Skip to main content

Piecewise Linearity and Spectroscopic Properties from Koopmans-Compliant Functionals

  • Chapter
  • First Online:
First Principles Approaches to Spectroscopic Properties of Complex Materials

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 347))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that besides functional approximations, the KS-DFT empty states need to be corrected for the derivative discontinuity of the potential upon infinitesimal electron addition. Such derivative discontinuity is usually neglected by approximate functionals which also tend to downshift further the orbital energies of empty states.

  2. 2.

    Otherwise, an infinitesimal transfer of charge δf > 0 from the highest occupied orbital to a state of energy ε i  < ε would decrease the total energy by an amount (ε i  – ε f < 0.

  3. 3.

    Reference [49] also highlights the limitations of conventional DFT approximations in capturing static correlation in spin-degenerate systems (the H2 dissociation problem). Self-interaction errors arising from fractional occupations are nevertheless distinct from static correlation errors arising from fractional spins. In this work, only the self-interaction problem is addressed.

  4. 4.

    Koopmans’ theorem has been originally proven for the HF method considering frozen orbitals [109]. Here we refer to this case as the restricted Koopmans theorem. The generalized version of the theorem has been introduced later [110] in order to include orbital relaxation. We note in passing that the generalized Koopmans theorem is a property of the exact many-body Green’s function G. The performance of GW approximations in this regard has been recently discussed by Bruneval [48]. In fact, when adopting the Lehmann representation, the poles of G, playing the role of (Dyson) orbital energies, are exactly given by total energy differences corresponding to many-body states with different number of particles (with one electron added or removed).

  5. 5.

    One could rely on other definitions to measure the lack of Koopmans compliance. In particular, (30) has recently been exploited in [64] within the frozen orbital approximation. The comparative assessment of these closely related definitions is beyond the scope of this introductory review and will be discussed in detail elsewhere.

  6. 6.

    It is very instructive to note that the linear-response DFT + U method of Cococcioni and de Gironcoli [57] is obtained from a similar expansion to evaluate the U parameters for the N I preselected orbitals χ Ii of the Ith atom. In fact, in its simplest form, the nonlinearity correction reads

    $$ {E}_U\left[{f}_1,{f}_2,\dots, {\varphi}_1,{\varphi}_2,\dots \right]={\displaystyle \sum_{I=1}^{N_{\mathrm{atom}}}{\displaystyle \sum_{i=1}^{N_I}{\scriptscriptstyle \frac{U_{Ii}}{2}}{n}_{Ii}\left(1-{n}_{Ii}\right)}} $$

    with

    $$ {U}_{Ii}={\displaystyle \int {d}^3\mathbf{r}{d}^3{\mathbf{r}}^{\mathbf{\prime}}{d}^3{\mathbf{r}}^{\mathbf{{\prime\prime}}}\left|{\chi}_{Ii}\right|{}^2\left(\mathbf{r}\right){\tilde{\varepsilon}}^{-1}\left(\mathbf{r},{\mathbf{r}}^{\mathbf{\prime}}\right){f}_{\mathrm{Hxc}}\left({\mathbf{r}}^{\mathbf{\prime}},{\mathbf{r}}^{\mathbf{{\prime\prime}}}\right)\left|{\chi}_{Ii}\right|{}^2\left({\mathbf{r}}^{\mathbf{{\prime\prime}}}\right)}\kern1em \mathrm{and}\kern1em {n}_{Ii}={\displaystyle \sum_{j=1}^{+\infty }{f}_j\left|\left\langle {\chi}_{Ii}\Big|{\varphi}_j\right\rangle \right|{}^2.} $$

    The spirit of the Koopmans-compliant correction is identical with the advantage of not requiring preselected atomic orbitals.

  7. 7.

    We note that in Figs. 2 and 4 that we have used the Koopmans-compliant functional defined in (40), where the α screening coefficient has been included. We have adopted the same value for α in both figures. If no α were used [(35)], the K panel in Fig. 2 would show a flat curve, while that of Fig. 4 would display a negative slope as the HF method.

  8. 8.

