Skip to main content

Status in Calculating Electronic Excited States in Transition Metal Oxides from First Principles

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 347))

Abstract

Characterization of excitations in transition metal oxides is a crucial step in the development of these materials for photonic and optoelectronic applications. However, many transition metal oxides are considered to be strongly correlated materials, and their complex electronic structure is challenging to model with many established quantum mechanical techniques. We review state-of-the-art first-principles methods to calculate charged and neutral excited states in extended materials, and discuss their application to transition metal oxides. We briefly discuss developments in density functional theory (DFT) to calculate fundamental band gaps, and introduce time-dependent DFT, which can model neutral excitations. Charged excitations can be described within the framework of many-body perturbation theory based on Green’s functions techniques, which predominantly employs the GW approximation to the self-energy to facilitate a feasible solution to the quasiparticle equations. We review the various implementations of the GW approximation and evaluate each approach in its calculation of fundamental band gaps of many transition metal oxides. We also briefly review the related Bethe–Salpeter equation (BSE), which introduces an electron–hole interaction between GW-derived quasiparticles to describe accurately neutral excitations. Embedded correlated wavefunction theory is another framework used to model localized neutral or charged excitations in extended materials. Here, the electronic structure of a small cluster is modeled within correlated wavefunction theory, while its coupling to its environment is represented by an embedding potential. We review a number of techniques to represent this background potential, including electrostatic representations and electron density-based methods, and evaluate their application to transition metal oxides.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Carter EA (2008) Challenges in modeling materials properties without experimental input. Science 321:800–803

    Google Scholar 

  2. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Google Scholar 

  3. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Google Scholar 

  4. Bowler DR, Miyazaki T, Gillan MJ (2002) Recent progress in linear scaling ab initio electronic structure techniques. J Phys Condens Matter 14:2781

    Google Scholar 

  5. Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569

    Google Scholar 

  6. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211

    Google Scholar 

  7. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079

    Google Scholar 

  8. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Google Scholar 

  9. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    Google Scholar 

  10. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Google Scholar 

  11. Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple [Phys Rev Lett 77:3865 (1996)]. Phys Rev Lett 78:1396

    Google Scholar 

  12. Perdew JP, Burke K, Ernzerhof M (1998) Perdew, Burke, and Ernzerhof reply. Phys Rev Lett 80:891

    Google Scholar 

  13. Zhang Y, Yang W (1998) Comment on “Generalized gradient approximation made simple”. Phys Rev Lett 80:890

    Google Scholar 

  14. Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys Rev B 59:7413–7421

    Google Scholar 

  15. Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B 44:943–954

    Google Scholar 

  16. Anisimov VI, Solovyev IV, Korotin MA, Czyżyk MT, Sawatzky GA (1993) Density-functional theory and NiO photoemission spectra. Phys Rev B 48:16929–16934

    Google Scholar 

  17. Solovyev IV, Dederichs PH, Anisimov VI (1994) Corrected atomic limit in the local-density approximation and the electronic structure of d impurities in Rb. Phys Rev B 50:16861–16871

    Google Scholar 

  18. Czyzyk MT, Sawatzky GA (1994) Local-density functional and on-site correlations: the electronic structure of La2CuO4 and LaCuO3. Phys Rev B 49:14211–14228

    Google Scholar 

  19. Liechtenstein AI, Anisimov VI, Zaanen J (1995) Density-functional theory and strong interactions: orbital ordering in Mott–Hubbard insulators. Phys Rev B 52:R5467–R5470

    Google Scholar 

  20. Anisimov VI, Aryasetiawan F, Lichtenstein AI (1997) First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method. J Phys Condens Matter 9:767–808

    Google Scholar 

  21. Dudarev SL, Liechtenstein AI, Castell MR, Briggs GAD, Sutton AP (1997) Surface states on NiO (100) and the origin of the contrast reversal in atomically resolved scanning tunneling microscope images. Phys Rev B 56:4900–4908

    Google Scholar 

  22. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys Rev B 57:1505–1509

    Google Scholar 

  23. Anisimov VI, Gunnarsson O (1991) Density-functional calculation of effective Coulomb interactions in metals. Phys Rev B 43:7570–7574

    Google Scholar 

  24. Gunnarsson O, Andersen OK, Jepsen O, Zaanen J (1989) Density-functional calculation of the parameters in the Anderson model: application to Mn in CdTe. Phys Rev B 39:1708–1722

    Google Scholar 

  25. Cococcioni M, de Gironcoli S (2005) Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys Rev B 71:035105 (16 pp)

    Google Scholar 

  26. Springer M, Aryasetiawan F (1998) Frequency-dependent screened interaction in Ni within the random-phase approximation. Phys Rev B 57:4364–4368

    Google Scholar 

  27. Kotani T (2000) Ab initio random-phase-approximation calculation of the frequency-dependent effective interaction between 3d electrons: Ni, Fe, and MnO. J Phys Condens Matter 12:2413–2422

    Google Scholar 

  28. Aryasetiawan F, Imada M, Georges A, Kotliar G, Biermann S, Lichtenstein AI (2004) Frequency-dependent local interactions and low-energy effective models from electronic structure calculations. Phys Rev B 70:195104 (8 pp)

    Google Scholar 

  29. Aryasetiawan F, Karlsson K, Jepsen O, Schönberger U (2006) Calculations of Hubbard U from first-principles. Phys Rev B 74:125106 (8 pp)

    Google Scholar 

  30. Kulik HJ, Cococcioni M, Scherlis DA, Marzari N (2006) Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. Phys Rev Lett 97:103001 (4 pp)

    Google Scholar 

  31. Kulik HJ, Marzari N (2008) A self-consistent Hubbard U density-functional theory approach to the addition-elimination reactions of hydrocarbons on bare FeO+. J Chem Phys 129:134314 (12 pp)

    Google Scholar 

  32. Kulik HJ, Marzari N (2010) Systematic study of first-row transition-metal diatomic molecules: a self-consistent DFT+U approach. J Chem Phys 133:114103 (16 pp)

    Google Scholar 

  33. Shih B-C, Zhang Y, Zhang W, Zhang P (2012) Screened Coulomb interaction of localized electrons in solids from first principles. Phys Rev B 85:045132 (9 pp)

    Google Scholar 

  34. Mosey NJ, Carter EA (2007) Ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations. Phys Rev B 76:155123 (13 pp)

    Google Scholar 

  35. Mosey NJ, Liao P, Carter EA (2008) Rotationally invariant ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations. J Chem Phys 129:014103 (13 pp)

    Google Scholar 

  36. Kioupakis E, Zhang P, Cohen ML, Louie SG (2008) GW quasiparticle corrections to the LDA+U/GGA+U electronic structure of bcc hydrogen. Phys Rev B 77:155114 (4 pp)

