Skip to main content

Organizing Mechanically Interlocked Molecules to Function Inside Metal-Organic Frameworks

  • Chapter
  • First Online:
Molecular Machines and Motors

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 354))

Abstract

The idea that the workings of molecular switches, motors, and machines based on mechanically interlocked molecules can be transferred into the solid state by using them as the building blocks of metal-organic framework materials is addressed. This involves an in-depth review and analysis of the chemistry of coordination polymers and metal-organic frameworks in which the linkers are rotaxanes and catenanes. To date, two types of materials have been prepared: (1) coordination polymers in which the interlocked components are part of a complex architecture but do not display large amplitude molecular motion or function and (2) those that clearly demonstrate some type of supramolecular quality (molecular recognition) or relative motion between interlocked components (dynamics) reminiscent of their solution counterparts. The latter can be thought of as prototypes of solid-state molecular machines. The possibility of creating more sophisticated, solid-state materials that have the full characteristics of molecular switches, motors, and machines and the way forward for this chemistry is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1/5NPP36C10:

1,5-Naphtho-p-phenylene[36]crown-10

22C6:

[22]Crown-6

24C6:

[24]Crown-6

B24C6:

Benzo[24]Crown-6

BPP34C10:

Bis(p-phenylene)[34]crown-10

CB[6]:

Cucurbit[6]uril

CBPQT:

Cyclobis(paraquat-p-phenylene)

CP:

Coordination polymer

CP/MAS:

Cross polarized magic angle spinning

CT:

Charge transfer

DB24C8:

Dibenzo[24]crown-8

DSDB24C8:

Disulfonated dibenzo[24]crown-8

MIMs:

Mechanically interlocked molecules

MOFs:

Metal-organic frameworks

MORF:

Metal-organic rotaxane framework

P5A:

Pillar[5]arene

PM:

1,10-Phenanthroline macrocycle

PXRD:

Powder X-ray diffraction

RCP:

Rotaxane coordination polymer

TCPP:

Tetrakis(carboxyphenyl)porphyrin

TGA:

Thermogravimetric analysis

TPDB24C8:

Tetraphenoxyl dibenzo[24]crown-8

TSMB:

Texas-sized molecular box

UWDM-1:

University of Windsor Dynamic Material-1

References

  1. Schill G (1971) Catenanes, rotaxanes and knots. Academic, New York

    Google Scholar 

  2. Sauvage JP, Dietrich-Buchecker CO (1999) Molecular catenanes, rotaxanes and knots: a journey through the world of molecular topology. Wiley-VCH, Weinheim

    Google Scholar 

  3. Amabilino DB, Stoddart JF (1995) Interlocked and intertwined structures and superstructures. Chem Rev 95:2725

    Article  CAS  Google Scholar 

  4. Stoddart JF (2009) The chemistry of the mechanical bond. Chem Soc Rev 38:1802

    Article  CAS  Google Scholar 

  5. Aricó F, Badjic JD, Cantrill SJ, Flood AH, Leung KC-F, Liu Y, Stoddart JF (2005) Template synthesis of interlocked molecules. Top Curr Chem 249:203

    Google Scholar 

  6. Beves JE, Blight BA, Campbell CJ, Leigh DA, McBurney RT (2011) Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes and higher order links. Angew Chem Int Ed 50:9260

    Article  CAS  Google Scholar 

  7. Ayme J-F, Beves JE, Campbell CJ, Leigh DA (2013) Template synthesis of molecular knots. Chem Soc Rev 42:1700

    Article  CAS  Google Scholar 

  8. Forgan RS, Sauvage J-P, Stoddart JF (2011) Chemical topology: complex molecular knots, links, and entanglements. Chem Rev 111:5434

    Article  CAS  Google Scholar 

  9. Raymo FM, Stoddart JF (1999) In: Diederich, F Stang PJ (eds) Templated organic synthesis, vol 75. Wiley-VCH, Weinheim, p. 104

    Google Scholar 

  10. Crowley JD, Goldup SM, Lee A-L, Leigh DA, McBurney RT (2009) Active metal template synthesis of rotaxanes, catenanes and molecular shuttles. Chem Soc Rev 38:1530