    For instance, one could compute the average dielectric screening coefficient related to the orbital ψ i through

    $$ {\alpha}_i=\frac{{\displaystyle \int {d}^3\mathbf{r}{d}^3{\mathbf{r}}^{\mathbf{\prime}}{d}^3{\mathbf{r}}^{\mathbf{{\prime\prime}}}\left|{\psi}_i\right|{}^2\left(\mathbf{r}\right){\tilde{\varepsilon}}^{-1}\left(\mathbf{r},{\mathbf{r}}^{\mathbf{\prime}}\right){f}_{\mathrm{Hxc}}\left({\mathbf{r}}^{\mathbf{\prime}},{\mathbf{r}}^{\mathbf{{\prime\prime}}}\right)\left|{\psi}_i\right|{}^2\left({\mathbf{r}}^{\mathbf{{\prime\prime}}}\right)}}{{\displaystyle \int {d}^3\mathbf{r}{d}^3{\mathbf{r}}^{\mathbf{\prime}}\left|{\psi}_i\right|{}^2\left(\mathbf{r}\right){f}_{\mathrm{Hxc}}\left(\mathbf{r},{\mathbf{r}}^{\mathbf{\prime}}\right)\left|{\psi}_i\right|{}^2\left({\mathbf{r}}^{\mathbf{\prime}}\right)}}+\cdots, $$

    where it is understood that each quantity that appears in the integrals must be calculated self-consistently.

  9. 9.

    The same approach is adopted when computing virtual orbital levels and band gaps within, e.g., hybrid DFT and DFT+U approximations.

  10. 10.

    A detailed sensitivity analysis of this approximation is presented in [62].

References

  1. Allen SM, Thomas EL (1999) The structure of materials, MIT series in materials science and engineering. Wiley, New York

    Google Scholar 

  2. Martin RM (2008) Electronic structure: basic theory and practical methods. Cambridge University Press, Cambridge

    Google Scholar 

  3. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871. doi:10.1103/PhysRev.136.B864

    Google Scholar 

  4. Eschrig H (2003) The fundamentals of density functional theory. Edition am Gutenbergplatz, Leipzig

    Google Scholar 

  5. Lieb EH (1983) Density functionals for coulomb systems. Int J Quant Chem 24(3):243–277. doi:10.1002/qua.560240302

    Google Scholar 

  6. Baroni S, de Gironcoli S, Dal Corso A (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–562. doi:10.1103/RevModPhys.73.515

    Google Scholar 

  7. Payne MC, Arias TA, Joannopoulos JD (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 64(4):1045–1097. doi:10.1103/RevModPhys.64.1045

    Google Scholar 

  8. Perdew JP, Levy M, Balduz JL (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49(23):1691–1694. doi:10.1103/PhysRevLett.49.1691

    Google Scholar 

  9. Chong DP, Gritsenko OV, Baerends EJ (2002) Interpretation of the Kohn Sham orbital energies as approximate vertical ionization potentials. J Chem Phys 116(5):1760. doi:10.1063/1.1430255

    Google Scholar 

  10. Casida M (1995) Generalization of the optimized-effective-potential model to include electron correlation – a variational derivation of the Sham–Schluter equation for the exact exchange-correlation potential. Phys Rev A 51(3):2005–2013

    Google Scholar 

  11. Casida M, Huix-Rotllant M (2012) Progress in time-dependent density-functional theory. Annu Rev Phys Chem 63(1):287–323. doi:10.1146/annurev-physchem-032511-143803

    Google Scholar 

  12. Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52(12):997–1000. doi:10.1103/PhysRevLett.52.997

    Google Scholar 

  13. Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body greens-function approaches. Rev Mod Phys 74(2):601–659. doi:10.1103/RevModPhys.74.601

    Google Scholar 

  14. Dreuw A, Weisman JL, Head-Gordon M (2003) Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange. J Chem Phys 119(6):2943. doi:10.1063/1.1590951

    Google Scholar 

  15. Himmetoglu B, Marchenko A, Dabo I, Cococcioni M (2012) Role of electronic localization in the phosphorescence of iridium sensitizing dyes. J Chem Phys 137(15):154309. doi:10.1063/1.4757286

    Google Scholar 

  16. Maitra NT (2005) Undoing static correlation: long-range charge transfer in time-dependent density-functional theory. J Chem Phys 122(23):234104. doi:10.1063/1.1924599