    Google Scholar 

  37. Krieger JB, Li Y, Iafrate GJ (1992) Construction and application of an accurate local spin-polarized Kohn–Sham potential with integer discontinuity: exchange-only theory. Phys Rev 45:101–126

    Google Scholar 

  38. Sharp RT, Horton GK (1953) A variational approach to the unipotential many-electron problem. Phys Rev 90:317

    Google Scholar 

  39. Rose JH Jr, Shore HB (1975) Calculation method for the inhomogeneous electron gas. Solid State Commun 17:327–330

    Google Scholar 

  40. Talman JD, Shadwick WF (1976) Optimized effective atomic central potential. Phys Rev 14:36–40

    Google Scholar 

  41. Krieger JB, Li Y, Iafrate GJ (1992) Systematic approximations to the optimized effective potential: application to orbital-density-functional theory. Phys Rev 46:5453–5458

    Google Scholar 

  42. Bulgac A, Lewenkopf C, Mickrjukov V (1995) Generalized local approximation to the exchange potential. Phys Rev B 52:16476–16485

    Google Scholar 

  43. Gonze X (1996) Towards a potential-based conjugate gradient algorithm for order-N self-consistent total energy calculations. Phys Rev B 54:4383–4386

    Google Scholar 

  44. Fritsche L, Yuan J (1998) Alternative approach to the optimized effective potential method. Phys Rev 57:3425–3432

    Google Scholar 

  45. Hyman RA, Stiles MD, Zangwill A (2000) Gradient search method for orbital-dependent density-functional calculations. Phys Rev B 62:15521–15526

    Google Scholar 

  46. Hirata S, Ivanov S, Grabowski I, Bartlett RJ, Burke K, Talman JD (2001) Can optimized effective potentials be determined uniquely? J Chem Phys 115:1635–1649

    Google Scholar 

  47. Yang W, Wu Q (2002) Direct method for optimized effective potentials in density-functional theory. Phys Rev Lett 89:143002 (4 pp)

    Google Scholar 

  48. Kümmel S, Perdew JP (2003) Simple iterative construction of the optimized effective potential for orbital functionals, including exact exchange. Phys Rev Lett 90:043004 (4 pp)

    Google Scholar 

  49. Huang C, Carter EA (2011) Direct minimization of the optimized effective problem based on efficient finite differences. Phys Rev B 84:165122 (6 pp)

    Google Scholar 

  50. Becke AD (1993) A new mixing of Hartree–Fock and local density‐functional theories. J Chem Phys 98:1372–1377

    Google Scholar 

  51. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170

    Google Scholar 

  52. Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982–9985

    Google Scholar 

  53. Savin A (1995) Beyond the Kohn–Sham determinant. In: Chong DP (ed) Recent Advances in Computational Chemistry. World Scientific Publishing, Singapore, pp 129–153

    Google Scholar 

  54. Leininger T, Stoll H, Werner H-J, Savin A (1997) Combining long-range configuration interaction with short-range density functionals. Chem Phys Lett 275:151–160

    Google Scholar 

  55. Savin A, Flad H-J (1995) Density functionals for the Yukawa electron–electron interaction. Int J Quantum Chem 56:327–332

    Google Scholar 

  56. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) A long-range correction scheme for generalized-gradient-approximation exchange functionals. J Chem Phys 115:3540–3544

    Google Scholar 

  57. Vydrov OA, Scuseria GE (2006) Assessment of a long-range corrected hybrid functional. J Chem Phys 125:234109 (9 pp)

    Google Scholar 

  58. Cohen AJ, Mori-Sánchez P, Yang W (2007) Development of exchange-correlation functionals with minimal many-electron self-interaction error. J Chem Phys 126:191109 (5 pp)

    Google Scholar 

  59. Chai J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128:084106 (15 pp)

    Google Scholar 

  60. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Google Scholar 

  61. Rohrdanz MA, Martins KM, Herbert JM (2009) A long-range-corrected density functional that performs well for both ground-state properties and time-dependent density functional theory excitation energies, including charge-transfer excited states. J Chem Phys 130:054112 (8 pp)

    Google Scholar 

  62. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215

    Google Scholar 

  63. Heyd J, Scuseria GE (2004) Assessment and validation of a screened Coulomb hybrid density functional. J Chem Phys 120:7274–7280

    Google Scholar 

  64. Heyd J, Scuseria GE (2004) Efficient hybrid density functional calculations in solids: assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. J Chem Phys 121:1187–1192

    Google Scholar 

  65. Heyd J, Peralta JE, Scuseria GE, Martin RL (2005) Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J Chem Phys 123:174101 (8 pp)

    Google Scholar 

  66. Becke AD (1993) Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Google Scholar 

  67. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Google Scholar 

  68. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Google Scholar 

  69. Perdew JP, Parr RG, Levy M, Balduz JL (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49:1691–1694

    Google Scholar 

  70. Almbladh C-O, von Barth U (1985) Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues. Phys Rev B 31:3231–3244

    Google Scholar 

  71. Perdew JP, Levy M (1997) Comment on “Significance of the highest occupied Kohn–Sham eigenvalue”. Phys Rev B 56:16021–16028

    Google Scholar 

  72. Sham LJ, Schlüter M (1983) Density-functional theory of the energy gap. Phys Rev Lett 51:1888–1891

    Google Scholar 

  73. Perdew JP, Levy M (1983) Physical content of the exact Kohn–Sham orbital energies: band gaps and derivative discontinuities. Phys Rev Lett 51:1884–1887

    Google Scholar 

  74. Chan MKY, Ceder G (2010) Efficient band gap prediction for solids. Phys Rev Lett 105:196403–196406

    Google Scholar 

  75. Leslie M, Gillan NJ (1985) The energy and elastic dipole tensor of defects in ionic crystals calculated by the supercell method. J Phys C Solid State Phys 18:973–982

    Google Scholar 

  76. Makov G, Payne MC (1995) Periodic boundary conditions in ab initio calculations. Phys Rev B 51:4014–4022

    Google Scholar 

  77. Schultz PA (1999) Local electrostatic moments and periodic boundary conditions. Phys Rev B 60:1551–1554

    Google Scholar 

  78. Schultz PA (2000) Charged local defects in extended systems. Phys Rev Lett 84:1942–1945

    Google Scholar 

  79. Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Doğan S, Avrutin V, Cho S-J, Morkoç H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301 (103 pp)

    Google Scholar 

  80. Stein T, Autschbach J, Govind N, Kronik L, Baer R (2012) Curvature and frontier orbital energies in density functional theory. J Phys Chem Lett 3:3740–3744

    Google Scholar 

  81. Seidl A, Görling A, Vogl P, Majewski JA, Levy M (1996) Generalized Kohn–Sham schemes and the band-gap problem. Phys Rev B 53:3764–3774

    Google Scholar 

  82. Kronik L, Stein T, Refaely-Abramson S, Baer R (2012) Excitation gaps of finite-sized systems from optimally tuned range-separated hybrid functionals. J Chem Theory Comput 8:1515–1531

