Skip to main content

Spin Excitations in Solids from Many-Body Perturbation Theory

  • Chapter
  • First Online:
First Principles Approaches to Spectroscopic Properties of Complex Materials

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 347))

Abstract

Collective spin excitations form a fundamental class of excitations in magnetic materials. As their energy reaches down to only a few meV, they are present at all temperatures and substantially influence the properties of magnetic systems. To study the spin excitations in solids from first principles, we have developed a computational scheme based on many-body perturbation theory within the full-potential linearized augmented plane-wave (FLAPW) method. The main quantity of interest is the dynamical transverse spin susceptibility or magnetic response function, from which magnetic excitations, including single-particle spin-flip Stoner excitations and collective spin-wave modes as well as their lifetimes, can be obtained. In order to describe spin waves we include appropriate vertex corrections in the form of a multiple-scattering T matrix, which describes the coupling of electrons and holes with different spins. The electron–hole interaction incorporates the screening of the many-body system within the random-phase approximation. To reduce the numerical cost in evaluating the four-point T matrix, we exploit a transformation to maximally localized Wannier functions that takes advantage of the short spatial range of electronic correlation in the partially filled d or f orbitals of magnetic materials. The theory and the implementation are discussed in detail. In particular, we show how the magnetic response function can be evaluated for arbitrary k points. This enables the calculation of smooth dispersion curves, allowing one to study fine details in the k dependence of the spin-wave spectra. We also demonstrate how spatial and time-reversal symmetry can be exploited to accelerate substantially the computation of the four-point quantities. As an illustration, we present spin-wave spectra and dispersions for the elementary ferromagnet bcc Fe, B2-type tetragonal FeCo, and CrO2 calculated with our scheme. The results are in good agreement with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the Bethe–Salpeter equation for the T matrix (30), the product of Green functions appears as the kernel, which is why the letter K is used to denote it (26). It should not be mistaken for the interaction kernel.

  2. 2.

    This can be achieved by avoiding that degenerate subspaces are cut in the construction of the Wannier functions, i.e., if a state is included in the Wannier construction – m summation in (33) – then all states that are degenerate with it should also be included.

References

  1. Moriya T (1985) Spin fluctuations in itinerant electron magnetism. Springer, Berlin

    Google Scholar 

  2. Bloch F (1930) Z Physik 61:206

    Google Scholar 

  3. Köbler U, Hoser A, Graf HA, Fernandez-Diaz M-T, Fischer K, Brückel T (1999) Eur Phys J B 8:217

    Google Scholar 

  4. Mermin ND, Wagner H (1966) Phys Rev Lett 17:1133

    Google Scholar 

  5. Mermin ND, Wagner H (1966) Phys Rev Lett 17:1307(E)

    Google Scholar 

  6. Hofmann A, Cui XY, Schäfer J, Meyer S, Höpfner P, Blumenstein C, Paul M, Patthey L, Rotenberg E, Bünemann J, Gebhard F, Ohm T, Weber W, Claessen R (2009) Phys Rev Lett 102:187204

    Google Scholar 

  7. Hong J, Mills DL (1999) Phys Rev B 59:13840

    Google Scholar 

  8. Hong J, Mills DL (2000) Phys Rev B 62:5589

    Google Scholar 

  9. Zhukov VP, Chulkov EV, Echenique PM (2004) Phys Rev Lett 93:096401

    Google Scholar 

  10. Nechaev IA, Sklyadneva IY, Silkin VM, Echenique PM, Chulkov EV (2008) Phys Rev B 78:085113

    Google Scholar 

  11. Zhukov VP, Chulkov EV, Echenique PM (2005) Phys Rev B 72:155109

    Google Scholar 

  12. Zhukov VP, Chulkov EV, Echenique PM (2006) Phys Rev B 73:125105

    Google Scholar 

  13. Dagotto E (1994) Rev Mod Phys 66:763

    Google Scholar 

  14. Scalapino DJ (1995) Phys Rep 250:329

    Google Scholar 

  15. Carbotte JP, Schachinger E, Basov DN (1999) Nature 401:354

    Google Scholar 

  16. Dahm T, Hinkov V, Borisenko SV, Kordyuk AA, Zabolotnyy VB, Fink J, Büchner B, Scalapino DJ, Hanke W, Keimer B (2009) Nat Phys 5:217

