Skip to main content

DNA-Based Machines

  • Chapter
  • First Online:
Book cover Molecular Machines and Motors

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 354))

Abstract

The base sequence in nucleic acids encodes substantial structural and functional information into the biopolymer. This encoded information provides the basis for the tailoring and assembly of DNA machines. A DNA machine is defined as a molecular device that exhibits the following fundamental features. (1) It performs a fuel-driven mechanical process that mimics macroscopic machines. (2) The mechanical process requires an energy input, “fuel.” (3) The mechanical operation is accompanied by an energy consumption process that leads to “waste products.” (4) The cyclic operation of the DNA devices, involves the use of “fuel” and “anti-fuel” ingredients. A variety of DNA-based machines are described, including the construction of “tweezers,” “walkers,” “robots,” “cranes,” “transporters,” “springs,” “gears,” and interlocked cyclic DNA structures acting as reconfigurable catenanes, rotaxanes, and rotors. Different “fuels”, such as nucleic acid strands, pH (H+/OH), metal ions, and light, are used to trigger the mechanical functions of the DNA devices. The operation of the devices in solution and on surfaces is described, and a variety of optical, electrical, and photoelectrochemical methods to follow the operations of the DNA machines are presented. We further address the possible applications of DNA machines and the future perspectives of molecular DNA devices. These include the application of DNA machines as functional structures for the construction of logic gates and computing, for the programmed organization of metallic nanoparticle structures and the control of plasmonic properties, and for controlling chemical transformations by DNA machines. We further discuss the future applications of DNA machines for intracellular sensing, controlling intracellular metabolic pathways, and the use of the functional nanostructures for drug delivery and medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABTS2– :

2, 2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

ADA:

Adenosine monoaminase

AFM:

Atomic force microscopy

aFu:

Anti-fuel

AMP:

Adenosine monophosphate

CRET:

Chemiluminescence resonance energy transfer

DNAzyme:

Catalytic nucleic acid

F:

Fluorophore

FAM:

Carboxyfluorescein

Fc:

Ferrocene

FRET:

Fluorescence resonance energy transfer

Fu:

Fuel

G6pDH:

Glucose-6-phosphate dehydrogenase

GOx:

Glucose oxidase

HRP:

Horseradish peroxidase

IMP:

Inosine monophosphate

MB:

Methylene blue

Q:

Quencher

QDs:

Quantum dots

SEF:

Surface-enhanced fluorescence

TAMRA:

Carboxytetramethylrhodamine

TEM:

Transmission electron microscopy

UV:

Ultraviolet

β-CD:

β-Cyclodextrin

References

  1. Schnitzler T, Herrmann A (2012) DNA block copolymers: functional materials for nanoscience and biomedicine. Acc Chem Res 45:1419–1430

    Article  CAS  Google Scholar 

  2. Modi S, Bhatia D, Simmel FC et al (2010) Structural DNA nanotechnology: from bases to bricks, from structure to function. J Phys Chem Lett 1:1994–2005

    Article  CAS  Google Scholar 

  3. Gehring K, Leroy JL, Guéron M (1993) A tetrameric DNA structure with protonated cytosine–cytosine base pairs. Nature 363:561–565

    Article  CAS  Google Scholar 

  4. Chen L, Cai L, Zhang X et al (1994) Crystal structure of a four-stranded intercalated DNA: d(C4). Biochemistry 33:13540–13546

    Article  CAS  Google Scholar 

  5. Collie GW, Parkinson GN (2011) The application of DNA and RNA G-quadruplexes to therapeutic medicines. Chem Soc Rev 40:5867–5892

    Article  CAS  Google Scholar 

  6. Davis JT, Spada GP (2007) Supramolecular architectures generated by self-assembly of guanosine derivatives. Chem Soc Rev 36:296–313

    Article  CAS  Google Scholar 

  7. Miyake Y, Togashi H, Tashiro M et al (2006) MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes. J Am Chem Soc 128:2172–2173

    Article  CAS  Google Scholar 

  8. Tanaka Y, Oda S, Yamaguchi H et al (2007) 15N-15N J-coupling across Hg(II): direct observation of Hg(II)-mediated T–T base pairs in a DNA duplex. J Am Chem Soc 129:244–245

    Article  CAS  Google Scholar 

  9. Ono A, Cao S, Togashi H et al (2008) Specific interactions between silver(I) ions and cytosine–cytosine pairs in DNA duplexes. Chem Commun 44:4825–4827