    Google Scholar 

  83. Baer R, Neuhauser D (2005) Density functional theory with correct long-range asymptotic behavior. Phys Rev Lett 94:043002 (4 pp)

    Google Scholar 

  84. Livshits E, Baer R (2007) A well-tempered density functional theory of electrons in molecules. Phys Chem Chem Phys 9:2932–2941

    Google Scholar 

  85. Salzner U, Baer R (2009) Koopmans’ springs to life. J Chem Phys 131:231101 (4 pp)

    Google Scholar 

  86. Refaely-Abramson S, Baer R, Kronik L (2011) Fundamental and excitation gaps in molecules of relevance for organic photovoltaics from an optimally tuned range-separated hybrid functional. Phys Rev B 84:075144 (8 pp)

    Google Scholar 

  87. Refaely-Abramson S, Sharifzadeh S, Govind N, Autschbach J, Neaton JB, Baer R, Kronik L (2012) Quasiparticle spectra from a nonempirical optimally tuned range-separated hybrid density functional. Phys Rev Lett 109:226405

    Google Scholar 

  88. Eisenberg HR, Baer R (2009) A new generalized Kohn–Sham method for fundamental band-gaps in solids. Phys Chem Chem Phys 11:4674–4680

    Google Scholar 

  89. Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000

    Google Scholar 

  90. Petersilka M, Gossmann UJ, Gross EKU (1996) Excitation energies from time-dependent density-functional theory. Phys Rev Lett 76:1212–1215

    Google Scholar 

  91. Casida ME (1996) Time-dependent density functional response theory of molecular systems: theory, computational methods, and functionals. In: Seminario JM (ed) Theor Comput Chem. Elsevier, Amsterdam, pp 391–439

    Google Scholar 

  92. Chelikowsky JR, Kronik L, Vasiliev I (2003) Time-dependent density-functional calculations for the optical spectra of molecules, clusters, and nanocrystals. J Phys Condens Matter 15:R1517–R1547

    Google Scholar 

  93. Burke K, Werschnik J, Gross EKU (2005) Time-dependent density functional theory: past, present, and future. J Chem Phys 123:062206 (9 pp)

    Google Scholar 

  94. Sottile F, Bruneval F, Marinopoulos AG, Dash LK, Botti S, Olevano V, Vast N, Rubio A, Reining L (2005) TDDFT from molecules to solids: the role of long-range interactions. Int J Quantum Chem 102:684–701

    Google Scholar 

  95. Botti S, Schindlmayr A, Sole RD, Reining L (2007) Time-dependent density-functional theory for extended systems. Rep Prog Phys 70:357–407

    Google Scholar 

  96. Elliott P, Furche F, Burke K (2009) Excited states from time-dependent density functional theory. In: Lipkowitz KB, Cundari TR (eds) Rev Comput Chem. Wiley, Hoboken, pp 91–165

    Google Scholar 

  97. Marques MA, Maitra NT, Nogueira FM, Gross EKU, Rubio A (2012) Fundamentals of time-dependent density functional theory. Springer, Berlin

    Google Scholar 

  98. Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 74:601–659

    Google Scholar 

  99. Sottile F, Olevano V, Reining L (2003) Parameter-free calculation of response functions in time-dependent density-functional theory. Phys Rev Lett 91:056402 (4 pp)

    Google Scholar 

  100. Rocca D, Gebauer R, Saad Y, Baroni S (2008) Turbo charging time-dependent density-functional theory with Lanczos chains. J Chem Phys 128:154105 (14 pp)

    Google Scholar 

  101. Malcıoğlu OB, Gebauer R, Rocca D, Baroni S (2011) turboTDDFT – a code for the simulation of molecular spectra using the Liouville–Lanczos approach to time-dependent density-functional perturbation theory. Comput Phys Commun 182:1744–1754

    Google Scholar 

  102. De Angelis F, Armelao L (2010) Optical properties of ZnO nanostructures: a hybrid DFT/TDDFT investigation. Phys Chem Chem Phys 13:467–475

    Google Scholar 

  103. Monticone S, Tufeu R, Kanaev AV (1998) Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles. J Phys Chem B 102:2854–2862

    Google Scholar 

  104. Malloci G, Chiodo L, Rubio A, Mattoni A (2012) Structural and optoelectronic properties of unsaturated ZnO and ZnS nanoclusters. J Phys Chem C 116:8741–8746

    Google Scholar 

  105. De Angelis F, Fantacci S, Selloni A (2008) Alignment of the dye’s molecular levels with the TiO2 band edges in dye-sensitized solar cells: a DFT–TDDFT study. Nanotechnology 19:424002 (7 pp)

    Google Scholar 

  106. Suzuki S, Tsuneda T, Hirao K (2012) A theoretical investigation on photocatalytic oxidation on the TiO2 surface. J Chem Phys 136:024706 (6 pp)

    Google Scholar 

  107. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev 38:3098–3100

    Google Scholar 

  108. Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi K (2000) Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J Mol Catal Chem 161:205–212

    Google Scholar 

  109. Breckenridge RG, Hosler WR (1953) Electrical properties of titanium dioxide semiconductors. Phys Rev 91:793–802

    Google Scholar 

  110. Govind N, Lopata K, Rousseau R, Andersen A, Kowalski K (2011) Visible light absorption of N-doped TiO2 rutile using (LR/RT)-TDDFT and active space EOMCCSD calculations. J Phys Chem Lett 2:2696–2701

    Google Scholar 

  111. Chambers SA, Cheung SH, Shutthanandan V, Thevuthasan S, Bowman MK, Joly AG (2007) Properties of structurally excellent N-doped TiO2 rutile. Chem Phys 339:27–35

    Google Scholar 

  112. Cheung SH, Nachimuthu P, Joly AG, Engelhard MH, Bowman MK, Chambers SA (2007) N incorporation and electronic structure in N-doped TiO2(1 1 0) rutile. Surf Sci 601:1754–1762

    Google Scholar 

  113. Lee C-C, Hsueh HC, Ku W (2010) Dynamical linear response of TDDFT with LDA+U functional: strongly hybridized Frenkel excitons in NiO. Phys Rev B 82:081106 (4 pp)

    Google Scholar 

  114. Larson BC, Ku W, Tischler JZ, Lee C-C, Restrepo OD, Eguiluz AG, Zschack P, Finkelstein KD (2007) Nonresonant inelastic X-ray scattering and energy-resolved Wannier function investigation of d-d excitations in NiO and CoO. Phys Rev Lett 99:026401 (4 pp)

    Google Scholar 

  115. Müller F, Hüfner S (2008) Angle-resolved electron energy-loss spectroscopy investigation of crystal-field transitions on MnO and NiO surfaces: exchange scattering versus direct scattering. Phys Rev B 78:085438 (7 pp)