    Article  CAS  Google Scholar 

  11. Schalley CA, Weilandt T, Brüggemann J, Vögtle F (2004) Hydrogen-bond-mediated template synthesis of rotaxanes, catenanes, and knotanes. Top Curr Chem 248:141

    Article  Google Scholar 

  12. Raymo FM, Stoddart JF (1996) In: Kahn O (ed) Magnetism: a supramolecular function, NATO ARW. Kluwer, Dordrecht

    Google Scholar 

  13. Balzani V, Gomez-Lopez M, Stoddart JF (1998) Molecular machines. Acc Chem Res 31:405

    Article  CAS  Google Scholar 

  14. Balzani V, Credi A, Raymo FM, Stoddart JF (2000) Artificial molecular machines. Angew Chem Int Ed 39:3348

    Article  CAS  Google Scholar 

  15. Balzani V, Credi A, Ferrer B, Silvi S, Venturi M (2005) Artificial molecular motors and machines: design principles and prototype systems. Top Curr Chem 262:1

    Article  CAS  Google Scholar 

  16. Kay ER, Leigh DA, Zerbetto F (2007) Synthetic molecular motors and mechanical machines. Angew Chem Int Ed 46:72

    Article  CAS  Google Scholar 

  17. Balzani V, Credi A, Venturi M (2008) Molecular devices and machines: concepts and perspectives for the nanoworld. Wiley-VCH, Weinheim

    Book  Google Scholar 

  18. Bermudez V, Capron N, Gase T, Gatti FG, Kajzar F, Leigh DA, Zerbetto F, Zhang S (2000) Influencing intramolecular motion with an alternating electric field. Nature 406:608

    Article  CAS  Google Scholar 

  19. Nishimura D, Oshikiri T, Takashima Y, Hashidzume A, Yamaguchi H, Harada A (2008) Relative rotational motion between α-cyclodextrin derivatives and a stiff axle molecule. J Org Chem 73:2496

    Article  CAS  Google Scholar 

  20. Schalley CA, Beizai K, Vögtle F (2001) On the way to rotaxane-based molecular motors: studies in molecular mobility and topological chirality. Acc Chem Res 34:465

    Article  CAS  Google Scholar 

  21. Leigh DA, Wong JKY, Dehez F, Zerbetto F (2003) Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424:174

    Article  CAS  Google Scholar 

  22. Hernández JV, Kay ER, Leigh DA (2004) A reversible synthetic rotary molecular motor. Science 306:1532

    Article  Google Scholar 

  23. Serreli V, Lee CF, Kay ER, Leigh DA (2007) A molecular information ratchet. Nature 445:523

    Article  CAS  Google Scholar 

  24. Anelli PL, Spencer N, Stoddart JF (1991) A molecular shuttle. J Am Chem Soc 113:5131

    Article  CAS  Google Scholar 

  25. Bissell RA, Cordova E, Kaifer AE, Stoddart JF (1994) A chemically and electrochemically switchable molecular shuttle. Nature 369:133

    Article  CAS  Google Scholar 

  26. Loeb SJ, Wisner JA (2000) [2]Rotaxane molecular shuttles employing 1,2-bis(pyridinium)ethane binding sites and dibenzo-24-crown-8 ethers. Chem Commun 1939

    Google Scholar 

  27. Brouwer AM, Frochot C, Gatti FG, Leigh DA, Mottier L, Paolucci F, Roffia S, Wurpel GWH (2001) Photoinduction of fast, reversible translational motion in a hydrogen-bonded molecular shuttle. Science 291:2124

    Article  CAS  Google Scholar 

  28. Stanier CA, Alderman SJ, Claridge TDW, Anderson HL (2002) Unidirectional photoinduced shuttling in a rotaxane with a symmetric stilbene dumbbell. Angew Chem Int Ed 41:1769

    Article  Google Scholar 

  29. Vella SJ, Tiburcio J, Loeb SJ (2007) Optically sensed molecular shuttles driven by acid–base chemistry. Chem Commun 4752