    Article  CAS  Google Scholar 

  10. Park KS, Jung C, Park HG (2010) “Illusionary” polymerase activity triggered by metal ions: use for molecular logic-gate operations. Angew Chem Int Ed 49:9757–9760

    Article  CAS  Google Scholar 

  11. Brivanlou AH, Darnell JE (2002) Signal transduction and the control of gene expression. Science 295:813–818

    Article  CAS  Google Scholar 

  12. Thomas MC, Chiang CM (2006) The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 41:105–178

    Article  CAS  Google Scholar 

  13. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501

    Article  CAS  Google Scholar 

  14. Teif VB, Rippe K (2009) Predicting nucleosome positions on the DNA: combining intrinsic sequence preferences and remodeler activities. Nucleic Acids Res 37:5641–5655

    Article  CAS  Google Scholar 

  15. Xu Y (2011) Chemistry in human telomere biology: structure, function and targeting of telomere DNA/RNA. Chem Soc Rev 40:2719–2740

    Article  CAS  Google Scholar 

  16. Mason M, Schuller A, Skordalakes E (2011) Telomerase structure function. Curr Opin Struct Biol 21:92–100

    Article  CAS  Google Scholar 

  17. Johnson A, O’Donnell M (2005) DNA ligase: getting a grip to seal the deal. Curr Biol 15:R90–R92

    Article  CAS  Google Scholar 

  18. Dwivedi N, Dube D, Pandey J et al (2008) NAD(+)-dependent DNA ligase: a novel target waiting for the right inhibitor. Med Res Rev 28:545–568

    Article  CAS  Google Scholar 

  19. Patel SS, Pandey M, Nandakumar D (2011) Dynamic coupling between the motors of DNA replication: hexameric helicase, DNA polymerase, and primase. Curr Opin Chem Biol 15:595–605

    Article  CAS  Google Scholar 

  20. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  21. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  22. Osborne SE, Ellington AD (1997) Nucleic acid selection and the challenge of combinatorial chemistry. Chem Rev 97:349–370

    Article  CAS  Google Scholar 

  23. Osborne SE, Matsumura I, Ellington AD (1997) Aptamers as therapeutic and diagnostic reagents: problems and prospects. Curr Opin Chem Biol 1:5–9

    Article  CAS  Google Scholar 

  24. Lee JF, Stovall GM, Ellington AD (2006) Aptamer therapeutics advance. Curr Opin Chem Biol 10:282–289

    Article  CAS  Google Scholar 

  25. Breaker RR, Joyce GF (1994) A DNA enzyme that cleaves RNA. Chem Biol 1:223–229

    Article  CAS  Google Scholar 

  26. Willner I, Shlyahovsky B, Zayats M et al (2008) DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem Soc Rev 37:1153–1165

    Article  CAS  Google Scholar 

  27. Joyce GF (2007) Forty years of in vitro evolution. Angew Chem Int Ed 46:6420–6436

    Article  CAS  Google Scholar 

  28. Stojanovic MN, de Prada P, Landry DW (2001) Aptamer-based folding fluorescent sensor for cocaine. J Am Chem Soc 123:4928–4931

    Article  CAS  Google Scholar 

  29. Yang G, Arakawa-Uramoto H, Wang X et al (1996) Anti-cocaine catalytic antibodies: a synthetic solution to improved diversity. J Am Chem Soc 118:5881–5890

    Article  CAS  Google Scholar 

  30. Bock LC, Griffin LC, Latham JA et al (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355:564–566

    Article  CAS  Google Scholar 

  31. Macaya RF, Waldron JA, Beutel BA et al (1995) Structural and functional characterization of potent antithrombotic oligonucleotides possessing both quadruplex and duplex motifs. Biochemistry 34:4478–4492

    Article  CAS  Google Scholar 

  32. Cox JC, Ellington AD (2001) Automated selection of anti-protein aptamers. Bioorg Med Chem 9:2525–2531

    Article  CAS  Google Scholar 

  33. Cox JC, Hayhurst A, Hesselberth J et al (2002) Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer. Nucleic Acids Res 30:e108

    Article  Google Scholar 

  34. Kirby R, Cho EJ, Gehrke B et al (2004) Aptamer-based sensor arrays for the detection and quantitation of proteins. Anal Chem 76:4066–4075

