Skip to main content

Incorporation of Balls, Tubes, and Bowls in Nanotechnology

  • Chapter
  • First Online:
Making and Exploiting Fullerenes, Graphene, and Carbon Nanotubes

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 348))

Abstract

The development of nanotechnology has been spearheaded by the development and discovery of new materials. The earliest materials theorized to be used in nanotechnology were fullerenes and nanotubes. Although fullerenes and nanotubes have a rich history in the area of nanotechnology, fullerene fragments, which share some the same properties as fullerenes and nanotubes, show potential in the field of nanotechnology as well. Fullerene fragments were synthesized close to 20 years prior to the discovery of fullerenes; however due to their complex synthesis they remained in relative obscurity in the field of nanotechnology. More recently, improved syntheses of corannulene and other fullerene fragments on an industrial scale have led to their potential in industrial applications. With the mass production of corannulene finally being realized, many new structures and exciting properties are making its way into the chemical literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feynman RP (1960) Caltech Eng Sci 23(5):22–36

    Google Scholar 

  2. Binning G, Rohrer H, Gerber C, Weibel E (1993) In: Neddermeyer H (ed) Perspectives in condensed matter physics, vol 6. Springer, The Netherlands, pp 31–35

    Google Scholar 

  3. Kroto H, Heath J, O’Brien S, Curl R, Smalley R (1985) Nature 318:162–163

    CAS  Google Scholar 

  4. David WI, Ibberson RM, Matthewman JC, Prassides K, Dennis TJ, Hare JP, Kroto HW, Taylor R, Walton DR (1991) Nature 353:147–149. doi:10.1038/353147a0

    CAS  Google Scholar 

  5. Kraetschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Nature (Lond) 347:354

    Google Scholar 

  6. Prato M (1997) J Mater Chem 7:1097–1109

    CAS  Google Scholar 

  7. Jensen AW, Wilson SR, Schuster DI (1996) Bioorg Med Chem 4:767–779

    CAS  Google Scholar 

  8. Iijima S (1991) Nature 354:56–58

    CAS  Google Scholar 

  9. Collins P, Avouris P (2000) Sci Am 283:62–69

    CAS  Google Scholar 

  10. Langa F, Nierengarten J (2007) Fullerenes: principles and applications. Royal Society of Chemistry, Cambridge

    Google Scholar 

  11. Reich S, Thomsen C, Maultzsch J (2009) Carbon nanotubes: an introduction to the basic concepts and physical properties. Wiley-VCH, Cambridge