    Google Scholar 

  30. Ma X, Tian H (2010) Bright functional rotaxanes. Chem Soc Rev 39:70

    Article  CAS  Google Scholar 

  31. Saha S, Flood AH, Stoddart JF, Impellizzeri S, Silvi S, Venturi M, Credi A (2007) A redox-driven multicomponent molecular shuttle. J Am Chem Soc 129:12159

    Article  CAS  Google Scholar 

  32. Loeb SJ, Tiburcio J, Vella SJ (2006) A mechanical “flip-switch”. Interconversion between co-conformations of a [2]rotaxane with a single recognition site. Chem Commun 15:1598

    Google Scholar 

  33. Davidson GJE, Sharma S, Loeb SJ (2010) A [2]rotaxane flip switch driven by coordination geometry. Angew Chem Int Ed 49:4938

    Article  CAS  Google Scholar 

  34. Suhan NH, Allen L, Gharib MT, Viljoen E, Vella SJ, Loeb SJ (2011) Colour coding the co-conformations of a [2]rotaxane flip-switch. Chem Commun 47:5991

    Article  CAS  Google Scholar 

  35. Choi JW, Flood AH, Steuerman DW, Nygaard S, Braunschweig AB, Moonen NNP, Laursen BW, Luo Y, Delonno E, Peters AJ, Jeppesen JO, Xe K, Stoddart JF, Heath JR (2006) Ground state equilibrium thermodynamics and switching kinetics of bistable [2]rotaxane switches in solution, polymer gels, and molecular electronic devices. Chem Eur J 12:261

    Article  CAS  Google Scholar 

  36. Coskun A, Banaszak M, Astumian RD, Stoddart JF, Grzybowski BA (2012) Great expectations: can artificial molecular machines deliver on their promise? Chem Soc Rev 41:19

    Article  CAS  Google Scholar 

  37. Vogelsberg CS, Garcia-Garibay MA (2012) Crystalline molecular machines: function, phase order, dimensionality, and composition. Chem Soc Rev 41:1892

    Article  CAS  Google Scholar 

  38. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, OKeeffe M, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469

    Article  CAS  Google Scholar 

  39. Horike S, Shimomura S, Kitagawa S (2009) Soft porous crystals. Nat Chem 1:695

    Article  CAS  Google Scholar 

  40. Lin X, Telepeni I, Blake AJ, Dailly A, Brown CM, Simmons JM, Zoppi M, Walker GS, Thomas KM, Mays TJ, Hubberstey P, Champness NR, Schröder MA (2009) High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J Am Chem Soc 131:2159

    Article  CAS  Google Scholar 

  41. Hupp JT, Poeppelmeier KR (2005) Better living through nanopore chemistry. Science 309:2008

    Article  CAS  Google Scholar 

  42. Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309:2040

    Article  CAS  Google Scholar 

  43. Deng H, Olson MA, Stoddart JF, Yaghi OM (2010) Robust dynamics. Nat Chem 2:439

    Article  CAS  Google Scholar 

  44. Loeb SJ (2007) Rotaxanes as ligands: from molecules to materials. Chem Soc Rev 36:226

    Article  CAS  Google Scholar 

  45. Yang H, Ghosh K, Northrop BH, Zheng Y, Lyndon MM, Muddiman DC, Stang PJ (2007) A highly efficient approach to the self-assembly of hexagonal cavity-cored tris[2]pseudorotaxanes from several components via multiple noncovalent interactions. J Am Chem Soc 129:14187

    Article  CAS  Google Scholar 

  46. Suzaki Y, Taira T, Osakada K (2006) Irreversible and reversible formation of a [2]rotaxane containing platinum(II) complex with an N-alkyl bipyridinium ligand as the axis component. Dalton Trans 5345

    Google Scholar 

  47. Ashton PR, Balzani V, Credi A, Kocian O, Pasini D, Prodi L, Spencer N, Stoddart JF, Tolley MS, Venturi MS, White AJP, Williams DJ (1998) Molecular meccano. Part 35. Cyclophanes and [2]catenanes as ligands for transition metal complexes. Synthesis, structure, absorption spectra, excited state, and electrochemical properties. Chem Eur J 4:590

