RS, Paramonov P, Day GM, Coropceanu V, Brédas J-L (2010) Interaction of charge carriers with lattice vibrations in oligoacene crystals from naphthalene to pentacene. J Am Chem Soc 132(41):14437–14446. doi:10.1021/ja1040732

    Google Scholar 

  97. Coropceanu V, Sánchez-Carrera RS, Paramonov P, Day GM, Brédas JL (2009) Interaction of charge carriers with lattice vibrations in organic molecular semiconductors: naphthalene as a case study. J Phys Chem C 113(11):4679–4686. doi:10.1021/Jp900157p

    CAS  Google Scholar 

  98. Davydov SA (1962) Theory of molecular excitons (trans: M. K, M. O). McGraw-Hill, New York

    Google Scholar 

  99. Pope M, Swenberg CE (1999) Electronic processes in organic crystals and polymers, 2nd edn. Oxford University Press, New York

    Google Scholar 

  100. Takimiya K, Shinamura S, Osaka I, Miyazaki E (2011) Thienoacene-based organic semiconductors. Adv Mater 23(38):4347–4370. doi:10.1002/adma.201102007

    CAS  Google Scholar 

  101. Salzmann I, Duhm S, Heimel G, Oehzelt M, Kniprath R, Johnson RL, JrP R, Koch N (2008) Tuning the ionization energy of organic semiconductor films: the role of intramolecular polar bonds. J Am Chem Soc 130(39):12870–12871. doi:10.1021/ja804793a

    CAS  Google Scholar 

  102. Kazuo T, Tatsuya Y, Hideaki E, Takafumi I (2007) Design strategy for air-stable organic semiconductors applicable to high-performance field-effect transistors. Sci Technol Adv Mater 8(4):273

    Google Scholar 

  103. Tang ML, Reichardt AD, Wei P, Bao Z (2009) Correlating carrier type with frontier molecular orbital energy levels in organic thin film transistors of functionalized acene derivatives. J Am Chem Soc 131:5264–5273. doi:10.1021/ja809659b

    CAS  Google Scholar 

  104. Kobayashi H, Kobayashi N, Hosoi S, Koshitani N, Murakami D, Shirasawa R, Kudo Y, Hobara D, Tokita Y, Itabashi M (2013) Hopping and band mobilities of pentacene, rubrene, and 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) from first principle calculations. J Chem Phys 139:014707

    Google Scholar 

  105. Watanabe M, Chang YJ, Liu S-W, Chao T-H, Goto K, IslamMd M, Yuan C-H, Tao Y-T, Shinmyozu T, Chow TJ (2012) The synthesis, crystal structure and charge-transport properties of hexacene. Nat Chem 4(7):574–578, http://www.nature.com/nchem/journal/v4/n7/abs/nchem.1381.html - supplementary-information

    CAS  Google Scholar 

  106. Hutchison GR, Ratner MA, Marks TJ (2005) Hopping transport in conductive heterocyclic oligomers: reorganization energies and substituent effects. J Am Chem Soc 127(7):2339–2350. doi:10.1021/ja0461421

    CAS  Google Scholar 

  107. Halik M, Klauk H, Zschieschang U, Schmid G, Ponomarenko S, Kirchmeyer S, Weber W (2003) Relationship between molecular structure and electrical performance of oligothiophene organic thin film transistors. Adv Mater 15(11):917–922. doi:10.1002/adma.200304654

    CAS  Google Scholar 

  108. Misra M, Andrienko D, Br B, Faulon J-L, von Lilienfeld OA (2011) Toward quantitative structure–property relationships for charge transfer rates of polycyclic aromatic hydrocarbons. J Chem Theory Comput 7(8):2549–2555. doi:10.1021/ct200231z

    CAS  Google Scholar 

  109. Faulon J-L (1994) Stochastic generator of chemical structure. 1. Application to the structure elucidation of large molecules. J Chem Inf Comput Sci 34(5):1204–1218. doi:10.1021/ci00021a031

    CAS  Google Scholar 

  110. Kuo M-Y, Liu C-C (2009) Molecular design toward high hole mobility organic semiconductors: tetraceno[2,3-c]thiophene derivatives of ultrasmall reorganization energies. J Phys Chem C 113(37):16303–16306. doi:10.1021/jp9065423