    Google Scholar 

  116. Hedin L, Lundqvist S (1970) Effects of electron–electron and electron–phonon interactions on the one-electron states of solids. In: Frederick Seitz DT, Ehrenreich H (eds) Solid State Phys. Academic, New York, pp 1–181

    Google Scholar 

  117. Hedin L (1965) New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys Rev 139:A796–A823

    Google Scholar 

  118. Hybertsen MS, Louie SG (1987) Theory and calculation of quasiparticle energies and band gaps. Comments Condens Matter Phys 13:223–247

    Google Scholar 

  119. Gatti M, Bruneval F, Olevano V, Reining L (2007) Understanding correlations in vanadium dioxide from first principles. Phys Rev Lett 99:266402 (4 pp)

    Google Scholar 

  120. Aryasetiawan F, Gunnarsson O (1995) Electronic structure of NiO in the GW approximation. Phys Rev Lett 74:3221–3224

    Google Scholar 

  121. Van Schilfgaarde M, Kotani T, Faleev SV (2006) Adequacy of approximations in GW theory. Phys Rev B 74:245125 (16 pp)

    Google Scholar 

  122. Hüfner S (1985) Mott insulation in transition metal compounds. Z Für Phys B Condens Matter 61:135–138

    Google Scholar 

  123. Hüfner S (1985) Hybridization and electron interaction in nickel compounds. Solid State Commun 53:707–710

    Google Scholar 

  124. Hüfner S, Osterwalder J, Riesterer T, Hulliger F (1984) Photoemission and inverse photoemission spectroscopy of NiO. Solid State Commun 52:793–796

    Google Scholar 

  125. Hüfner S, Hulliger F, Osterwalder J, Riesterer T (1984) On the interpretation of valence band photoemission spectra of NiO. Solid State Commun 50:83–86

    Google Scholar 

  126. Hüfner S (1984) Bandstructure and atomic energy levels in Ce-Metal, NiO and NiS. Z Für Phys B Condens Matter 58:1–6

    Google Scholar 

  127. Hüfner S, Steiner P, Sander I, Neumann M, Witzel S (1991) Photoemission on NiO. Z Für Phys B Condens Matter 83:185–192

    Google Scholar 

  128. Fujimori A, Minami F, Sugano S (1984) Multielectron satellites and spin polarization in photoemission from Ni compounds. Phys Rev B 29:5225–5227

    Google Scholar 

  129. Fujimori A, Minami F (1984) Valence-band photoemission and optical absorption in nickel compounds. Phys Rev B 30:957–971

    Google Scholar 

  130. Oh S-J, Allen JW, Lindau I, Mikkelsen JC (1982) Resonant valence-band satellites and polar fluctuations in nickel and its compounds. Phys Rev B 26:4845–4856

    Google Scholar 

  131. Thuler MR, Benbow RL, Hurych Z (1983) Photoemission intensities at the 3p threshold resonance of NiO and Ni. Phys Rev B 27:2082–2088

    Google Scholar 

  132. Davis LC (1986) Photoemission from transition metals and their compounds. J Appl Phys 59:R25–R64

    Google Scholar 

  133. Shen Z-X, List RS, Dessau DS et al (1991) Electronic structure of NiO: correlation and band effects. Phys Rev B 44:3604–3626

    Google Scholar 

  134. Bruneval F, Vast N, Reining L, Izquierdo M, Sirotti F, Barrett N (2006) Exchange and correlation effects in electronic excitations of Cu2O. Phys Rev Lett 97:267601 (4 pp)

    Google Scholar 

  135. Kang W, Hybertsen MS (2010) Quasiparticle and optical properties of rutile and anatase TiO2. Phys Rev B 82:085203 (11 pp)

    Google Scholar 

  136. Tezuka Y, Shin S, Ishii T, Ejima T, Suzuki S, Sato S (1994) Photoemission and Bremsstrahlung isochromat spectroscopy studies of TiO2 (rutile) and SrTiO3. J Phys Soc Jpn 63:347–357

    Google Scholar 

  137. Tang H, Lévy F, Berger H, Schmid PE (1995) Urbach tail of anatase TiO2. Phys Rev B 52:7771–7774

    Google Scholar 

  138. Shin S, Suga S, Taniguchi M, Fujisawa M, Kanzaki H, Fujimori A, Daimon H, Ueda Y, Kosuge K, Kachi S (1990) Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO2, V6O13, and V2O3. Phys Rev B 41:4993–5009

    Google Scholar 

  139. Sawatzky GA, Allen JW (1984) Magnitude and origin of the band gap in NiO. Phys Rev Lett 53:2339–2342

    Google Scholar 

  140. Brahms S, Nikitine S, Dahl JP (1966) On the band structure and the absorption spectrum of Cu2O. Phys Lett 22:31–33

    Google Scholar 

  141. Koffyberg FP (1976) Thermoreflectance spectra of CdO: band gaps and band-population effects. Phys Rev B 13:4470–4476

    Google Scholar 

  142. McGuinness C, Stagarescu CB, Ryan PJ, Downes JE, Fu D, Smith KE, Egdell RG (2003) Influence of shallow core-level hybridization on the electronic structure of post-transition-metal oxides studied using soft X-ray emission and absorption. Phys Rev B 68:165104 (10 pp)

    Google Scholar 

  143. Jiang H, Gomez-Abal RI, Rinke P, Scheffler M (2010) Electronic band structure of zirconia and hafnia polymorphs from the GW perspective. Phys Rev B 81:085119 (9 pp)

    Google Scholar 

  144. Bersch E, Rangan S, Bartynski RA, Garfunkel E, Vescovo E (2008) Band offsets of ultrathin high-κ oxide films with Si. Phys Rev B 78:085114 (10 pp)

    Google Scholar 

  145. Isseroff LY, Carter EA (2012) Importance of reference Hamiltonians containing exact exchange for accurate one-shot GW calculations of Cu2O. Phys Rev B 85:235142 (7 pp)

    Google Scholar 

  146. Shishkin M, Kresse G (2007) Self-consistent GW calculations for semiconductors and insulators. Phys Rev B 75:235102 (9 pp)

    Google Scholar 

  147. Liao P, Carter EA (2011) Testing variations of the GW approximation on strongly correlated transition metal oxides: hematite (α-Fe2O3) as a benchmark. Phys Chem Chem Phys 13:15189–15199

    Google Scholar 

  148. Chiodo L, García-Lastra JM, Iacomino A, Ossicini S, Zhao J, Petek H, Rubio A (2010) Self-energy and excitonic effects in the electronic and optical properties of TiO2 crystalline phases. Phys Rev B 82:045207 (12 pp)

    Google Scholar 

  149. Zimmermann R, Steiner P, Claessen R, Reinert F, Hüfner S, Blaha P, Dufek P (1999) Electronic structure of 3d-transition-metal oxides: on-site Coulomb repulsion versus covalency. J Phys Condens Matter 11:1657–1682