    Google Scholar 

  17. Plumer M, van Ek J, Weller D (eds) (2001) The physics of ultrahigh-density magnetic recording. Springer, Berlin

    Google Scholar 

  18. Visscher PB, Traistaru O, Apalkov DM, Feng X (2002) J Appl Phys 91:7544

    Google Scholar 

  19. Safonov VL (2004) J Appl Phys 95:7145

    Google Scholar 

  20. Fidler J, Schrefl T, Scholz W, Suess D, Tsiantos VD, Dittrich R, Kirschner M (2004) Physica B 343:200

    Google Scholar 

  21. Garanin DA, Kachkachi H (2009) Phys Rev B 80:014420

    Google Scholar 

  22. Silva TJ, Kabos P, Pufall MR (2002) Appl Phys Lett 81:2205

    Google Scholar 

  23. Feygenson M, Teng X, Inderhees SE, Yiu Y, Du W, Han W, Wen J, Xu Z, Podlesnyak AA, Niedziela JL, Hagen M, Qiu Y, Brown CM, Zhang L, Aronson MC (2011) Phys Rev B 83:174414

    Google Scholar 

  24. Lenz K, Wende H, Kuch W, Baberschke K, Nagy K, Jánossy A (2006) Phys Rev B 73:144424

    Google Scholar 

  25. Baberschke K (2008) Physica Status Solidi (B) 245:174

    Google Scholar 

  26. Zakeri K, Lindner J, Barsukov I, Meckenstock R, Farle M, von Hörsten U, Wende H, Keune W, Rocker J, Kalarickal SS, Lenz K, Kuch W, Baberschke K, Frait Z (2007) Phys Rev B 76:104416