    Article  CAS  Google Scholar 

  35. Pan T, Uhlenbeck OC (1992) In vitro selection of RNAs that undergo autolytic cleavage with Pb2+. Biochemistry 31:3887–3895

    Article  CAS  Google Scholar 

  36. Pan T, Uhlenbeck OC (1992) A small metalloribozyme with a two-step mechanism. Nature 358:560–563

    Article  CAS  Google Scholar 

  37. Li Y, Geyer CR, Sen D (1996) Recognition of anionic porphyrins by DNA aptamers. Biochemistry 35:6911–6922

    Article  CAS  Google Scholar 

  38. Travascio P, Li Y, Sen D (1998) DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. Chem Biol 5:505–517

    Article  CAS  Google Scholar 

  39. Travascio P, Bennet AJ, Wang DY et al (1999) A ribozyme and a catalytic DNA with peroxidase activity: active sites versus cofactor-binding sites. Chem Biol 6:779–787

    Article  CAS  Google Scholar 

  40. Travascio P, Witting PK, Mauk AG et al (2001) The peroxidase activity of a hemin-DNA oligonucleotide complex: free radical damage to specific guanine bases of the DNA. J Am Chem Soc 123:1337–1348

    Article  CAS  Google Scholar 

  41. Pavlov V, Xiao Y, Gill R et al (2004) Amplified chemiluminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels. Anal Chem 76:2152–2156

    Article  CAS  Google Scholar 

  42. Teller C, Willner I (2010) Organizing protein-DNA hybrids as nanostructures with programmed functionalities. Trends Biotechnol 28:619–628

    Article  CAS  Google Scholar 

  43. Aldaye FA, Palmer AL, Sleiman HF (2008) Assembling materials with DNA as the guide. Science 321:1795–1799

    Article  CAS  Google Scholar 

  44. Kolpashchikov DM (2010) Binary probes for nucleic acid analysis. Chem Rev 110:4709–4723

    Article  CAS  Google Scholar 

  45. Du Y, Li B, Wang E (2013) “Fitting” makes “sensing” simple: label-free detection strategies based on nucleic acid aptamers. Acc Chem Res 46:203–213

    Article  CAS  Google Scholar 

  46. Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21:1192–1199

    Article  CAS  Google Scholar 

  47. Polsky R, Gill R, Kaganovsky L et al (2006) Nucleic acid-functionalized Pt nanoparticles: catalytic labels for the amplified electrochemical detection of biomolecules. Anal Chem 78:2268–2271

    Article  CAS  Google Scholar 

  48. Wang F, Willner B, Willner I (2013) DNA nanotechnology with one-dimensional self-assembled nanostructures. Curr Opin Biotechnol 24:562–574

    Article  CAS  Google Scholar 

  49. Wang ZG, Wilner OI, Willner I (2009) Self-assembly of aptamer-circular DNA nanostructures for controlled biocatalysis. Nano Lett 9:4098–4102

    Article  CAS  Google Scholar 

  50. Wilner OI, Shimron S, Weizmann Y et al (2009) Self-assembly of enzymes on DNA scaffolds: en route to biocatalytic cascades and the synthesis of metallic nanowires. Nano Lett 9:2040–2043

    Article  CAS  Google Scholar 

  51. Liu Y, Lin C, Li H et al (2005) Aptamer-directed self-assembly of protein arrays on a DNA nanostructure. Angew Chem Int Ed 44:4333–4338

    Article  CAS  Google Scholar 

  52. He Y, Chen Y, Liu H et al (2005) Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J Am Chem Soc 127:12202–12203

    Article  CAS  Google Scholar 

  53. Park SH, Barish R, Li H et al (2005) Three-helix bundle DNA tiles self-assemble into 2D lattice or 1D templates for silver nanowires. Nano Lett 5:693–696

    Article  CAS  Google Scholar 

  54. Winfree E, Liu F, Wenzler LA et al (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394:539–544

    Article  CAS  Google Scholar 

  55. Wei B, Dai M, Yin P (2012) Complex shapes self-assembled from single-stranded DNA tiles. Nature 485:623–626

    Article  CAS  Google Scholar 

  56. Ke Y, Voigt NV, Gothelf KV et al (2012) Multilayer DNA origami packed on hexagonal and hybrid lattices. J Am Chem Soc 134:1770–1774

    Article  CAS  Google Scholar 

  57. Majumder U, Rangnekar A, Gothelf KV et al (2011) Design and construction of double-decker tile as a route to three-dimensional periodic assembly of DNA. J Am Chem Soc 133:3843–3845