    Google Scholar 

  150. Patrick CE, Giustino F (2012) GW quasiparticle bandgaps of anatase TiO2 starting from DFT+U. J Phys Condens Matter 24:202201 (5 pp)

    Google Scholar 

  151. Jiang H, Gomez-Abal RI, Rinke P, Scheffler M (2010) First-principles modeling of localized d states with the GW@LDA+U approach. Phys Rev B 82:045108 (16 pp)

    Google Scholar 

  152. Kanan DK, Carter EA (2012) Band gap engineering of MnO via ZnO alloying: a potential new visible-light photocatalyst. J Phys Chem C 116:9876–9887

    Google Scholar 

  153. Toroker MC, Kanan DK, Alidoust N, Isseroff LY, Liao P, Carter EA (2011) First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes. Phys Chem Chem Phys 13:16644–16654

    Google Scholar 

  154. Jiang H, Gomez-Abal RI, Rinke P, Scheffler M (2009) Localized and itinerant states in lanthanide oxides united by GW @ LDA+U. Phys Rev Lett 102:126403 (4 pp)

    Google Scholar 

  155. Van Elp J, Potze RH, Eskes H, Berger R, Sawatzky GA (1991) Electronic structure of MnO. Phys Rev B 44:1530–1537

    Google Scholar 

  156. Kim B, Hong S, Lynch DW (1990) Inverse-photoemission measurement of iron oxides on polycrystalline Fe. Phys Rev B 41:12227–12229

    Google Scholar 

  157. Van Elp J, Wieland JL, Eskes H, Kuiper P, Sawatzky GA, de Groot FMF, Turner TS (1991) Electronic structure of CoO, Li-doped CoO, and LiCoO2. Phys Rev B 44:6090–6103

    Google Scholar 

  158. Prokofiev AV, Shelykh AI, Melekh BT (1996) Periodicity in the band gap variation of Ln2X3 (X = O, S, Se) in the lanthanide series. J Alloys Compd 242:41–44

    Google Scholar 

  159. Kimura S, Arai F, Ikezawa M (2000) Optical study on electronic structure of rare-earth sesquioxides. J Phys Soc Jpn 69:3451–3457

    Google Scholar 

  160. Zhao Y, Kita K, Kyuno K, Toriumi A (2009) Band gap enhancement and electrical properties of La2O3 films doped with Y2O3 as high-k gate insulators. Appl Phys Lett 94:042901 (3 pp)

    Google Scholar 

  161. Seguini G, Bonera E, Spiga S, Scarel G, Fanciulli M (2004) Energy-band diagram of metal/Lu2O3/silicon structures. Appl Phys Lett 85:5316–5318

    Google Scholar 

  162. Fuchs F, Furthmüller J, Bechstedt F, Shishkin M, Kresse G (2007) Quasiparticle band structure based on a generalized Kohn–Sham scheme. Phys Rev B 76:115109 (8 pp)

    Google Scholar 

  163. Rödl C, Fuchs F, Furthmüller J, Bechstedt F (2009) Quasiparticle band structures of the antiferromagnetic transition-metal oxides MnO, FeO, CoO, and NiO. Phys Rev B 79:235114 (8 pp)

    Google Scholar 

  164. Yan Q, Rinke P, Winkelnkemper M, Qteish A, Bimberg D, Scheffler M, Van de Walle CG (2011) Band parameters and strain effects in ZnO and group-III nitrides. Semicond Sci Technol 26:014037 (8 pp)

    Google Scholar 

  165. Holm B, von Barth U (1998) Fully self-consistent GW self-energy of the electron gas. Phys Rev B 57:2108–2117

    Google Scholar 

  166. Bruneval F, Vast N, Reining L (2006) Effect of self-consistency on quasiparticles in solids. Phys Rev B 74:045102 (15 pp)

    Google Scholar 

  167. Gygi F, Baldereschi A (1989) Quasiparticle energies in semiconductors: self-energy correction to the local-density approximation. Phys Rev Lett 62:2160–2163

    Google Scholar 

  168. Ye L-H, Asahi R, Peng L-M, Freeman AJ (2012) Model GW study of the late transition metal monoxides. J Chem Phys 137:154110 (7 pp)

    Google Scholar 

  169. Massidda S, Continenza A, Posternak M, Baldereschi A (1997) Quasiparticle energy bands of transition-metal oxides within a model GW scheme. Phys Rev B 55:13494–13502

    Google Scholar 

  170. Continenza A, Massidda S, Posternak M (1999) Self-energy corrections in VO2 within a model GW scheme. Phys Rev B 60:15699–15704

    Google Scholar 

  171. Massidda S, Resta R, Posternak M, Baldereschi A (1995) Polarization and dynamical charge of ZnO within different one-particle schemes. Phys Rev B 52:R16977–R16980

    Google Scholar 

  172. Massidda S, Continenza A, Posternak M, Baldereschi A (1995) Band-structure picture for MnO reexplored: a model GW calculation. Phys Rev Lett 74:2323–2326

    Google Scholar 

  173. Park SK, Ishikawa T, Tokura Y (1998) Charge-gap formation upon the Verwey transition in Fe3O4. Phys Rev B 58:3717–3720

    Google Scholar 

  174. Lany S (2013) Band-structure calculations for the 3d transition metal oxides in GW. Phys Rev B 87:085112 (9 pp)

    Google Scholar 

  175. Shin S, Tezuka Y, Kinoshita T, Ishii T, Kashiwakura T, Takahashi M, Suda Y (1995) Photoemission study of the spectral function of V2O3 in relation to the recent quantum Monte Carlo study. J Phys Soc Jpn 64:1230–1235

    Google Scholar 

  176. Kenny N, Kannewurf CR, Whitmore DH (1966) Optical absorption coefficients of vanadium pentoxide single crystals. J Phys Chem Solids 27:1237–1246

    Google Scholar 

  177. Hong S, Kim E, Kim D-W, Sung T-H, No K (1997) On measurement of optical band gap of chromium oxide films containing both amorphous and crystalline phases. J Non-Cryst Solids 221:245–254

    Google Scholar 

  178. Xu HY, Xu SL, Li XD, Wang H, Yan H (2006) Chemical bath deposition of hausmannite Mn3O4 thin films. Appl Surf Sci 252:4091–4096

    Google Scholar 

  179. Shinde VR, Mahadik SB, Gujar TP, Lokhande CD (2006) Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Appl Surf Sci 252:7487–7492

    Google Scholar 

  180. Ghijsen J, Tjeng LH, van Elp J, Eskes H, Westerink J, Sawatzky GA, Czyzyk MT (1988) Electronic structure of Cu2O and CuO. Phys Rev B 38:11322–11330

    Google Scholar 

  181. Faleev SV, van Schilfgaarde M, Kotani T (2004) All-electron self-consistent GW approximation: application to Si, MnO, and NiO. Phys Rev Lett 93:126406 (4 pp)