    Article  CAS  Google Scholar 

  48. Jeppesen JO, Vignon SA, Stoddart JF (2003) In the twilight zone between [2]pseudorotaxanes and [2]rotaxanes. Chem Eur J 9:4611

    Article  CAS  Google Scholar 

  49. Balzani V, Credi A, Venturi M (2009) Light powered molecular machines. Chem Soc Rev 38:1542

    Article  CAS  Google Scholar 

  50. Clemente-Leon M, Credi A, Martinez-Diaz MV, Mingotaud C, Stoddart JF (2006) Towards organization of molecular machines at interfaces. Langmuir films and Langmuir–Blodgett multilayers of an acid-base switchable rotaxane. Adv Mater 18:1291

    Article  CAS  Google Scholar 

  51. Zhou WD, Xu JL, Zheng HY, Yin XD, Zuo ZC, Liu HB, Li YL (2009) Distinct nanostructures from a molecular shuttle: effects of shuttling movement on nanostructural morphologies. Adv Funct Mater 19:141

    Article  CAS  Google Scholar 

  52. Yoon I, Miljanic OS, Benitez D, Khan SI, Stoddart JF (2008) An interdigitated functionally rigid [2]rotaxane. Chem Commun 4561

    Google Scholar 

  53. Nygaard S, Leung KCF, Aprahamian I, Ikeda T, Saha S, Laursen BW, Kim SY, Hansen SW, Stein PC, Flood AH, Stoddart JF, Jeppesen JO (2007) Functionally rigid bistable [2]rotaxanes. J Am Chem Soc 129:960

    Article  CAS  Google Scholar 

  54. Leigh DA, Troisi A, Zerbetto F (2000) Reducing molecular shuttling to a single dimension. Angew Chem Int Ed 39:350

    Article  CAS  Google Scholar 

  55. Kim K (2002) Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem Soc Rev 31:96

    Article  CAS  Google Scholar 

  56. Loeb SJ (2005) Metal–organic rotaxane frameworks; MORFs. Chem Commun 1511

    Google Scholar 

  57. Vukotic VN, Loeb SJ (2012) Coordination polymers containing rotaxane linkers. Chem Soc Rev 41:5896

    Article  CAS  Google Scholar 

  58. Zheng B, Wang F, Dong S, Huang F (2012) Supramolecular polymers constructed by crown ether-based molecular recognition. Chem Soc Rev 41:1621

    Article  CAS  Google Scholar 

  59. Harada A, Kobayashi R, Takashima Y, Hashidzume A, Yamaguchi H (2010) Macroscopic self-assembly through molecular recognition. Nat Chem 3:34

    Article  Google Scholar 

  60. Lukin O, Vögtle F (2005) Knotting and threading of molecules: chemistry and chirality of molecular knots and their assemblies. Angew Chem Int Ed 44:1456

    Article  CAS  Google Scholar 

  61. Li S, Chen J, Zheng B, Dong S, Ma Z, Gibson HW, Huang F (2010) A hyperbranched, rotaxane-type mechanically interlocked polymer. J Polym Sci Pol Chem 48:4067

    Article  CAS  Google Scholar 

  62. Dong S, Luo Y, Yan X, Zheng B, Ding X, Yu Y, Ma Z, Zhao Q, Huang F (2011) A dual-responsive supramolecular polymer gel formed by crown ether based molecular recognition. Angew Chem Int Ed 50:1905

    Article  CAS  Google Scholar 

  63. Kohsaka Y, Nakazono K, Koyama Y, Asai S, Takata T (2011) Size-complementary rotaxane cross-linking for the stabilization and degradation of a supramolecular network. Angew Chem Int Ed 50:4872

    Article  CAS  Google Scholar 

  64. Frampton MJ, Anderson HL (2007) Insulated molecular wires. Angew Chem Int Ed 46:1028

    Article  CAS  Google Scholar 

  65. Buey J, Swager TM (2000) Three-strand conducting ladder polymers: two-step electropolymerization of metallorotaxanes. Angew Chem Int Ed 39:608