    Google Scholar 

  17. Tozer DJ (2003) Relationship between long-range charge-transfer excitation energy error and integer discontinuity in Kohn Sham theory. J Chem Phys 119(24):12697. doi:10.1063/1.1633756

    Google Scholar 

  18. Faleev S, van Schilfgaarde M, Kotani T (2004) All-electron self-consistent GW approximation: application to Si, MnO, and NiO. Phys Rev Lett 93(12):126406. doi:10.1103/PhysRevLett.93.126406

    Google Scholar 

  19. Godby R, Schlüter M, Sham L (1988) Self-energy operators and exchange-correlation potentials in semiconductors. Phys Rev B 37(17):10159–10175. doi:10.1103/PhysRevB.37.10159

    Google Scholar 

  20. Hedin L (1965) New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys Rev 139(3A):A796–A823. doi:10.1103/PhysRev.139.A796

    Google Scholar 

  21. Hybertsen M, Louie S (1986) Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys Rev B 34(8):5390–5413. doi:10.1103/PhysRevB.34.5390

    Google Scholar 

  22. van Schilfgaarde M, Kotani T, Faleev S (2006) Quasiparticle self-consistent GW theory. Phys Rev Lett 96(22):226402. doi:10.1103/PhysRevLett.96.226402

    Google Scholar 

  23. Zakharov O, Rubio A, Blase X, Cohen M, Louie S (1994) Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe. Phys Rev B 50(15):10780–10787. doi:10.1103/PhysRevB.50.10780

    Google Scholar 

  24. Albrecht S, Onida G, Reining L (1997) Ab initio calculation of the quasiparticle spectrum and excitonic effects in Li2O. Phys Rev B 55(16):10278–10281. doi:10.1103/PhysRevB.55.10278

    Google Scholar 

  25. Albrecht S, Reining L, Del Sole R, Onida G (1998) Ab initio calculation of excitonic effects in the optical spectra of semiconductors. Phys Rev Lett 80(20):4510–4513. doi:10.1103/PhysRevLett.80.4510

    Google Scholar 

  26. Rohlfing M, Louie S (1998) Excitonic effects and the optical absorption spectrum of hydrogenated Si clusters. Phys Rev Lett 80(15):3320–3323. doi:10.1103/PhysRevLett.80.3320

    Google Scholar 

  27. Tiago M, Northrup J, Louie S (2003) Ab initio calculation of the electronic and optical properties of solid pentacene. Phys Rev B 67(11):115212. doi:10.1103/PhysRevB.67.115212

    Google Scholar 

  28. Donnelly RA, Parr RG (1978) Elementary properties of an energy functional of the first-order reduced density matrix. J Chem Phys 69(10):4431. doi:10.1063/1.436433

    Google Scholar 

  29. Gilbert T (1975) Hohenberg–Kohn theorem for nonlocal external potentials. Phys Rev B 12(6):2111–2120. doi:10.1103/PhysRevB.12.2111

    Google Scholar 

  30. Lathiotakis NN, Sharma S, Helbig N, Dewhurst JK, Marques MAL, Eich F, Baldsiefen T, Zacarias A, Gross EKU (2010) Discontinuities of the chemical potential in reduced density matrix functional theory. Z Phys Chem 224(3–4):467–480. doi:10.1524/zpch.2010.6118

    Google Scholar 

  31. Sharma S, Dewhurst JK, Shallcross S, Gross EKU (2013) Spectral density and metal-insulator phase transition in Mott insulators within reduced density matrix functional theory. Phys Rev Lett 110(11):116403. doi:10.1103/PhysRevLett.110.116403

    Google Scholar 

  32. Burke K (2012) Perspective on density functional theory. J Chem Phys 136(15):150901. doi:10.1063/1.4704546

    Google Scholar 

  33. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98(2):1372. doi:10.1063/1.464304

    Google Scholar 

  34. Livshits E, Baer R (2007) A well-tempered density functional theory of electrons in molecules. Phys Chem Chem Phys 9(23):2932. doi:10.1039/b617919c

    Google Scholar 

  35. Kümmel S, Kronik L (2008) Orbital-dependent density functional: theory and applications. Rev Mod Phys 80(1):3–60. doi:10.1103/RevModPhys.80.3