    Google Scholar 

  27. Djordjevic M, Münzenberg M (2007) Phys Rev B 75:012404

    Google Scholar 

  28. Walowski J, Müller G, Djordjevic M, Münzenberg M, Kläui M, Vaz CA, Bland JA (2008) Phys Rev Lett 101:237401

    Google Scholar 

  29. Kirilyuk A, Kimel AV, Rasing T (2010) Rev Mod Phys 82:2731

    Google Scholar 

  30. Koopmans B, Ruigrok JJM, Dalla Longa F, de Jonge WJM (2005) Phys Rev Lett 95:267207

    Google Scholar 

  31. Manchon A, Li Q, Xu L, Zhang S (2012) Phys Rev B 85:064408

    Google Scholar 

  32. Arias R, Mills DL (1999) Phys Rev B 60:7395

    Google Scholar 

  33. Hickey MC, Moodera JS (2009) Phys Rev Lett 102:137601

    Google Scholar 

  34. Gilbert T (2004) IEEE Trans Magn 40:3443

    Google Scholar 

  35. Brataas A, Tserkovnyak Y, Bauer GEW (2011) Phys Rev B 84:054416

    Google Scholar 

  36. Fähnle M, Illg C (2011) J Phys Condens Matter 23:493201

    Google Scholar 

  37. Hankiewicz EM, Vignale G, Tserkovnyak Y (2008) Phys Rev B 78:020404(R)

    Google Scholar 

  38. Zhang S, Zhang SS-L (2009) Phys Rev Lett 102:086601

    Google Scholar 

  39. Khitun A, Wang KL (2005) Superlattice Microst 38:184

    Google Scholar 

  40. Wang KL, Zhaoa Z, Khitun A (2008) Thin Solid Films 517:184

    Google Scholar 

  41. Covington M, Crawford TM, Parker GJ (2002) Phys Rev Lett 89:237202

    Google Scholar 

  42. Kostylev MP, Serga AA, Schneider T, Leven B, Hillebrands B (2005) Appl Phys Lett 87:153501

    Google Scholar 

  43. Kübler J (2000) Theory of itinerant electron magnetism. Clarendon, Oxford

    Google Scholar 

  44. Sandratskii LM (1998) Adv Phys 47:91

    Google Scholar 

  45. Nordström L, Singh DJ (1996) Phys Rev Lett 76:4420

    Google Scholar 

  46. Rosengaard NM, Johansson B (1997) Phys Rev B 55:14975

    Google Scholar 

  47. Halilov SV, Eschrig H, Perlov AY, Oppeneer PM (1998) Phys Rev B 58:293

    Google Scholar 

  48. van Schilfgaarde M, Antropov VP (1999) J Appl Phys 85:4827

    Google Scholar 

  49. Pajda M, Kudrnovský J, Turek I, Drchal V, Bruno P (2001) Phys Rev B 64:174402

    Google Scholar 

  50. Grotheer O, Ederer C, Fähnle M (2001) Phys Rev B 63:100401

    Google Scholar 

  51. Cooke JF (1973) Phys Rev B 7:1108

    Google Scholar 

  52. Cooke JF, Lynn JW, Davis HL (1980) Phys Rev B 21:4118

    Google Scholar 

  53. Cooke JF, Blackman JA, Morgan T (1985) Phys Rev Lett 54:718

    Google Scholar 

  54. Blackman JA, Morgan T, Cooke JF (1985) Phys Rev Lett 55:2814

    Google Scholar 

  55. Trohidou KN, Blackman JA, Cooke JF (1991) Phys Rev Lett 67:2561

    Google Scholar 

  56. Tang H, Plihal M, Mills DL (1998) J Magn Magn Mater 157:23

    Google Scholar 

  57. Muniz RB, Mills DL (2002) Phys Rev B 66:174417

    Google Scholar 

  58. Costa AT, Muniz RB, Mills DL (2003) J Phys Condens Matter 15:5495

    Google Scholar 

  59. Costa AT, Muniz RB, Cao JX, Wu RQ, Mills DL (2008) Phys Rev B 78:054439

    Google Scholar 

  60. Costa AT, Muniz RB, Mills DL (2003) Phys Rev B 68:224435

    Google Scholar 

  61. Costa AT, Muniz RB, Mills DL (2004) Phys Rev B 69:064413

    Google Scholar 

  62. Costa AT, Muniz RB, Mills DL (2004) Phys Rev B 70:054406

    Google Scholar 

  63. Costa AT, Muniz RB, Mills DL (2006) Phys Rev B 74:214403

    Google Scholar 

  64. Karlsson K, Aryasetiawan F (2000) Phys Rev B 62:3006

    Google Scholar 

  65. Karlsson K, Aryasetiawan F (2000) J Phys Condens Matter 12:7617

    Google Scholar 

  66. Savrasov SY (1998) Phys Rev Lett 81:2570

    Google Scholar 

  67. Buczek P, Ernst A, Bruno P, Sandratskii LM (2009) Phys Rev Lett 102:247206

    Google Scholar 

  68. Buczek P, Ernst A, Sandratskii LM (2011) Phys RevB 84:174418

    Google Scholar 

  69. Lounis S, Costa AT, Muniz RB, Mills DL (2010) Phys Rev Lett 105:187205

    Google Scholar 

  70. Rousseau B, Eiguren A, Bergara A (2012) Phys Rev B 85:054305

    Google Scholar 

  71. Şaşıoğlu E, Friedrich C, Schindlmayr A, Freimuth F, Blügel S (2010) Phys Rev B 81:054434