    Article  CAS  Google Scholar 

  66. Akutagawa T, Koshinaka H, Sato D, Takeda S, Noro S-I, Takahshi H, Kumai R, Tokura Y, Nakamura T (2009) Ferroelectricity and polarity control in solid-state flip-flop supramolecular rotators. Nat Mater 8:342

    Article  CAS  Google Scholar 

  67. Feng M, Gao L, Deng Z, Ji W, Guo X, Du S, Shi D, Zhang D, Zhu D, Gao H (2007) Reversible, erasable, and rewritable nanorecording on an H2 rotaxane thin film. J Am Chem Soc 129:2204

    Article  CAS  Google Scholar 

  68. Luo Y, Collier CP, Jeppesen JO, Nielsen KA, DeIonno E, Ho G, Perkins J, Tseng H, Yamamoto T, Stoddart JF, Heath JR (2002) Two-dimensional molecular electronics circuits. ChemPhysChem 3:519

    Article  CAS  Google Scholar 

  69. Bermudez V, Gase T, Kajzar F, Capron N, Zerbetto F, Gatt FG, Leigh DA, Zhang S (2002) Rotaxanes—novel photonic molecules. Opt Mater 21:39

    Article  Google Scholar 

  70. Horie M, Sassa T, Hashizume D, Suzaki Y, Osakada K, Wada T (2007) A crystalline supramolecular switch: controlling the optical anisotropy through the collective dynamic motion of molecules. Angew Chem Int Ed 46:4983

    Article  CAS  Google Scholar 

  71. Rauwald U, del Barrio J, Loh XJ, Scherman OA (2011) “On-demand” control of thermoresponsive properties of poly(N-isopropylacrylamide) with cucurbit[8]uril host–guest complexes. Chem Commun 47:6000

    Article  CAS  Google Scholar 

  72. Whang D, Kim K (1997) Polycatenated two-dimensional polyrotaxane net. J Am Chem Soc 119:451

    Article  CAS  Google Scholar 

  73. Park K, Whang D, Lee E, Heo J, Kim K (2002) Transition metal ion directed supramolecular assembly of one- and two-dimensional polyrotaxanes incorporating cucurbituril. Chem Eur J 8:498

    Article  CAS  Google Scholar 

  74. Whang D, Heo J, Kim C, Kim K (1997) Helical polyrotaxane: cucurbituril ‘beads’ threaded onto a helical one-dimensional coordination polymer. Chem Commun 2361

    Google Scholar 

  75. Lee E, Heo J, Kim K (2000) A three-dimensional polyrotaxane network. Angew Chem Int Ed 39:2699

    Article  CAS  Google Scholar 

  76. Davidson GJE, Loeb SJ (2003) Channels and cavities lined with interlocked components: metal-based polyrotaxanes that utilize pyridinium axles and crown ether wheels as ligands. Angew Chem Int Ed 42:74

    Article  CAS  Google Scholar 

  77. Diskin-Posner Y, Patra GK, Goldberg I (2001) Crystal engineering of 2-D and 3-D multiporphyrin architectures − the versatile topologies of tetracarboxyphenylporphyrin-based materials. Eur J Inorg Chem 2515

    Google Scholar 

  78. Mercer DJ, Yacoub J, Loeb SK, Zhu K, Loeb SJ (2012) [2]Pseudorotaxanes, [2]rotaxanes and metal–organic rotaxane frameworks containing tetra-substituted dibenzo[24]crown-8 wheels. Org Biomol Chem 10:6094

    Google Scholar 

  79. Hoffart DJ, Loeb SJ (2007) The missing link: a 2D metal-organic rotaxane framework (MORF) with one rotaxane linker and one naked linker. Supramol Chem 19:89

    Article  CAS  Google Scholar 

  80. Hoffart DJ, Loeb SJ (2005) Metal organic rotaxane frameworks. three dimensional polyrotaxanes form lanthanide ion nodes, pyridinium-N-oxide axles and crown ether wheels. Angew Chem Int Ed 44:901