    Google Scholar 

  36. Baer R, Livshits E, Salzner U (2010) Tuned range-separated hybrids in density functional theory. Annu Rev Phys Chem 61(1):85–109. doi:10.1146/annurev.physchem.012809.103321

    Google Scholar 

  37. Refaely-Abramson S, Baer R, Kronik L (2011) Fundamental and excitation gaps in molecules of relevance for organic photovoltaics from an optimally tuned range-separated hybrid functional. Phys Rev B 84(7):075144. doi:10.1103/PhysRevB.84.075144

    Google Scholar 

  38. Cococcioni M (2002) A LDA + U study of selected iron compounds. PhD thesis, SISSA, Trieste http://www.sissa.it/cm

  39. Cococcioni M, Gironcoli SD (2005) Linear response approach to the calculation of the effective interaction parameters in the lda + u method. Phys Rev B 71(3):035105. doi:10.1103/PhysRevB.71.035105

    Google Scholar 

  40. Kulik H, Cococcioni M, Scherlis D, Marzari N (2006) Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. Phys Rev Lett 97(10):103001. doi:10.1103/PhysRevLett.97.103001

    Google Scholar 

  41. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138. doi:10.1103/PhysRev.140.A1133

    Google Scholar 

  42. Janak J (1978) Proof that ∂E/∂n i  = ε i in density-functional theory. Phys Rev B 18(12):7165–7168. doi:10.1103/PhysRevB.18.7165

    Google Scholar 

  43. Cancès E (2001) Self-consistent field algorithms for Kohn Sham models with fractional occupation numbers. J Chem Phys 114(24):10616. doi:10.1063/1.1373430

    Google Scholar 

  44. Marzari N, Vanderbilt D, Payne M (1997) Ensemble density-functional theory for ab initio molecular dynamics of metals and finite-temperature insulators. Phys Rev Lett 79(7):1337–1340. doi:10.1103/PhysRevLett.79.1337

    Google Scholar 

  45. Cancès E, Le Bris C (2000) Can we outperform the DIIS approach for electronic structure calculations? Int J Quant Chem 79(2):8290

    Google Scholar 

  46. Yang W, Zhang Y, Ayers PW (2000) Degenerate ground states and a fractional number of electrons in density and reduced density matrix functional theory. Phys Rev Lett 84(22):5172

    Google Scholar 

  47. Mori-Sánchez P, Cohen A, Yang W (2006) Many-electron self-interaction error in approximate density functionals. J Chem Phys 125:201102

    Google Scholar 

  48. Bruneval F (2009) GW approximation of the many-body problem and changes in the particle number. Phys Rev Lett 103(17):176403. doi:10.1103/PhysRevLett.103.176403

    Google Scholar 

  49. Cohen AJ, Mori-Sanchez P, Yang W (2008) Insights into current limitations of density functional theory. Science 321(5890):792–794. doi:10.1126/science.1158722

    Google Scholar 

  50. Mori-Sánchez P, Cohen A, Yang W (2008) Localization and delocalization errors in density functional theory and implications for band-gap prediction. Phys Rev Lett 100(14):146401. doi:10.1103/PhysRevLett.100.146401

    Google Scholar 

  51. Mori-Sánchez P, Cohen AJ, Yang W (2006) Many-electron self-interaction error in approximate density functionals. J Chem Phys 125(20):201102. doi:10.1063/1.2403848

    Google Scholar 

  52. Ruzsinszky A, Perdew JP, Csonka GI, Vydrov OA, Scuseria GE (2006) Spurious fractional charge on dissociated atoms: pervasive and resilient self-interaction error of common density functionals. J Chem Phys 125(19):194112. doi:10.1063/1.2387954

    Google Scholar 

  53. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  54. Ayers PW, Morrison RC, Parr RG (2005) Fermi–Amaldi model for exchange-correlation: atomic excitation energies from orbital energy differences. Mol Phys 103(15–16):2061–2072. doi:10.1080/00268970500130183

    Google Scholar 

  55. Perdew J (1990) Size-consistency, self-interaction correction, and derivative discontinuity in density functional theory. In: Advances in quantum chemistry, vol 21. Elsevier, San Diego, California. pp 113–134