    Article  CAS  Google Scholar 

  58. Ke Y, Ong LL, Shih WM et al (2012) Three-dimensional structures self-assembled from DNA bricks. Science 338:1177–1183

    Article  CAS  Google Scholar 

  59. Gothelf KV (2012) Materials science. LEGO-like DNA structures. Science 338:1159–1160

    Article  Google Scholar 

  60. Wilner OI, Orbach R, Henning A et al (2011) Self-assembly of DNA nanotubes with controllable diameters. Nat Commun 2:540

    Article  CAS  Google Scholar 

  61. Sharma J, Chhabra R, Liu Y et al (2006) DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays. Angew Chem Int Ed 45:730–735

    Article  CAS  Google Scholar 

  62. Wilner OI, Willner I (2012) Functionalized DNA nanostructures. Chem Rev 112:2528–2556

    Article  CAS  Google Scholar 

  63. Wilner OI, Weizmann Y, Gill R et al (2009) Enzyme cascades activated on topologically programmed DNA scaffolds. Nat Nanotechnol 4:249–254

    Article  CAS  Google Scholar 

  64. Fu J, Liu M, Liu Y et al (2012) Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J Am Chem Soc 134:5516–5519

    Article  CAS  Google Scholar 

  65. Dittmer WU, Reuter A, Simmel FC (2004) A DNA-based machine that can cyclically bind and release thrombin. Angew Chem Int Ed 43:3550–3553

    Article  CAS  Google Scholar 

  66. Krishnan Y, Simmel FC (2011) Nucleic acid based molecular devices. Angew Chem Int Ed 50:3124–3156

    Article  CAS  Google Scholar 

  67. Teller C, Willner I (2010) Functional nucleic acid nanostructures and DNA machines. Curr Opin Biotechnol 21:376–391

    Article  CAS  Google Scholar 

  68. Bath J, Turberfield AJ (2007) DNA nanomachines. Nat Nanotechnol 2:275–284

    Article  CAS  Google Scholar 

  69. Beissenhirtz MK, Willner I (2006) DNA-based machines. Org Biomol Chem 4:3392–3401

    Article  CAS  Google Scholar 

  70. SantaLucia J, Hicks D (2004) The thermodynamics of DNA structural motifs. Annu Rev Biophys Biomol Struct 33:415–440

    Article  CAS  Google Scholar 

  71. Zhang DY, Turberfield AJ, Yurke B et al (2007) Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318:1121–1125

    Article  CAS  Google Scholar 

  72. Soloveichik D, Seelig G, Winfree E et al (2010) DNA as a universal substrate for chemical kinetics. Proc Natl Acad Sci U S A 107:5393–5398

    Article  CAS  Google Scholar 

  73. Yurke B, Mills AP (2003) Using DNA to power nanostructures. Genet Program Evolvable Mach 4:111–122

    Article  Google Scholar 

  74. Li Q, Luan G, Guo Q et al (2002) A new class of homogeneous nucleic acid probes based on specific displacement hybridization. Nucleic Acids Res 30:e5

    Article  Google Scholar 

  75. Zhang DY, Seelig G (2011) Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem 3:103–113

    Article  CAS  Google Scholar 

  76. Zhang DY, Winfree E (2009) Control of DNA strand displacement kinetics using toehold exchange. J Am Chem Soc 131:17303–17314

    Article  CAS  Google Scholar 

  77. Yurke B, Turberfield AJ, Mills AP et al (2000) A DNA-fuelled molecular machine made of DNA. Nature 406:605–608

    Article  CAS  Google Scholar 

  78. Elbaz J, Wang ZG, Orbach R et al (2009) pH-stimulated concurrent mechanical activation of two DNA “tweezers”. A “SET-RESET” logic gate system. Nano Lett 9:4510–4514

    Article  CAS  Google Scholar 

  79. Shimron S, Magen N, Elbaz J et al (2011) pH-programmable DNAzyme nanostructures. Chem Commun 47:8787–8789

    Article  CAS  Google Scholar 

  80. Wang ZG, Elbaz J, Remacle F et al (2010) All-DNA finite-state automata with finite memory. Proc Natl Acad Sci U S A 107:21996–22001

    Article  CAS  Google Scholar 

  81. Elbaz J, Moshe M, Willner I (2009) Coherent activation of DNA tweezers: a “SET-RESET” logic system. Angew Chem Int Ed 48:3834–3837