    Google Scholar 

  182. Sakuma R, Miyake T, Aryasetiawan F (2008) First-principles study of correlation effects in VO2. Phys Rev B 78:075106 (9 pp)

    Google Scholar 

  183. Sakuma R, Miyake T, Aryasetiawan F (2009) Effective quasiparticle Hamiltonian based on Löwdin’s orthogonalization. Phys Rev B 80:235128 (8 pp)

    Google Scholar 

  184. Punya A, Lambrecht WRL, van Schilfgaarde M (2011) Quasiparticle band structure of Zn-IV-N2 compounds. Phys Rev B 84:165204 (10 pp)

    Google Scholar 

  185. Svane A, Christensen NE, Gorczyca I, van Schilfgaarde M, Chantis AN, Kotani T (2010) Quasiparticle self-consistent GW theory of III-V nitride semiconductors: bands, gap bowing, and effective masses. Phys Rev B 82:115102 (6 pp)

    Google Scholar 

  186. Vidal J, Trani F, Bruneval F, Marques MAL, Botti S (2010) Effects of electronic and lattice polarization on the band structure of delafossite transparent conductive oxides. Phys Rev Lett 104:136401 (4 pp)

    Google Scholar 

  187. Botti S, Marques MAL (2013) Strong renormalization of the electronic band gap due to lattice polarization in the GW formalism. Phys Rev Lett 110:226404 (5 pp)

    Google Scholar 

  188. Friedrich C, Müller MC, Blügel S (2011) Band convergence and linearization error correction of all-electron GW calculations: the extreme case of zinc oxide. Phys Rev B 83:081101 (4 pp)

    Google Scholar 

  189. Salpeter EE, Bethe HA (1951) A relativistic equation for bound-state problems. Phys Rev 84:1232–1242

    Google Scholar 

  190. Nakanishi N (1969) A general survey of the theory of the Bethe-Salpeter equation. Prog Theor Phys Suppl 43:1–81

    Google Scholar 

  191. Rödl C, Bechstedt F (2012) Optical and energy-loss spectra of the antiferromagnetic transition metal oxides MnO, FeO, CoO, and NiO including quasiparticle and excitonic effects. Phys Rev B 86:235122 (11 pp)

    Google Scholar 

  192. Schleife A, Rödl C, Fuchs F, Furthmüller J, Bechstedt F (2009) Optical and energy-loss spectra of MgO, ZnO, and CdO from ab initio many-body calculations. Phys Rev B 80:035112 (10 pp)

    Google Scholar 

  193. Reining L, Olevano V, Rubio A, Onida G (2002) Excitonic effects in solids described by time-dependent density-functional theory. Phys Rev Lett 88:066404 (4 pp)

    Google Scholar 

  194. Adragna G, Del Sole R, Marini A (2003) Ab initio calculation of the exchange-correlation kernel in extended systems. Phys Rev B 68:165108 (5 pp)

    Google Scholar 

  195. Bruneval F, Sottile F, Olevano V, Del Sole R, Reining L (2005) Many-body perturbation theory using the density-functional concept: beyond the GW approximation. Phys Rev Lett 94:186402 (4 pp)

    Google Scholar 

  196. Shishkin M, Marsman M, Kresse G (2007) Accurate quasiparticle spectra from self-consistent GW calculations with vertex corrections. Phys Rev Lett 99:246403 (4 pp)

    Google Scholar 

  197. Srikant V, Clarke DR (1998) On the optical band gap of zinc oxide. J Appl Phys 83:5447–5451

    Google Scholar 

  198. Hartree DR (1928) The wave mechanics of an atom with a non-Coulomb central field. Proc Camb Philos Soc 24:89–110

    Google Scholar 

  199. Fock V (1930) Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Z Für Phys 61:126–148

    Google Scholar 

  200. Strout DL, Scuseria GE (1995) A quantitative study of the scaling properties of the Hartree–Fock method. J Chem Phys 102:8448–8452

    Google Scholar 

  201. Ordejón P, Drabold DA, Grumbach MP, Martin RM (1993) Unconstrained minimization approach for electronic computations that scales linearly with system size. Phys Rev B 48:14646–14649

    Google Scholar 

  202. Mauri F, Galli G, Car R (1993) Orbital formulation for electronic-structure calculations with linear system-size scaling. Phys Rev B 47:9973–9976

    Google Scholar 

  203. Li X-P, Nunes RW, Vanderbilt D (1993) Density-matrix electronic-structure method with linear system-size scaling. Phys Rev B 47:10891–10894

    Google Scholar 

  204. Chen X, Langlois J-M, Goddard WA (1995) Dual-space approach for density-functional calculations of two- and three-dimensional crystals using Gaussian basis functions. Phys Rev B 52:2348–2361

    Google Scholar 

  205. Hernández E, Gillan MJ (1995) Self-consistent first-principles technique with linear scaling. Phys Rev B 51:10157–10160

    Google Scholar 

  206. Hernández E, Gillan MJ, Goringe CM (1996) Linear-scaling density-functional-theory technique: the density-matrix approach. Phys Rev B 53:7147–7157

    Google Scholar 

  207. White CA, Johnson BG, Gill PMW, Head-Gordon M (1994) The continuous fast multipole method. Chem Phys Lett 230:8–16

    Google Scholar 

  208. Kutteh R, Nicholas JB (1995) Efficient dipole iteration in polarizable charged systems using the cell multipole method and application to polarizable water. Comput Phys Commun 86:227–235

    Google Scholar 

  209. Challacombe M, Schwegler E, Almlöf J (1996) Fast assembly of the Coulomb matrix: a quantum chemical tree code. J Chem Phys 104:4685–4698

    Google Scholar 

  210. Schwegler E, Challacombe M (1996) Linear scaling computation of the Hartree–Fock exchange matrix. J Chem Phys 105:2726–2734

    Google Scholar 

  211. Pople JA, Binkley JS, Seeger R (1976) Theoretical models incorporating electron correlation. Int J Quantum Chem 10:1–19

    Google Scholar 

  212. Schütz M, Hetzer G, Werner H-J (1999) Low-order scaling local electron correlation methods. I. Linear scaling local MP2. J Chem Phys 111:5691–5705

    Google Scholar 

  213. Ayala PY, Scuseria GE (1999) Linear scaling second-order Moller–Plesset theory in the atomic orbital basis for large molecular systems. J Chem Phys 110:3660–3671

    Google Scholar 

  214. Hetzer G, Schütz M, Stoll H, Werner H-J (2000) Low-order scaling local correlation methods II: splitting the Coulomb operator in linear scaling local second-order Møller–Plesset perturbation theory. J Chem Phys 113:9443–9455

    Google Scholar 

  215. Werner H-J, Manby FR, Knowles PJ (2003) Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations. J Chem Phys 118:8149–8160