    Google Scholar 

  56. Kowalczyk T, Yost SR, Voorhis TV (2011) Assessment of the ΔSCF density functional theory approach for electronic excitations in organic dyes. J Chem Phys 134(5):054128. doi:10.1063/1.3530801

    Google Scholar 

  57. Cococcioni M, de Gironcoli S (2005) Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys Rev B 71(3):035105. doi:10.1103/PhysRevB.71.035105

    Google Scholar 

  58. Cohen AJ, Mori-Sánchez P, Yang W (2012) Challenges for density functional theory. Chem Rev 112(1):289–320. doi:10.1021/cr200107z

    Google Scholar 

  59. Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, Amador-Bedolla C, Sanchez-Carrera RS, Gold-Parker A, Vogt L, Brockway AM, Aspuru-Guzik A (2011) The Harvard clean energy project: large-scale computational screening and design of organic photovoltaics on the world community grid. J Phys Chem Lett 2(17):2241–2251. doi:10.1021/jz200866s

    Google Scholar 

  60. Lany S, Zunger A (2010) Generalized Koopmans density functional calculations reveal the deep acceptor state of NO in ZnO. Phys Rev B 81(20):205209. doi:10.1103/PhysRevB.81.205209

    Google Scholar 

  61. Salzner U, Baer R (2009) Koopmans springs to life. J Chem Phys 131(23):231101. doi:10.1063/1.3269030

    Google Scholar 

  62. Dabo I, Ferretti A, Park CH, Poilvert N, Li Y, Cococcioni M, Marzari N (2013) Donor and acceptor levels of organic photovoltaic compounds from first principles. Phys Chem Chem Phys 15:685. doi:10.1039/c2cp43491a

    Google Scholar 

  63. Dabo I, Ferretti A, Poilvert N, Li Y, Marzari N, Cococcioni M (2010) Koopmans condition for density-functional theory. Phys Rev B 82(11):115121. doi:10.1103/PhysRevB.82.115121

    Google Scholar 

  64. Kraisler E, Kronik L (2013) Piecewise linearity of approximate density functionals revisited: implications for frontier orbital energies. Phys Rev Lett 110(12):126403. doi:10.1103/PhysRevLett.110.126403

    Google Scholar 

  65. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23(10):5048–5079. doi:10.1103/PhysRevB.23.5048

    Google Scholar 

  66. Körzdörfer T, Kümmel S, Mundt M (2008) Self-interaction correction and the optimized effective potential. J Chem Phys 129(1):014110. doi:10.1063/1.2944272

    Google Scholar 

  67. Krieger J, Li Y, Iafrate G (1992) Construction and application of an accurate local spin-polarized Kohn–Sham potential with integer discontinuity: exchange-only theory. Phys Rev A 45(1):101–126. doi:10.1103/PhysRevA.45.101

    Google Scholar 

  68. Gatti M, Olevano V, Reining L, Tokatly IV (2007) Transforming nonlocality into a frequency dependence: a shortcut to spectroscopy. Phys Rev Lett 99(5):057401

    Google Scholar 

  69. Ferretti A, Cococcioni M, Marzari N (2013) Submitted

    Google Scholar 

  70. Cohen AJ, Mori-Sanchez P, Yang W (2007) Development of exchange-correlation functionals with minimal many-electron self-interaction error. J Chem Phys 126(19):191109. doi:10.1063/1.2741248

    Google Scholar 

  71. Pederson M, Heaton R, Lin C (1984) Local density Hartree–Fock theory of electronic states of molecules with self interaction correction. J Chem Phys 80:1972

    Google Scholar 

  72. Stengel M, Spaldin N (2008) Self-interaction correction with Wannier functions. Phys Rev B 77(15):155106

    Google Scholar 

  73. Marzari N, Vanderbilt D (1997) Maximally localized generalized Wannier functions for composite energy bands. Phys Rev B 56(20):12847–12865

    Google Scholar 

  74. Wannier GH (1937) The structure of electronic excitation levels in insulation crystals. Phys Rev 52:191–197

    Google Scholar 

  75. Messud J, Dinh P, Reinhard PG, Suraud E (2009) On the exact treatment of time-dependent self-interaction correction. Ann Phys 324:955–976