    CAS  Google Scholar 

  111. Kwon O, Coropceanu V, Gruhn NE, Durivage JC, Laquindanum JG, Katz HE, Cornil J, Bredas JL (2004) Characterization of the molecular parameters determining charge transport in anthradithiophene. J Chem Phys 120:8186–8194. doi:10.1063.1.16896.6

    CAS  Google Scholar 

  112. Kuo M-Y, Chen H-Y, Chao I (2007) Cyanation: providing a three-in-one advantage for the design of n-type organic field-effect transistors. Chemistry 13(17):4750–4758. doi:10.1002/chem.200601803

    CAS  Google Scholar 

  113. Chen H-Y, Chao I (2006) Toward the rational design of functionalized pentacenes: reduction of the impact of functionalization on the reorganization energy. ChemPhysChem 7(9):2003–2007. doi:10.1002/cphc.200600266

    CAS  Google Scholar 

  114. Sancho-Garcia JC, Perez-Jimenez AJ, Olivier Y, Cornil J (2010) Molecular packing and charge transport parameters in crystalline organic semiconductors from first-principles calculations. Phys Chem Chem Phys 12(32):9381–9388. doi:10.1039/b925652k

    CAS  Google Scholar 

  115. Pola S, Kuo C-H, Peng W-T, Islam MM, Chao I, Tao Y-T (2012) Contorted tetrabenzocoronene derivatives for single crystal field effect transistors: correlation between packing and mobility. Chem Mater 24(13):2566–2571. doi:10.1021/cm301190c

    CAS  Google Scholar 

  116. Desiraju GR, Gavezzotti A (1989) Crystal structures of polynuclear aromatic hydrocarbons. Classification, rationalization and prediction from molecular structure. Acta Crystallogr B 45(5):473–482. doi:10.1107/S0108768189003794

    Google Scholar 

  117. Glowacki ED, Leonat L, Irimia-Vladu M, Schwodiauer R, Ullah M, Sitter H, Bauer S, Sariciftci NS (2012) Intermolecular hydrogen-bonded organic semiconductors–Quinacridone versus pentacene. Appl Phys Lett 101(2):023304–023305

    Google Scholar 

  118. da Silva Filho DA, Kim EG, Brédas JL (2005) Transport properties in the rubrene crystal: electronic coupling and vibrational reorganization energy. Adv Mater 17(8):1072–1076. doi:10.1002/adma.200401866

    Google Scholar 

  119. Haas S, Stassen AF, Schuck G, Pernstich KP, Gundlach DJ, Batlogg B, Berens U, Kirner HJ (2007) High charge-carrier mobility and low trap density in a rubrene derivative. Phys Rev B 76(11):115203

    Google Scholar 

  120. McGarry KA, Xie W, Sutton C, Risko C, Wu Y, Young VG, Brédas J-L, Frisbie CD, Douglas CJ (2013) Rubrene-based single-crystal organic semiconductors: synthesis, electronic structure, and charge-transport properties. Chem Mater 25(11):2254–2263. doi:10.1021/cm400736s

    CAS  Google Scholar 

  121. Anthony JE (2006) Engineered pentacenes. In: Klauk H (ed) Organic electronics: materials, manufacturing and applications. Wiley-VCH, Weinheim, FRG

    Google Scholar 

  122. Anthony JE (2008) The larger acenes: versatile organic semiconductors. Angew Chem Int Ed 47(3):452–483

    CAS  Google Scholar 

  123. Giri G, Verploegen E, Mannsfeld SCB, Atahan-Evrenk S, Kim DH, Lee SY, Becerril HA, Aspuru-Guzik A, Toney MF, Bao Z (2011) Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 480:504–508

    CAS  Google Scholar 

  124. Zhang L, Fakhouri SM, Liu F, Timmons JC, Ran NA, Briseno AL (2011) Chalcogenoarene semiconductors: new ideas from old materials. J Mater Chem 21(5):1329–1337. doi:10.1039/c0jm02522d

    CAS  Google Scholar 

  125. Tucker NM, Briseno AL, Acton O, Yip H-L, Ma H, Jenekhe SA, Xia Y, Jen AKY (2013) Solvent-dispersed benzothiadiazole-tetrathiafulvalene single-crystal nanowires and their application in field-effect transistors. ACS Appl Mater Interfaces 5(7):2320–2324. doi:10.1021/am3025036