    Article  CAS  Google Scholar 

  81. Hoffart DJ, Tiburcio J, Torre A, Knight LK, Loeb SJ (2008) Anionic wheels for cationic axles. Cooperative ion-ion interactions for the formation of interpenetrated molecules. Angew Chem 120:103

    Article  Google Scholar 

  82. Knight LK, Vukotic VN, Viljoen E, Caputo CB, Loeb SJ (2009) Eliminating the need for independent counterions in the construction of metal-organic rotaxane frameworks (MORFs). Chem Commun 5585

    Google Scholar 

  83. Vukotic VN, Loeb SJ (2010) One-, two- and three-periodic metal-organic rotaxane frameworks (MORFs): linking cationic transition-metal nodes with an anionic rotaxane ligand. Chem Eur J 16:13630

    Article  CAS  Google Scholar 

  84. Gong H, Rambo BM, Karnas E, Lynch VM, Sessler JL (2010) A ‘Texas-sized’ molecular box that forms an anion-induced supramolecular necklace. Nat Chem 2:406

    Article  CAS  Google Scholar 

  85. Gong H, Rambo BM, Karnas E, Lynch VM, Keller KM, Sessler JL (2011) Environmentally responsive threading, dethreading, and fixation of anion-induced pseudorotaxanes. J Am Chem Soc 133:1526

    Article  CAS  Google Scholar 

  86. Gong H, Rambo BM, Cho W, Lynch VM, Oh M, Sessler JL (2011) Anion-directed assembly of a three-dimensional metal–organic rotaxane framework. Chem Commun 47:5973

    Article  CAS  Google Scholar 

  87. Gong H, Rambo BM, Nelson CA, Lynch VM, Zhua X, Sessler JL (2012) Rare-earth cation effects on three-dimensional metal–organic rotaxane framework (MORF) self assembly. Chem Commun 48:10186

    Article  CAS  Google Scholar 

  88. Dietrich-Buchecker CO, Sauvage J-P, Kintzinger JP (1983) Une nouvelle famille de molecules: les metallo-catenanes. Tet Lett 24:5095

    Article  CAS  Google Scholar 

  89. Baranoff ED, Voignier J, Yasuda T, Heitz V, Sauvage J-P, Kato T (2007) A liquid-crystalline [2]catenane and its copper(I) complex. Angew Chem Int Ed 46:4680

    Article  CAS  Google Scholar 

  90. Champin B, Mobian P, Sauvage J-P (2007) Transition metal complexes as molecular machine prototypes. Chem Soc Rev 358

    Google Scholar 

  91. Coskun A, Hmadeh M, Barin G, Gándara F, Li Q, Choi E, Strutt NL, Cordes DB, Slawin AMZ, Stoddart JF, Sauvage J-P, Yaghi OM (2012) Metal–organic frameworks incorporating copper-complexed rotaxanes. Angew Chem 124:2202

    Article  Google Scholar 

  92. Mercer DJ, Vukotic VN, Loeb SJ (2011) Linking [2]rotaxane wheels to create a new type of metal organic rotaxane framework. Chem Commun 47:896

    Article  CAS  Google Scholar 

  93. Frank NC, Mercer DJ, Loeb SJ (2013) An interwoven metal-organic framework combining mechanically interlocked linkers and interpenetrated networks. Chem Eur J 19:14076

    Article  CAS  Google Scholar 

  94. Zhao Y-L, Liu L, Zhang W, Sue C-H, Li Q, Miljanic OŠ, Yaghi OM, Stoddart JF (2009) Rigid-strut-containing crown ethers and [2]catenanes for incorporation into metal-organic frameworks. Chem Eur J 13:13356

    Article  Google Scholar 

  95. Li Q, Zhang W, Miljanić OŠ, Knobler CB, Stoddart JF, Yaghi OM (2010) A metal-organic framework replete with ordered donor–acceptor catenanes. Chem Commun 46:380

    Article  Google Scholar 

  96. Li Q, Sue C, Basu S, Shveyd AK, Zhang W, Barin G, Fang L, Sarjeant AA, Stoddart JF, Yaghi OM (2010) A catenated strut in a catenated metal–organic framework. Angew Chem Int Ed 49:6751