    Article  CAS  Google Scholar 

  82. Liang X, Nishioka H, Takenaka N et al (2008) A DNA nanomachine powered by light irradiation. ChemBioChem 9:702–705

    Article  CAS  Google Scholar 

  83. Shin JS, Pierce NA (2004) A synthetic DNA walker for molecular transport. J Am Chem Soc 126:10834–10835

    Article  CAS  Google Scholar 

  84. Sherman WB, Seeman NC (2004) A precisely controlled DNA biped walking device. Nano Lett 4:1203–1207

    Article  CAS  Google Scholar 

  85. Wang ZG, Elbaz J, Willner I (2011) DNA machines: bipedal walker and stepper. Nano Lett 11:304–309

    Article  CAS  Google Scholar 

  86. Omabegho T, Sha R, Seeman NC (2009) A bipedal DNA Brownian motor with coordinated legs. Science 324:67–71

    Article  CAS  Google Scholar 

  87. You M, Chen Y, Zhang X et al (2012) An autonomous and controllable light-driven DNA walking device. Angew Chem Int Ed 51:2457–2460

    Article  CAS  Google Scholar 

  88. You M, Huang F, Chen Z et al (2012) Building a nanostructure with reversible motions using photonic energy. ACS Nano 6:7935–7941

    Article  CAS  Google Scholar 

  89. Tian Y, He Y, Chen Y et al (2005) A DNAzyme that walks processively and autonomously along a one-dimensional track. Angew Chem Int Ed 44:4355–4358

    Article  CAS  Google Scholar 

  90. Bath J, Green SJ, Turberfield AJ (2005) A free-running DNA motor powered by a nicking enzyme. Angew Chem Int Ed 44:4358–4361

    Article  CAS  Google Scholar 

  91. Yin P, Yan H, Daniell XG et al (2004) A unidirectional DNA walker that moves autonomously along a track. Angew Chem Int Ed 43:4906–4911

    Article  CAS  Google Scholar 

  92. Liu X, Niazov-Elkan A, Wang F et al (2013) Switching photonic and electrochemical functions of a DNAzyme by DNA machines. Nano Lett 13:219–225

    Article  CAS  Google Scholar 

  93. Elbaz J, Tel-Vered R, Freeman R et al (2009) Switchable motion of DNA on solid supports. Angew Chem Int Ed 48:133–137

    Article  CAS  Google Scholar 

  94. Lund K, Manzo AJ, Dabby N et al (2010) Molecular robots guided by prescriptive landscapes. Nature 465:206–210

    Article  CAS  Google Scholar 

  95. Wickham SF, Endo M, Katsuda Y et al (2011) Direct observation of stepwise movement of a synthetic molecular transporter. Nat Nanotechnol 6:166–169

    Article  CAS  Google Scholar 

  96. Wickham SF, Bath J, Katsuda Y et al (2012) A DNA-based molecular motor that can navigate a network of tracks. Nat Nanotechnol 7:169–173

    Article  CAS  Google Scholar 

  97. McGonigal PR, Stoddart JF (2013) Interlocked molecules: a molecular production line. Nat Chem 5:260–262

    Article  CAS  Google Scholar 

  98. Balzani V, Credi A, Silvi S et al (2006) Artificial nanomachines based on interlocked molecular species: recent advances. Chem Soc Rev 35:1135–1149

    Article  CAS  Google Scholar 

  99. Griffiths KE, Stoddart JF (2008) Template-directed synthesis of donor/acceptor [2]catenanes and [2]rotaxanes. Pure Appl Chem 80:485–506

    Article  CAS  Google Scholar 

  100. Ballardini R, Balzani V, Credi A et al (1997) Controlling catenations, properties and relative ring component movements in catenanes with aromatic fluorine substituents. J Am Chem Soc 119:12503–12513

    Article  CAS  Google Scholar 

  101. Kidd TJ, Leigh DA, Wilson AJ (1999) Organic “magic rings”-the hydrogen bond-directed assembly of catenanes under thermodynamic control. J Am Chem Soc 121:1599–1600

    Article  CAS  Google Scholar 

  102. Raiteri P, Bussi G, Cucinotta CS et al (2008) Unravelling the shuttling mechanism in a photoswitchable multicomponent bistable rotaxane. Angew Chem Int Ed 47:3536–3539

    Article  CAS  Google Scholar 

  103. Amabilino DB, Ashton PR, Balzani V et al (1996) Self-assembly of [n]rotaxanes bearing dendritic stoppers. J Am Chem Soc 118:12012–12020