    CAS  Google Scholar 

  126. Anthony JE (2007) Induced pi-stacking in acenes. In: Muller TJJ, Bunz UHF (eds) Functional organic materials. Wiley-VCH, Weinheim, p 511

    Google Scholar 

  127. Curtis MD, Cao J, Kampf JW (2004) Solid-state packing of conjugated oligomers: from π-stacks to the Herringbone structure. J Am Chem Soc 126(13):4318–4328. doi:10.1021/ja0397916

    CAS  Google Scholar 

  128. Kang MJ, Yamamoto T, Shinamura S, Miyazaki E, Takimiya K (2010) Unique three-dimensional (3D) molecular array in dimethyl-DNTT crystals: a new approach to 3D organic semiconductors. Chem Sci 1(2):179–183. doi:10.1039/c0sc00156b

    CAS  Google Scholar 

  129. Reese C, Roberts ME, Parkin SR, Bao Z (2009) Tuning crystalline solid-state order and charge transport via building-block modification of oligothiophenes. Adv Mater 21(36):3678–3681. doi:10.1002/adma.200900836

    CAS  Google Scholar 

  130. Akkerman HB, Mannsfeld S, Kaushik A, Verploegen E, Burnier L, Zoombelt A, Saathoff J, Hong S, Atahan-Evrenk S, Liu X, Aspuru-Guzik A, Toney M, Clancy P, Bao Z (2013) Effects of odd-even side chain length of alkyl-substituted diphenyl-bithiophenes on first monolayer thin film packing structure. J Am Chem Soc 135(30):11006–11014

    CAS  Google Scholar 

  131. Liu J, Zhang Y, Phan H, Sharenko A, Moonsin P, Walker B, Promarak V, Nguyen T-Q (2013) Effects of stereoisomerism on the crystallization behavior and optoelectrical properties of conjugated molecules. Adv Mater 25(27):3645–3650. doi:10.1002/adma.201300255

    CAS  Google Scholar 

  132. Troisi A, Orlandi G (2005) Band structure of the four pentacene polymorphs and effect on the hole mobility at low temperature. J Phys Chem B 109(5):1849–1856. doi:10.1021/jp0457489

    CAS  Google Scholar 

  133. Bussac MN, Picon JD, Zuppiroli L (2004) The impact of molecular polarization on the electronic properties of molecular semiconductors. Europhys Lett 66(3):392

    CAS  Google Scholar 

  134. Topham BJ, Soos ZG (2011) Ionization in organic thin films: electrostatic potential, electronic polarization, and dopants in pentacene films. Phys Rev B 84(16):165405

    Google Scholar 

  135. Minder NA, Ono S, Chen Z, Facchetti A, Morpurgo AF (2012) Band-like electron transport in organic transistors and implication of the molecular structure for performance optimization. Adv Mater 24(4):503–508. doi:10.1002/adma.201103960

    CAS  Google Scholar 

  136. Chang Y-f L, Z-y AL-j, J-p Z (2011) From molecules to materials: molecular and crystal engineering design of organic optoelectronic functional materials for high carrier mobility. J Phys Chem C 116(1):1195–1199. doi:10.1021/jp208063h

    Google Scholar 

  137. Reck G, Schulz BW (2006) Benzo(e)pyrene (CSD-CEQGEL)

    Google Scholar 

  138. Marcon V, Raos G (2004) Molecular modeling of crystalline oligothiophenes: testing and development of improved force fields. J Phys Chem B 108(46):18053–18064. doi:10.1021/Jp047128d

    CAS  Google Scholar 

  139. Della Valle RG, Venuti E, Brillante A, Girlando A (2006) Inherent structures of crystalline tetracene. J Phys Chem A 110(37):10858–10862. doi:10.1021/jp0611020

    CAS  Google Scholar 

  140. Venuti E, Della Valle RG, Brillante A, Masino M, Girlando A (2002) Probing pentacene polymorphs by lattice dynamics calculations. J Am Chem Soc 124(10):2128–2129. doi:10.1021/ja0166949

    CAS  Google Scholar 

  141. Della Valle RG, Venuti E, Brillante A, Girlando A (2003) Inherent structures of crystalline pentacene. J Chem Phys 118(2):807–815

    CAS  Google Scholar 

  142. Della Valle RG, Venuti E, Brillante A, Girlando A (2008) Are crystal polymorphs predictable? The case of sexithiophene. J Phys Chem A 112(29):6715–6722. doi:10.1021/jp801749n