    Google Scholar 

  76. Vydrov O, Scuseria G, Perdew J (2007) Tests of functionals for systems with fractional electron number. J Chem Phys 126:154109

    Google Scholar 

  77. Körzdörfer T (2011) On the relation between orbital-localization and self-interaction errors in the density functional theory treatment of organic semiconductors. J Chem Phys 134:094111

    Google Scholar 

  78. Chan M, Ceder G (2010) Efficient band gap prediction for solids. Phys Rev Lett 105(19):196403. doi:10.1103/PhysRevLett.105.196403

    Google Scholar 

  79. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Corso AD, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) Quantum espresso: a modular and open-source software project for quantum simulations of materials. J Phys Condens Mat 21(39):395502

    Google Scholar 

  80. Li Y, Dabo I (2011) Electronic levels and electrical response of periodic molecular structures from plane-wave orbital-dependent calculations. Phys Rev B 84(15):155127

    Google Scholar 

  81. Perdew J, Levy M (1983) Physical content of the exact Kohn–Sham orbital energies - band-gaps and derivative discontinuities. Phys Rev Lett 51(20):1884–1887

    Google Scholar 

  82. Perdew J, Levy M (1997) Comment on “significance of the highest occupied Kohn–Sham eigenvalue”. Phys Rev B 56(24):16021–16028

    Google Scholar 

  83. Blase X, Attaccalite C, Olevano V (2011) First-principles GW calculations for fullerenes, porphyrins, phthalocyanine, and other molecules of interest for organic photovoltaic applications. Phys Rev B 83(11):115103. doi:10.1103/PhysRevB.83.115103

    Google Scholar 

  84. Tiago ML, Kent PRC, Hood RQ, Reboredo FA (2008) Neutral and charged excitations in carbon fullerenes from first-principles many-body theories. J Chem Phys 129(8):084311

    Google Scholar 

  85. Foerster D, Koval P, Sánchez-Portal D (2011) An O (N3) implementation of Hedin’s GW approximation for molecules. J Chem Phys 135:074105

    Google Scholar 

  86. Pines D (1963) Elementary excitations in solids. W.A. Benjamin, New York

    Google Scholar 

  87. Pines D, Nozières P (1989) The theory of quantum liquids. Addison-Wesley, New York

    Google Scholar 

  88. Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 74(2):601–659

    Google Scholar 

  89. Ferretti A, Mallia G, Martin-Samos L, Bussi G, Ruini A, Montanari B, Harrison N (2012) Ab initio complex band structure of conjugated polymers: effects of hybrid density functional theory and GW schemes. Phys Rev B 85(23):235105. doi:10.1103/PhysRevB.85.235105

    Google Scholar 

  90. Curtiss L, Raghavachari K, Redfern P, Pople J (1997) Assessment of gaussian-2 and density functional theories for the computation of enthalpies of formation. J Chem Phys 106(3):1063–1079

    Google Scholar 

  91. National Institute of Standards and Technology (NIST) (2013). Computational chemistry comparison and benchmark database, http://cccbdb.nist.gov

  92. Kadantsev ES, Stott MJ, Rubio A (2006) Electronic structure and excitations in oligoacenes from ab initio calculations. J Chem Phys 124(13):134901

    Google Scholar 

  93. Piancastelli M, Kelly M, Chang Y, McKinley J, Margaritondo G (1987) Benzene adsorption on low-temperature silicon: a synchrotron-radiation photoemission study of valence and core states. Phys Rev B 35(17):9218–9221. doi:10.1103/PhysRevB.35.9218

    Google Scholar 

  94. Trofimov AB, Zaitseva IL, Moskovskaya TE, Vitkovskaya NM (2008) Theoretical investigation of photoelectron spectra of furan, pyrrole, thiophene, and selenole. Chem Heterocycl Comp 44(9):1101–1112. doi:10.1007/s10593-008-0159-5

    Google Scholar 

  95. Coropceanu V, Malagoli M, da Silva D, Gruhn N, Bill T, Bredas J (2002) Hole- and electron-vibrational couplings in oligoacene crystals: intramolecular contributions. Phys Rev Lett 89(27):275503. doi:10.1103/PhysRevLett.89.275503