    Article  CAS  Google Scholar 

  104. Bodis P, Panman MR, Bakker BH et al (2009) Two-dimensional vibrational spectroscopy of rotaxane-based molecular machines. Acc Chem Res 42:1462–1469

    Article  CAS  Google Scholar 

  105. Forgan RS, Sauvage JP, Stoddart JF (2011) Chemical topology: complex molecular knots, links, and entanglements. Chem Rev 111:5434–5464

    Article  CAS  Google Scholar 

  106. Cantrill SJ, Chichak KS, Peters AJ et al (2005) Nanoscale borromean rings. Acc Chem Res 38:1–9

    Article  CAS  Google Scholar 

  107. Chichak KS, Cantrill SJ, Pease AR et al (2004) Molecular borromean rings. Science 304:1308–1312

    Article  CAS  Google Scholar 

  108. Silvi S, Venturi M, Credi A (2011) Light operated molecular machines. Chem Commun 47:2483–2489

    Article  CAS  Google Scholar 

  109. Li H, Fahrenbach AC, Coskun A et al (2011) A light-stimulated molecular switch driven by radical-radical interactions in water. Angew Chem Int Ed 50:6782–6788

    Article  CAS  Google Scholar 

  110. Balzani V, Credi A, Venturi M (2009) Light powered molecular machines. Chem Soc Rev 38:1542–1550

    Article  CAS  Google Scholar 

  111. Ye T, Kumar AS, Saha S et al (2010) Changing stations in single bistable rotaxane molecules under electrochemical control. ACS Nano 4:3697–3701

    Google Scholar 

  112. Katz E, Lioubashevsky O, Willner I (2004) Electromechanics of a redox-active rotaxane in a monolayer assembly on an electrode. J Am Chem Soc 126:15520–15532

    Article  CAS  Google Scholar 

  113. Katz E, Sheeney-Haj-Ichia L, Willner I (2004) Electrical contacting of glucose oxidase in a redox-active rotaxane configuration. Angew Chem Int Ed 43:3292–3300

    Article  CAS  Google Scholar 

  114. Deng WQ, Flood AH, Stoddart JF et al (2005) An electrochemical color-switchable RGB dye: tristable [2]catenane. J Am Chem Soc 127:15994–15995

    Article  CAS  Google Scholar 

  115. Balzani V, Credi A, Langford SJ et al (2000) Constructing molecular machinery: a chemically-switchable [2]catenane. J Am Chem Soc 122:3542–3543

    Article  CAS  Google Scholar 

  116. Romuald C, Ardá A, Clavel C et al (2012) Tightening or loosening a pH-sensitive double-lasso molecular machine readily synthesized from an ends-activated [c2]daisy chain. Chem Sci 3:1851–1857

    Article  CAS  Google Scholar 

  117. Fang L, Hmadeh M, Wu J et al (2009) Acid-base actuation of [c2]daisy chains. J Am Chem Soc 131:7126–7134

    Article  CAS  Google Scholar 

  118. Hudson B, Vinograd J (1967) Catenated circular DNA molecules in HeLa cell mitochondria. Nature 216:647–652

    Article  CAS  Google Scholar 

  119. Liu Y, Kuzuya A, Sha R et al (2008) Coupling across a DNA helical turn yields a hybrid DNA/organic catenane doubly tailed with functional termini. J Am Chem Soc 130:10882–10883

    Article  CAS  Google Scholar 

  120. Han D, Pal S, Liu Y et al (2010) Folding and cutting DNA into reconfigurable topological nanostructures. Nat Nanotechnol 5:712–717

    Article  CAS  Google Scholar 

  121. Schmidt TL, Heckel A (2011) Construction of a structurally defined double-stranded DNA catenane. Nano Lett 11:1739–1742

    Article  CAS  Google Scholar 

  122. Ackermann D, Jester SS, Famulok M (2012) Design strategy for DNA rotaxanes with a mechanically reinforced PX100 axle. Angew Chem Int Ed 51:6771–6775

    Article  CAS  Google Scholar 

  123. Ackermann D, Schmidt TL, Hannam JS et al (2010) A double-stranded DNA rotaxane. Nat Nanotechnol 5:436–442

    Article  CAS  Google Scholar 

  124. Mao C, Sun W, Seeman NC (1997) Assembly of Borromean rings from DNA. Nature 386:137–138

    Article  CAS  Google Scholar 

  125. Elbaz J, Wang Z-G, Wang F et al (2012) Programmed dynamic topologies in DNA catenanes. Angew Chem Int Ed 51:2349–2353