    Google Scholar 

  216. Doser B, Lambrecht DS, Ochsenfeld C (2008) Tighter multipole-based integral estimates and parallel implementation of linear-scaling AO–MP2 theory. Phys Chem Chem Phys 10:3335–3344

    Google Scholar 

  217. Roos BO, Taylor PR, Siegbahn PEM (1980) A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem Phys 48:157–173

    Google Scholar 

  218. Veryazov V, Malmqvist PÅ, Roos BO (2011) How to select active space for multiconfigurational quantum chemistry? Int J Quantum Chem 111:3329–3338

    Google Scholar 

  219. Andersson K, Malmqvist PÅ, Roos BO, Sadlej AJ, Wolinski K (1990) Second-order perturbation theory with a CASSCF reference function. J Phys Chem 94:5483–5488

    Google Scholar 

  220. Shavitt I (1998) The history and evolution of configuration interaction. Mol Phys 94:3–17

    Google Scholar 

  221. Dreuw A, Head-Gordon M (2005) Single-reference ab initio methods for the calculation of excited states of large molecules. Chem Rev 105:4009–4037

    Google Scholar 

  222. Chwee TS, Szilva AB, Lindh R, Carter EA (2008) Linear scaling multireference singles and doubles configuration interaction. J Chem Phys 128:224106 (9 pp)

    Google Scholar 

  223. Chwee TS, Carter EA (2010) Cholesky decomposition within local multireference singles and doubles configuration interaction. J Chem Phys 132:074104 (10 pp)

    Google Scholar 

  224. Chwee TS, Carter EA (2011) Valence excited states in large molecules via local multireference singles and doubles configuration interaction. J Chem Theory Comput 7:103–111

    Google Scholar 

  225. Čížek J (1966) On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in Ursell‐type expansion using quantum‐field theoretical methods. J Chem Phys 45:4256–4266

    Google Scholar 

  226. Stanton JF, Bartlett RJ (1993) The equation of motion coupled‐cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties. J Chem Phys 98:7029–7039

    Google Scholar 

  227. Sun J-Q, Bartlett RJ (1996) Second‐order many‐body perturbation‐theory calculations in extended systems. J Chem Phys 104:8553–8565

    Google Scholar 

  228. Sun J-Q, Bartlett RJ (1996) Correlated prediction of the photoelectron spectrum of polyethylene: explanation of XPS and UPS measurements. Phys Rev Lett 77:3669–3672

    Google Scholar 

  229. Sun J-Q, Bartlett RJ (1997) Many-body perturbation theory for quasiparticle energies. J Chem Phys 107:5058–5071

    Google Scholar 

  230. Sun J-Q, Bartlett RJ (1998) Convergence behavior of many-body perturbation theory with lattice summations in polymers. Phys Rev Lett 80:349–352

    Google Scholar 

  231. Hirata S, Grabowski I, Tobita M, Bartlett RJ (2001) Highly accurate treatment of electron correlation in polymers: coupled-cluster and many-body perturbation theories. Chem Phys Lett 345:475–480

    Google Scholar 

  232. Pisani C, Maschio L, Casassa S, Halo M, Schütz M, Usvyat D (2008) Periodic local MP2 method for the study of electronic correlation in crystals: theory and preliminary applications. J Comput Chem 29:2113–2124

    Google Scholar 

  233. Marsman M, Grüneis A, Paier J, Kresse G (2009) Second-order Møller–Plesset perturbation theory applied to extended systems. I. Within the projector-augmented-wave formalism using a plane wave basis set. J Chem Phys 130:184103 (10 pp)

    Google Scholar 

  234. Grüneis A, Marsman M, Kresse G (2010) Second-order Møller–Plesset perturbation theory applied to extended systems. II. Structural and energetic properties. J Chem Phys 133:074107 (11 pp)

    Google Scholar 

  235. Shepherd JJ, Grüneis A, Booth GH, Kresse G, Alavi A (2012) Convergence of many-body wave-function expansions using a plane-wave basis: from homogeneous electron gas to solid state systems. Phys Rev B 86:035111 (14 pp)

    Google Scholar 

  236. Hirata S, Podeszwa R, Tobita M, Bartlett RJ (2004) Coupled-cluster singles and doubles for extended systems. J Chem Phys 120:2581–2592

    Google Scholar 

  237. Evjen HM (1932) On the stability of certain heteropolar crystals. Phys Rev 39:675–687

    Google Scholar 

  238. Burow AM, Sierka M, Döbler J, Sauer J (2009) Point defects in CaF2 and CeO2 investigated by the periodic electrostatic embedded cluster method. J Chem Phys 130:174710 (11 pp)

    Google Scholar 

  239. Dungsrikaew V, Limtrakul J, Hermansson K, Probst M (2004) Comparison of methods for point-charge representation of electrostatic fields. Int J Quantum Chem 96:17–22

    Google Scholar 

  240. Sousa C, Casanovas J, Rubio J, Illas F (1993) Madelung fields from optimized point charges for ab initio cluster model calculations on ionic systems. J Comput Chem 14:680–684

    Google Scholar 

  241. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. I. J Chem Phys 23:1833–1840

    Google Scholar 

  242. Löwdin P-O (1970) On the nonorthogonality problem. In: Löwdin P-O (ed) Adv Quantum Chem. Academic, New York, pp 185–199

    Google Scholar 

  243. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44:129–138

    Google Scholar 

  244. Bader RF (1994) Atoms in molecules: a quantum theory. Clarendon, Oxford

    Google Scholar 

  245. Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36:354–360

    Google Scholar 

  246. Sanville E, Kenny SD, Smith R, Henkelman G (2007) Improved grid-based algorithm for Bader charge allocation. J Comput Chem 28:899–908

    Google Scholar 

  247. Tang W, Sanville E, Henkelman G (2009) A grid-based Bader analysis algorithm without lattice bias. J Phys Condens Matter 21:084204 (7 pp)

    Google Scholar 

  248. Casarin M, Maccato C, Vittadini A (1998) Molecular chemisorption on TiO2(110): a local point of view. J Phys Chem B 102:10745–10752

    Google Scholar 

  249. Kadossov EB, Gaskell KJ, Langell MA (2007) Effect of surrounding point charges on the density functional calculations of NixOx clusters (x = 4−12). J Comput Chem 28:1240–1251

    Google Scholar 

  250. Neyman KM, Rösch N (1992) CO bonding and vibrational modes on a perfect MgO(001) surface: LCGTO-LDF model cluster investigation. Chem Phys 168:267–280

    Google Scholar 

  251. Yudanov IV, Nasluzov VA, Neyman KM, Rösch N (1997) Density functional cluster description of ionic materials: improved boundary conditions for MgO clusters with the help of cation model potentials. Int J Quantum Chem 65:975–986

    Google Scholar 

  252. Winter NW, Pitzer RM, Temple DK (1987) Theoretical study of a Cu+ ion impurity in a NaF host. J Chem Phys 86:3549–3556