    Google Scholar 

  72. Aryasetiawan F, Karlsson K (1999) Phys Rev B 60:7419

    Google Scholar 

  73. Strinati G (1988) La Rivista del Nuovo Cimento 11:1

    Google Scholar 

  74. Marzari N, Vanderbilt D (1997) Phys Rev B 56:12847

    Google Scholar 

  75. Souza I, Marzari N, Vanderbilt D (2001) Phys Rev B 65:035109

    Google Scholar 

  76. Andersen OK, Saha-Dasgupta T (2000) Phys Rev B 62:R16219

    Google Scholar 

  77. Berghold G, Mundy CJ, Romero AH, Hutter J, Parrinello M (2000) Phys Rev B 61:10040

    Google Scholar 

  78. Posternak M, Baldereschi A, Massidda S, Marzari N (2002) Phys Rev B 65:184422

    Google Scholar 

  79. Thygesen KS, Hansen LB, Jacobsen KW (2005) Phys Rev Lett 94:026405

    Google Scholar 

  80. Weng H, Ozaki T, Terakura K (2009) Phys Rev B 79:235118

    Google Scholar 

  81. Ku W, Rosner H, Pickett WE, Scalettar RT (2002) Phys Rev Lett 89:167204

    Google Scholar 

  82. Pavarini E, Biermann S, Poteryaev A, Lichtenstein AI, Georges A, Andersen OK (2004) Phys Rev Lett 92:176403

    Google Scholar 

  83. Lechermann F, Georges A, Poteryaev A, Biermann S, Posternak M, Yamasaki A, Andersen OK (2006) Phys Rev B 74:125120

    Google Scholar 

  84. Anisimov VI, Kondakov DE, Kozhevnikov AV, Nekrasov IA, Pchelkina ZV, Allen JW, Mo S-K, Kim H-D, Metcalf P, Suga S, Sekiyama A, Keller G, Leonov I, Ren X, Vollhardt D (2005) Phys Rev B 71:125119

    Google Scholar 

  85. Andersen OK, Saha-Dasgupta T (2003) Bull Mater Sci 26:19

    Google Scholar 

  86. Thygesen KS, Hansen LB, Jacobsen KW (2005) Phys Rev B 72:125119

    Google Scholar 

  87. Aichhorn M, Pourovskii L, Vildosola V, Ferrero M, Parcollet O, Miyake T, Georges A, Biermann S (2009) Phys Rev B 80:085101

    Google Scholar 

  88. Korshunov MM, Gavrichkov VA, Ovchinnikov SG, Nekrasov IA, Pchelkina ZV, Anisimov VI (2005) Phys Rev B 72:165104

    Google Scholar 

  89. Schindlmayr A, Friedrich C, Şaşıoğlu E, Blügel S (2010) Z Phys Chem 224:357

    Google Scholar 

  90. Şaşıoğlu E, Friedrich C, Blügel S (2013) Phys Rev B 87:020410(R)

    Google Scholar 

  91. Hedin L (1965) Phys Rev 139:A796

    Google Scholar 

  92. Mahan GD (1990) Many-particle physics. Plenum, New York

    Google Scholar 

  93. Lowde RD, Moon RM, Pagonis B, Perry CH, Sokoloff JB, Vaughn-Watkins RS, Wiltshire MCK, Crangle J (1983) J Phys F 13:249