    Article  CAS  Google Scholar 

  126. Lu CH, Cecconello A, Elbaz J et al (2013) A three-station DNA catenane rotary motor with controlled directionality. Nano Lett 13:2303–2308

    Article  CAS  Google Scholar 

  127. Lohmann F, Ackermann D, Famulok M (2012) Reversible light switch for macrocycle mobility in a DNA rotaxane. J Am Chem Soc 134:11884–11887

    Article  CAS  Google Scholar 

  128. Wang W, Yang Y, Cheng E et al (2009) A pH-driven, reconfigurable DNA nanotriangle. Chem Commun 45:824–826

    Article  CAS  Google Scholar 

  129. Song G, Chen M, Chen C et al (2010) Design of proton-fueled tweezers for controlled, multi-function DNA-based molecular device. Biochimie 92:121–127

    Article  CAS  Google Scholar 

  130. Goodman RP, Heilemann M, Doose S et al (2008) Reconfigurable, braced, three-dimensional DNA nanostructures. Nat Nanotechnol 3:93–96

    Article  CAS  Google Scholar 

  131. Han D, Huang J, Zhu Z et al (2011) Molecular engineering of photoresponsive three-dimensional DNA nanostructures. Chem Commun 47:4670–4672

    Article  CAS  Google Scholar 

  132. Muscat RA, Bath J, Turberfield AJ (2011) A programmable molecular robot. Nano Lett 11:982–987

    Article  CAS  Google Scholar 

  133. Tian Y, Mao C (2004) Molecular gears: a pair of DNA circles continuously rolls against each other. J Am Chem Soc 126:11410–11411

    Article  CAS  Google Scholar 

  134. Wang C, Huang Z, Lin Y et al (2010) Artificial DNA nano-spring powered by protons. Adv Mater 22:2792–2798

    Article  CAS  Google Scholar 

  135. Venkataraman S, Dirks RM, Rothemund PW et al (2007) An autonomous polymerization motor powered by DNA hybridization. Nat Nanotechnol 2:490–494

    Article  Google Scholar 

  136. Pelossof G, Tel-Vered R, Liu X et al (2013) Switchable mechanical DNA “arms” operating on nucleic acid scaffolds associated with electrodes or semiconductor quantum dots. Nanoscale 5:8977–8981

    Google Scholar 

  137. Stojanović MN, Stefanović D (2003) Deoxyribozyme-based half-adder. J Am Chem Soc 125:6673–6676

    Article  CAS  Google Scholar 

  138. Liu X, Aizen R, Freeman R et al (2012) Multiplexed aptasensors and amplified DNA sensors using functionalized graphene oxide: application for logic gate operations. ACS Nano 6:3553–3563

    Article  CAS  Google Scholar 

  139. Shlyahovsky B, Li Y, Lioubashevski O et al (2009) Logic gates and antisense DNA devices operating on a translator nucleic acid scaffold. ACS Nano 3:1831–1843

    Article  CAS  Google Scholar 

  140. Saghatelian A, Völcker NH, Guckian KM et al (2003) DNA-based photonic logic gates: AND, NAND, and INHIBIT. J Am Chem Soc 125:346–347

    Article  CAS  Google Scholar 

  141. Okamoto A, Tanaka K, Saito I (2004) DNA logic gates. J Am Chem Soc 126:9458–9463

    Article  CAS  Google Scholar 

  142. Elbaz J, Wang F, Remacle F et al (2012) pH-programmable DNA logic arrays powered by modular DNAzyme libraries. Nano Lett 12:6049–6054

    Article  CAS  Google Scholar 

  143. Elbaz J, Lioubashevski O, Wang F et al (2010) DNA computing circuits using libraries of DNAzyme subunits. Nat Nanotechnol 5:417–422

    Article  CAS  Google Scholar 

  144. Qian L, Winfree E (2011) Scaling up digital circuit computation with DNA strand displacement cascades. Science 332:1196–1201

    Article  CAS  Google Scholar 

  145. Qian L, Winfree E, Bruck J et al (2011) Neural network computation with DNA strand displacement cascades. Nature 475:368–372