    Google Scholar 

  96. CRC (2009) CRC handbook of chemistry and physics. CRC, Boca Raton

    Google Scholar 

  97. Kramida A, Ralchenko Y, Reader J, NIST ASD Team (2013) NIST atomic spectra database

    Google Scholar 

  98. Mehlhorn W, Breuckmann B, Hausamann D (1977) Electron spectra of free metal atoms. Phys Scrip 16(5–6):177

    Google Scholar 

  99. Shirley D, Martin R, Kowalczyk S, McFeely F, Ley L (1977) Core-electron binding energies of the first thirty elements. Phys Rev B 15(2):544

    Google Scholar 

  100. Banna M, Wallbank B, Frost D, McDowell C, Perera J (1978) Free atom core binding energies from X-ray photoelectron spectroscopy. II. Na, K, Rb, Cs, and Mg. J Chem Phys 68:5459

    Google Scholar 

  101. Perera J, Frost D, McDowell C, Ewig C, Key R, Banna M (1982) Atomic and ionic core binding energies of selected levels in the alkaline earths from X-ray photoelectron spectroscopy and Dirac–Fock calculations. J Chem Phys 77:3308

    Google Scholar 

  102. Chen H, Pan Y, Groh S, Hagan T, Ridge D (1991) Gas-phase charge-transfer reactions and electron affinities of macrocyclic, anionic nickel complexes: Ni (salen), Ni (tetraphenylporphyrin), and derivatives. J Am Chem Soc 113(7):2766–2767

    Google Scholar 

  103. Schiedt J, Weinkauf R (1997) Photodetachment photoelectron spectroscopy of mass selected anions: anthracene and the anthracene-H2O cluster. Chem Phys Lett 266(1):201–205

    Google Scholar 

  104. Crocker L, Wang T, Kebarle P (1993) Electron affinities of some polycyclic aromatic hydrocarbons, obtained from electron-transfer equilibria. J Am Chem Soc 115(17):7818–7822. doi:10.1021/ja00070a030

    Google Scholar 

  105. Prinzbach H, Weller A, Landenberger P, Wahl F, Worth J, Scott L, Gelmont M, Olevano D, von Issendorff B (2000) Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C-20. Nature 407(6800):60–63

    Google Scholar 

  106. Yang S, Pettiette C, Conceicao J, Cheshnovsky O, Smalley R (1987) Ups of buckminsterfullerene and other large clusters of carbon. Chem Phys Lett 139(3):233–238

    Google Scholar 

  107. Wang XB, Ding CF, Wang LS (1999) High resolution photoelectron spectroscopy of C60. J Chem Phys 110:8217–8220

    Google Scholar 

  108. Wang XB, Woo HK, Huang X, Kappes M, Wang LS (2006) Direct experimental probe of the on-site coulomb repulsion in the doubly charged fullerene anion c702-. Phys Rev Lett 96(14):143002. doi:10.1103/PhysRevLett.96.143002

    Google Scholar 

  109. Zsabo A, Ostlund NS (1996) Modern quantum chemistry: introduction to advanced electronic structure theory. Dover, New York

    Google Scholar 

  110. Phillips J (1961) Generalized Koopmans theorem. Phys Rev 123(2):420

    Google Scholar 

Download references

Acknowledgements

The authors are indebted to M. Cococcioni, N. Poilvert, G. Borghi, N. L. Nguyen, C.-H. Park, M. Marqués, E. K. U. Gross, S. de Gironcoli, and S. Baroni for valuable discussions and relevant suggestions. ID acknowledges partial support from the French National Research Agency through Grant ANR 12-BS04-0001 PANELS (Photovoltaics from Ab-initio Novel Electronic-structure Simulations). AF acknowledges partial support from Italian MIUR through Grant FIRB-RBFR08FOAL_001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismaila Dabo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dabo, I., Ferretti, A., Marzari, N. (2014). Piecewise Linearity and Spectroscopic Properties from Koopmans-Compliant Functionals. In: Di Valentin, C., Botti, S., Cococcioni, M. (eds) First Principles Approaches to Spectroscopic Properties of Complex Materials. Topics in Current Chemistry, vol 347. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2013_504

Download citation

Publish with us

Policies and ethics