    Article  CAS  Google Scholar 

  97. Cao D, Juríček M, Brown ZJ, Sue AC-H, Liu Z, Lei J, Blackburn AK, Grunder S, Sarjeant AA, Coskun A, Wang C, Farha OK, Hupp JT, Stoddart JF (2013) Three-dimensional architectures incorporating stereoregular donor–acceptor stacks. Chem Eur J 19:8457

    Article  CAS  Google Scholar 

  98. Li Q, Zhang W, Miljanić OŠ, Sue C, Zhao Y, Liu L, Knobler CB, Stoddart JF, Yaghi OM (2009) Docking in metal–organic frameworks. Science 325:855

    Article  CAS  Google Scholar 

  99. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276

    Article  CAS  Google Scholar 

  100. Amabilino DB, Anelli PL, Ashton PR, Brown GR, Cordova E, Godinez LA, Hayes W, Kaifer AE, Philp D, Slawin AMZ, Spencer N, Stoddart JF, Tolley MS, Williams DJ (1995) Molecular meccano 3: constitutional and translational isomerism in [2]catenanes and [n]pseudorotaxanes. J Am Chem Soc 117:11142

    Article  Google Scholar 

  101. Ashton PR, Philp D, Spencer N, Stoddart JF (1991) The self-assembly of [n]pseudorotaxanes. J Chem Soc Chem Commun 23:1677

    Article  Google Scholar 

  102. Ogoshi T, Kanai S, Fujinami S, Yamagishi T-A, Nakamoto Y (2008) para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host–guest property. J Am Chem Soc 130:5022

    Article  CAS  Google Scholar 

  103. Xue M, Yang Y, Chi X, Zhang Z, Huang F (2012) Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc Chem Res 45:1294

    Article  CAS  Google Scholar 

  104. Strutt NL, Fairen-Jimenez D, Iehl J, Lalonde MB, Snurr RQ, Farha OK, Hupp JT, Stoddart JF (2012) Incorporation of an A1/A2-difunctionalized pillar[5]arene into a metal–organic framework. J Am Chem Soc 134:17436

    Article  CAS  Google Scholar 

  105. Vukotic VN, Harris KJ, Zhu K, Schurko RW, Loeb SJ (2012) Metal–organic frameworks with dynamic interlocked components. Nat Chem 4:456

    Article  CAS  Google Scholar 

  106. Ratcliffe CI, Ripmeester JA, Buchanan GW, Denike JK (1992) A molecular merry-go-round: motion of the large macrocyclic molecule 18-crown-6 in its solid complexes studied by deuterium NMR. J Am Chem Soc 114:3294

    Article  CAS  Google Scholar 

  107. Ratcliffe CI, Buchanan GW, Denike JK (1995) Dynamics of 12-crown-4 ether in its LiNCS complex as studied by solid-state 2H NMR. J Am Chem Soc 117:2900

    Article  CAS  Google Scholar 

  108. Vukotic VN, Loeb SJ (2013) Metal-organic frameworks with dynamic interlocked components. Paper presented at the 245th meeting of the American Chemical Society, New Orleans, April 7–11 2013

    Google Scholar 

  109. Yaghi OM, O'Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423:705

    Article  CAS  Google Scholar 

  110. Zhu K, Vukotic VN, Loeb SJ (2012) Molecular shuttling of a compact and rigid, H-shaped [2]rotaxane. Angew Chem Int Ed 51:2210

    Article  Google Scholar 

  111. Zhu K, Vukotic VN, Noujeim N, Loeb SJ (2012) Bis(benzimidazolium) axles and crown ether wheels: a versatile templating pair for the formation of [2]rotaxane molecular shuttles. Chem Sci 3:3265

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Loeb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhu, K., Loeb, S.J. (2014). Organizing Mechanically Interlocked Molecules to Function Inside Metal-Organic Frameworks. In: Credi, A., Silvi, S., Venturi, M. (eds) Molecular Machines and Motors. Topics in Current Chemistry, vol 354. Springer, Cham. https://doi.org/10.1007/128_2013_516

Download citation

Publish with us

Policies and ethics