    Google Scholar 

  12. Barth W, Lawton R (1966) J Am Chem Soc 88:380–381

    CAS  Google Scholar 

  13. Lawton R, Barth W (1971) J Am Chem Soc 93:1730–1745

    CAS  Google Scholar 

  14. Scott L, Hashemi M, Meyer D (1991) J Am Chem Soc 113:7082–7084

    CAS  Google Scholar 

  15. Scott LT, Cheng P, Hashemi MM, Bratcher MS, Meyer DT, Warren HB (1997) J Am Chem Soc 119:10963–10968

    CAS  Google Scholar 

  16. Seiders TJ, Elliott EL, Grube GH, Siegel JS (1999) J Am Chem Soc 121:7804–7813

    CAS  Google Scholar 

  17. Mehta G, Panda G (1997) Tetrahedron Lett 38:2145–2148

    CAS  Google Scholar 

  18. Sygula A, Rabideau P (2000) J Am Chem Soc 122:6323–6324

    CAS  Google Scholar 

  19. Sygula A, Rabideau PW (1999) J Am Chem Soc 121:7800–7803

    CAS  Google Scholar 

  20. Butterfield AM, Gilomen B, Siegel JS (2012) Org Process Res Dev 16:664–676

    CAS  Google Scholar 

  21. Lovas F, McMahon R, Grabow J (2005) J Am Chem Soc 12:4345–4349

    Google Scholar 

  22. Xie Q, Perez-Cordero E, Echegoyen L (1992) J Am Chem Soc 114:3978–3980

    CAS  Google Scholar 

  23. Xie Q, Arias F, Echegoyen L (1993) J Am Chem Soc 115:9818–9819

    CAS  Google Scholar 

  24. Echegoyen L, Echegoyen LE (1998) Acc Chem Res 31:593

    CAS  Google Scholar 

  25. Janata J, Gendell J, Ling C, Barth WE, Backes L, Lawton RG (1967) J Am Chem Soc 89:3056–3058

    CAS  Google Scholar 

  26. Baumgarten M, Gherghel L, Wagner M, Weitz A, Rabinovitz M, Cheng P, Scott LT (1995) J Am Chem Soc 117:6254–6257

    CAS  Google Scholar 

  27. Aziz H, Popovic ZD (2004) Chem Mater 16:4522–4532

    CAS  Google Scholar 

  28. Pope M, Kallmann HP, Magnante P (1963) J Chem Phys 38:2042–2043

    CAS  Google Scholar 

  29. Helfrich W, Schneider WG (1965) Phys Rev Lett 14:229–231

    CAS  Google Scholar 

  30. Vincett PS, Barlow WA, Hann RA, Roberts GG (1982) Thin Solid Films 94:171–183

    CAS  Google Scholar 

  31. Tang CW, VanSlyke SA (1987) Appl Phys Lett 51:913–915

    CAS  Google Scholar 

  32. Cao Y, Parker ID, Yu G, Zhang C, Heeger AJ (1999) Nature 397:414–417

    CAS  Google Scholar 

  33. Tang CW, VanSlyke SA, Chen CH (1989) J Appl Phys 65:3610–3616

    CAS  Google Scholar 

  34. Baldo MA, Thompson ME, Forrest SR (2000) Nature 403:750–753

    CAS  Google Scholar 

  35. Schon JH, Meng H, Bao Z (2001) Nature 413:713–716

    CAS  Google Scholar 

  36. Schön JH, Kloc C, Dodabalapur A, Batlogg B (2000) Science 289:599–601

    Google Scholar 

  37. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Science 295:2425–2427

    CAS  Google Scholar 

  38. Kulkarni AP, Jenekhe SA (2003) Macromolecules 36:5285–5296

    CAS  Google Scholar 

  39. Morii K, Fujikawa C, Kitagawa H, Iwasa Y, Mitani T, Suzuki T (1997) Mol Cryst Liq Cryst Sci Technol Sect A 296:357–364

    CAS  Google Scholar 

  40. Burroughes JH, Bradley DD, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB (1990) Nature 347:539–541

    CAS  Google Scholar 

  41. Andersson MR, Yu G, Heeger AJ (1997) Synth Met 85:1275–1276

    CAS  Google Scholar 

  42. Schwartz BJ, Hide F, Andersson MR, Heeger AJ (1997) Chem Phys Lett 265:327–333

    CAS  Google Scholar 

  43. Chuah BS, Hwang D, Kim ST, Moratti SC, Holmes AB, de Mello JC, Friend RH (1997) Synth Met 91:279–282

    CAS  Google Scholar 

  44. Kim ST, Hwang D, Li XC, Grüner J, Friend RH, Holmes AB, Shim HK (1996) Adv Mater 8:979–982

    CAS  Google Scholar 

  45. Boggiano B, Clar E (1957) J Chem Soc 2681–2689

    Google Scholar 

  46. Subramanian S, Park SK, Parkin SR, Podzorov V, Jackson TN, Anthony JE (2008) J Am Chem Soc 130:2706–2707

    CAS  Google Scholar 

  47. Kim YH, Shin DC, Kim SH, Ko CH, Yu HS, Chae YS, Kwon SK (2001) Adv Mater 13:1690–1693

    CAS  Google Scholar 

  48. Kim Y, Kwon S, Yoo D, Rubner MF, Wrighton MS (1997) Chem Mater 9:2699–2701

    CAS  Google Scholar 

  49. Tanaka T, Komatsu K (1999) J Chem Soc Perkin Trans 1 1671–1676

    Google Scholar 

  50. Balasubramanian K, Burghard M (2005) Small 1:180–192

    CAS  Google Scholar 

  51. Tucker SA, Fetzer JC, Harvey RG, Tanga MJ, Cheng PC, Scott LT (1993) Appl Spectrosc 47:715–722

    CAS  Google Scholar 

  52. Verdieck JF, Jankowski WA (1969) In: Benjamin WA (ed) Mol Lumin Int Conf, Inc, pp 829–36

    Google Scholar 

  53. Scott LT, Hashemi MM, Bratcher MS (1992) J Am Chem Soc 114:1920–1921

    CAS  Google Scholar 

  54. Dey J, Will AY, Agbaria RA, Rabideau PW, Abdourazak AH, Sygula R, Warner IM (1997) J Fluoresc 7:231–236

    CAS  Google Scholar 

  55. Jones CS, Elliott E, Siegel JS (2004) Synlett 1:187–191

    Google Scholar 

  56. Wu Y, Bandera D, Maag R, Linden A, Baldridge KK, Siegel JS (2008) J Am Chem Soc 130:10729–10739

    CAS  Google Scholar 

  57. Mack J, Vogel P, Jones D, Kaval N, Sutton A (2007) Org Biomol Chem 5:2448–2452

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Mack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jones, D.R., Bachawala, P., Mack, J. (2014). Incorporation of Balls, Tubes, and Bowls in Nanotechnology. In: Marcaccio, M., Paolucci, F. (eds) Making and Exploiting Fullerenes, Graphene, and Carbon Nanotubes. Topics in Current Chemistry, vol 348. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2013_519

Download citation

Publish with us

Policies and ethics