    CAS  Google Scholar 

  143. Williams DE, Starr TL (1977) J Comput Chem 1:13

    Google Scholar 

  144. Spek AL (2003) Platon. J Appl Cryst 36:7

    CAS  Google Scholar 

  145. Woodley SM, Catlow R (2008) Crystal structure prediction from first principles. Nat Mater 7(12):937–946

    CAS  Google Scholar 

  146. Bazterra VE, Ferraro MB, Facelli JC (2002) Modified genetic algorithm to model crystal structures. I. Benzene, naphthalene and anthracene. J Chem Phys 116(14):5984–5991

    CAS  Google Scholar 

  147. Kim S, Orendt AM, Ferraro MB, Facelli JC (2009) Crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field. J Comput Chem 30(13):1973–1985. doi:10.1002/jcc.21189

    CAS  Google Scholar 

  148. Baur WH, Kassner D (1992) The perils of Cc: comparing the frequencies of falsely assigned space groups with their general population. Acta Crystallogr B 48(4):356–369. doi:10.1107/S0108768191014726

    Google Scholar 

  149. Padmaja N, Ramakumar S, Viswamitra MA (1990) Space-group frequencies of proteins and of organic compounds with more than one formula unit in the asymmetric unit. Acta Crystallogr A 46(9):725–730. doi:10.1107/S0108767390004512

    Google Scholar 

  150. Price S (2013) Why don’t we find more polymorphs? Acta Crystallogr B 69(4):313–328. doi:10.1107/S2052519213018861

    CAS  Google Scholar 

  151. Mellot-Draznieks C (2007) Role of computer simulations in structure prediction and structure determination: from molecular compounds to hybrid frameworks. J Mater Chem 17(41):4348–4358. doi:10.1039/b702516p

    CAS  Google Scholar 

  152. Sanchez-Carrera RS, Atahan-Evrenk S, Schrier J, Aspuru-Guzik A (2010) Theoretical characterization of the air-stable, high-mobility dinaphtho[2,3-b:2′3′-f]thieno[3,2-b]-thiophene organic semiconductor. J Phys Chem C 114(5):2334–2340

    CAS  Google Scholar 

  153. Uno M, Tominari Y, Yamagishi M, Doi I, Miyazaki E, Takimiya K, Takeya J (2009) Moderately anisotropic field-effect mobility in dinaphtho[2,3-b:2(′),3(′)-f]thiopheno[3,2-b]thiophenes single-crystal transistors. Appl Phys Lett 94(22):223308. doi:10.1063.1.31531.9

    Google Scholar 

  154. Accelrys (2006) Materials studio

    Google Scholar 

  155. Clancy P (2011) Application of molecular simulation techniques to the study of factors affecting the thin-film morphology of small-molecule organic semiconductors. Chem Mater 23(3):522–543. doi:10.1021/cm102231b

    CAS  Google Scholar 

  156. Minemawari H, Yamada T, Matsui H, Tsutsumi JY, Haas S, Chiba R, Kumai R, Hasegawa T (2011) Inkjet printing of single-crystal films. Nature 475(7356):364–367, http://www.nature.com/nature/journal/v475/n7356/abs/nature10313.html - supplementary-information

    CAS  Google Scholar 

  157. Ebata H, Izawa T, Miyazaki E, Takimiya K, Ikeda M, Kuwabara H, Yui T (2007) Highly soluble [1]Benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. J Am Chem Soc 129(51):15732–15733

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Semion Saikin and Stéphanie Valleau for stimulating discussions and reading the manuscript. We acknowledge computing facilities at the High Performance Technical Center at the Faculty of Art and Science of Harvard University, XSEDE/Teragrid resources supported by National Science Foundation award number OCI-1053575, and software support from ChemAxon Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şule Atahan-Evrenk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Atahan-Evrenk, Ş., Aspuru-Guzik, A. (2014). Prediction and Theoretical Characterization of p-Type Organic Semiconductor Crystals for Field-Effect Transistor Applications. In: Atahan-Evrenk, S., Aspuru-Guzik, A. (eds) Prediction and Calculation of Crystal Structures. Topics in Current Chemistry, vol 345. Springer, Cham. https://doi.org/10.1007/128_2013_526

Download citation

Publish with us

Policies and ethics