    Google Scholar 

  94. Runge E, Gross EKU (1984) Phys Rev Lett 52:997

    Google Scholar 

  95. Petersilka M, Gossmann UJ, Gross EKU (1996) Phys Rev Lett 76:1212

    Google Scholar 

  96. Kohn W, Sham L (1965) Phys Rev 140:A1133

    Google Scholar 

  97. Friedrich C, Blügel S, Schindlmayr A (2010) Phys Rev B 81:125102

    Google Scholar 

  98. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Google Scholar 

  99. Freimuth F, Mokrousov Y, Wortmann D, Heinze S, Blügel S (2008) Phys Rev B 78:035120

    Google Scholar 

  100. Rath J, Freeman AJ (1975) Phys Rev B 11:2109

    Google Scholar 

  101. Baym G (1962) Phys Rev 127:1391

    Google Scholar 

  102. Brandt U, Lustfeld H, Pesch W, Tewordt L (1971) J Low Temp Phys 4:79

    Google Scholar 

  103. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Google Scholar 

  104. Pauthenet R (1982) J Appl Phys 53:2029

    Google Scholar 

  105. Pauthenet R (1982) J Appl Phys 53:8187

    Google Scholar 

  106. Ji Y, Strijkers GJ, Yang FY, Chien CL, Byers JM, Anguelouch A, Xiao G, Gupta A (2001) Phys Rev Lett 86:5585

    Google Scholar 

  107. Parker JS, Watts SM, Ivanov PG, Xiong P (2002) Phys Rev Lett 88:196601

    Google Scholar 

  108. Zou X, Xiao G (2007) Appl Phys Lett 91:113512

    Google Scholar 

  109. Rameev BZ, Yilgin R, Aktas B, Gupta A, Tagirov LR (2003) Microelectron Eng 69:336

    Google Scholar 

  110. Mostofi AA, Yates JR, Lee Y-S, Souza I, Vanderbilt D, Marzari N (2008) Comput Phys Commun 178:685

    Google Scholar 

  111. Schnell I, Czycholl G, Albers RC (2002) Phys Rev B 65:075103

    Google Scholar 

  112. Miyake T, Aryasetiawan F (2008) Phys Rev B 77:085122

    Google Scholar 

  113. Vollmer R, Etzkorn M, Anil Kumar PS, Ibach H, Kirschner J (2004) Thin Solid Films 464:42

    Google Scholar 

  114. Pines D (1962) The many body problem. Benjamin, New York

    Google Scholar 

  115. McKensie Paul D, Mitchell PW, Mook HA, Steigenberger U (1988) Phys Rev B 38:580

    Google Scholar 

  116. Collins MF, Minkiewicz VJ, Nathans R, Passell L, Shirane G (1969) Phys Rev 179:417

    Google Scholar 

  117. Mook HA, Nicklow RM (1973) Phys Rev B 7:336

    Google Scholar 

  118. Loong C-K, Carpenter JM, Lynn JW, Robinson RA, Mook HA (1984) J Appl Phys 55:1895

    Google Scholar 

  119. Plihal M, Mills DL, Kirschner J (1999) Phys Rev Lett 82:2579

    Google Scholar 

  120. Vollmer R, Etzkorn M, Kumar PSA, Ibach H, Kirschner J (2003) Phys Rev Lett 91:147201

    Google Scholar 

  121. Tang WX, Zhang Y, Tudosa I, Prokop J, Etzkorn M, Kirschner J (2007) Phys Rev Lett 99:087202

    Google Scholar 

  122. Prokop J, Tang WX, Zhang Y, Tudosa I, Peixoto TR, Zakeri K, Kirschner J (2009) Phys Rev Lett 102:177206

    Google Scholar 

  123. McKenzie Paul D, Mitchell PW, Mook HA, Steigenberger U (1988) Phys Rev B 38:580

    Google Scholar 

  124. Li L (1996) J Appl Phys 79:4578

    Google Scholar 

  125. Clegg DW, Buckley RA (1973) Met Sci J 7:48

    Google Scholar 

  126. Ležaić M, Mavropoulos P, Blügel S (2007) Appl Phys Lett 90:082504

    Google Scholar 

  127. Yildiz F, Przybylski M, Ma X-D, Kirschner J (2009) Phys Rev B 80:064415

    Google Scholar 

  128. Burkert T, Nordström L, Eriksson O, Heinonen O (2004) Phys Rev Lett 93:027203

    Google Scholar 

  129. Chamberland BL (1977) CRC Crit Rev Solid State Mater Sci 7:1

    Google Scholar 

  130. Schwarz K (1986) J Phys F Met Phys 16:L211–L215

    Google Scholar 

  131. Attenkofer K, Schütz G (1997) J Phys IV 7(Colloque C2):459

    Google Scholar 

  132. Coey JMD, Venkatesan M (2002) J Appl Phys 91:8345

    Google Scholar 

  133. Sims H, Oset SJ, Butler WH, MacLaren JM, Marsman M (2010) Phys Rev B 81:224436

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Friedrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Friedrich, C., Şaşıoğlu, E., Müller, M., Schindlmayr, A., Blügel, S. (2014). Spin Excitations in Solids from Many-Body Perturbation Theory. In: Di Valentin, C., Botti, S., Cococcioni, M. (eds) First Principles Approaches to Spectroscopic Properties of Complex Materials. Topics in Current Chemistry, vol 347. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2013_518

Download citation

Publish with us

Policies and ethics