    Article  CAS  Google Scholar 

  146. Stojanovic MN, Semova S, Kolpashchikov D et al (2005) Deoxyribozyme-based ligase logic gates and their initial circuits. J Am Chem Soc 127:6914–6915

    Article  CAS  Google Scholar 

  147. Pei H, Liang L, Yao G et al (2012) Reconfigurable three-dimensional DNA nanostructures for the construction of intracellular logic sensors. Angew Chem Int Ed 51:9020–9024

    Article  CAS  Google Scholar 

  148. Wang ZG, Elbaz J, Willner I (2012) A dynamically programmed DNA transporter. Angew Chem Int Ed 51:4322–4326

    Article  CAS  Google Scholar 

  149. Shimron S, Cecconello A, Lu CH et al (2013) Metal nanoparticle-functionalized DNA tweezers: from mechanically programmed nanostructures to switchable fluorescence properties. Nano Lett 13:3791–3795

    Article  CAS  Google Scholar 

  150. Elbaz J, Cecconello A, Fan Z et al (2013) Powering the programmed nanostructure and function of gold nanoparticles with catenated DNA machines. Nat Commun 4:2000

    Article  CAS  Google Scholar 

  151. Xin L, Zhou C, Yang Z et al (2013) Regulation of an enzyme cascade reaction by a DNA machine. Small 9:3088–3091

    Google Scholar 

  152. Liu M, Fu J, Hejesen C et al (2013) A DNA tweezer-actuated enzyme nanoreactor. Nat Commun 4:2127

    Google Scholar 

  153. Tanaka K, Clever GH, Takezawa Y et al (2006) Programmable self-assembly of metal ions inside artificial DNA duplexes. Nat Nanotechnol 1:190–194

    Article  CAS  Google Scholar 

  154. Clever GH, Kaul C, Carell T (2007) DNA-metal base pairs. Angew Chem Int Ed 46:6226–6236

    Article  CAS  Google Scholar 

  155. Takezawa Y, Shionoya M (2012) Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson–Crick base pairs. Acc Chem Res 45:2066–2076

    Article  CAS  Google Scholar 

  156. Kosman J, Juskowiak B (2011) Peroxidase-mimicking DNAzymes for biosensing applications: a review. Anal Chim Acta 707:7–17

    Article  CAS  Google Scholar 

  157. Sen D, Poon LC (2011) RNA and DNA complexes with hemin [Fe(III) heme] are efficient peroxidases and peroxygenases: how do they do it and what does it mean? Crit Rev Biochem Mol Biol 46:478–492

    CAS  Google Scholar 

  158. Arthanari H, Basu S, Kawano TL et al (1998) Fluorescent dyes specific for quadruplex DNA. Nucleic Acids Res 26:3724–3728

    Article  CAS  Google Scholar 

  159. Paramasivan S, Bolton PH (2008) Mix and measure fluorescence screening for selective quadruplex binders. Nucleic Acids Res 36:e106

    Article  CAS  Google Scholar 

  160. Modi S, Swetha MG, Goswami D et al (2009) A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat Nanotechnol 4:325–330

    Google Scholar 

  161. Modi S, Nizak C, Surana S et al (2013) Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. Nat Nanotechnol 8:459–467

    Article  CAS  Google Scholar 

  162. Surana S, Bhat JM, Koushika SP et al (2011) An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism. Nat Commun 2:340

    Article  CAS  Google Scholar 

  163. Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335:831–834

    Article  CAS  Google Scholar 

  164. Zhang Z, Balogh D, Wang F et al (2012) Smart mesoporous SiO2 nanoparticles for the DNAzyme-induced multiplexed release of substrates. J Am Chem Soc 135:1934–1940

    Article  CAS  Google Scholar 

  165. Zhang Z, Balogh D, Wang F et al (2013) Biocatalytic release of an anti-cancer drug from nucleic acids-capped mesoporous SiO2 using DNA or molecular biomarkers as triggering stimuli. ACS Nano 7:8455–8468

    Google Scholar 

  166. He Y, Liu DR (2010) Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nat Nanotechnol 5:778–782

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Parts of this research are supported by the Volkswagen Foundation, Germany, and the Israel Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itamar Willner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, F., Willner, B., Willner, I. (2014). DNA-Based Machines. In: Credi, A., Silvi, S., Venturi, M. (eds) Molecular Machines and Motors. Topics in Current Chemistry, vol 354. Springer, Cham. https://doi.org/10.1007/128_2013_515

Download citation

Publish with us

Policies and ethics