    Google Scholar 

  253. Kanan DK, Sharifzadeh S, Carter EA (2012) Quantum mechanical modeling of electronic excitations in metal oxides: magnesia as a prototype. Chem Phys Lett 519–520:18–24

    Google Scholar 

  254. Barandiarán Z, Seijo L (1988) The ab initio model potential representation of the crystalline environment. Theoretical study of the local distortion on NaCl:Cu+. J Chem Phys 89:5739–5746

    Google Scholar 

  255. Pascual JL, Barros N, Barandiarán Z, Seijo L (2009) Improved embedding ab initio model potentials for embedded cluster calculations. J Phys Chem A 113:12454–12460

    Google Scholar 

  256. Shluger AL, Gale JD (1996) One-center trapping of the holes in alkali halide crystals. Phys Rev B 54:962–969

    Google Scholar 

  257. Sushko PV, Shluger AL, Catlow CRA (2000) Relative energies of surface and defect states: ab initio calculations for the MgO (001) surface. Surf Sci 450:153–170

    Google Scholar 

  258. Nasluzov VA, Rivanenkov VV, Gordienko AB, Neyman KM, Birkenheuer U, Rösch N (2001) Cluster embedding in an elastic polarizable environment: density functional study of Pd atoms adsorbed at oxygen vacancies of MgO(001). J Chem Phys 115:8157–8171

    Google Scholar 

  259. De Graaf C, Broer R, Nieuwpoort WC (1996) Electron correlation effects on the d-d excitations in NiO. Chem Phys 208:35–43

    Google Scholar 

  260. Domingo A, Rodríguez-Fortea A, Swart M, de Graaf C, Broer R (2012) Ab initio absorption spectrum of NiO combining molecular dynamics with the embedded cluster approach in a discrete reaction field. Phys Rev B 85:155143 (15 pp)

    Google Scholar 

  261. De Vries AH, Van Duijnen PT, Juffer AH, Rullmann JAC, Dijkman JP, Merenga H, Thole BT (1995) Implementation of reaction field methods in quantum chemistry computer codes. J Comput Chem 16:37–55

    Google Scholar 

  262. Liao P, Carter EA (2011) Optical excitations in Hematite (α-Fe2O3) via embedded cluster models: a CASPT2 study. J Phys Chem C 115:20795–20805

    Google Scholar 

  263. Merchant P, Collins R, Kershaw R, Dwight K, Wold A (1979) The electrical, optical and photoconducting properties of Fe2−xCrxO3 (0 ≤ x ≥ 0.47). J Solid State Chem 27:307–315

    Google Scholar 

  264. De Graaf C, Broer R (2000) Midinfrared spectrum of undoped cuprates: d-d transitions studied by ab initio methods. Phys Rev B 62:702–709

    Google Scholar 

  265. Kanan DK, Carter EA (2013) Optical excitations in MnO and MnO:ZnO via embedded CASPT2 theory and their implications for solar energy conversion. J Phys Chem C 117:13816–13826

    Google Scholar 

  266. Muñoz-García AB, Seijo L (2010) Structural, electronic, and spectroscopic effects of Ga codoping on Ce-doped yttrium aluminum garnet: first-principles study. Phys Rev B 82:184118 (10 pp)

    Google Scholar 

  267. Muñoz-García AB, Pascual JL, Barandiarán Z, Seijo L (2010) Structural effects and 4f-5d transition shifts induced by La codoping in Ce-doped yttrium aluminum garnet: first-principles study. Phys Rev B 82:064114 (8 pp)

    Google Scholar 

  268. Geleijns M, de Graaf C, Broer R, Nieuwpoort WC (1999) Theoretical study of local electronic transitions in the NiO(100) surface. Surf Sci 421:106–115

    Google Scholar 

  269. Fink K (2005) Ab initio cluster calculations for the absorption energies of F and F+ centers in bulk ZnO. Phys Chem Chem Phys 7:2999–3004

    Google Scholar 

  270. Fink R, Staemmler V (1993) A multi-configuration reference CEPA method based on pair natural orbitals. Theor Chim Acta 87:129–145

    Google Scholar 

  271. Hozoi L, de Vries AH, Broer R, de Graaf C, Bagus PS (2006) Ni 3s-hole states in NiO by non-orthogonal configuration interaction. Chem Phys 331:178–185

    Google Scholar 

  272. Bagus PS, Ilton ES (2006) Effects of covalency on the p-shell photoemission of transition metals: MnO. Phys Rev B 73:155110 (14 pp)

    Google Scholar 

  273. Grimley TB, Pisani C (1974) Chemisorption theory in the Hartree-Fock approximation. J Phys C Solid State Phys 7:2831–2848

    Google Scholar 

  274. Gunnarsson O, Hjelmberg H (1975) Hydrogen chemisorption by the spin-density functional formalism. I. Phys Scr 11:97–103

    Google Scholar 

  275. Gunnarsson O, Hjelmberg H, Lundqvist BI (1977) Calculation of geometries and chemisorption energies of adatoms on simple metals. Surf Sci 63:348–357

    Google Scholar 

  276. Pisani C (1978) Approach to the embedding problem in chemisorption in a self-consistent-field-molecular-orbital formalism. Phys Rev B 17:3143–3153

    Google Scholar 

  277. Pisani C, Dovesi R, Carosso P (1979) Moderately-large-embedded-cluster approach to the study of local defects in solids. Vacancy and substitutional impurities in graphite. Phys Rev B 20:5345–5357

    Google Scholar 

  278. Pisani C, Dovesi R, Ugliengo P (1983) Comparison of different approaches to the study of local defects in crystals. I. Theoretical considerations and computational schemes. Phys Stat Sol B 116:249–259

    Google Scholar 

  279. Pisani C, Dovesi R, Nada R, Kantorovich LN (1990) Ab initio Hartree–Fock perturbed‐cluster treatment of local defects in crystals. J Chem Phys 92:7448–7460

    Google Scholar 

  280. Inglesfield JE (2001) Embedding at surfaces. Comput Phys Commun 137:89–107

    Google Scholar 

  281. Scheffler M, Droste C, Fleszar A, Máca F, Wachutka G, Barzel G (1991) A self-consistent surface-Green-function (SSGF) method. Phys B Condens Matter 172:143–153

    Google Scholar 

  282. Whitten JL, Pakkanen TA (1980) Chemisorption theory for metallic surfaces: electron localization and the description of surface interactions. Phys Rev B 21:4357–4367

    Google Scholar 

  283. Whitten JL (1981) Chemisorption theory for metallic surfaces: convergence of surface localized orbitals for Ti(0001) clusters. Phys Rev B 24:1810–1817

    Google Scholar 

  284. Whitten JL (1993) Theoretical studies of surface reactions: embedded cluster theory. Chem Phys 177:387–397

    Google Scholar 

  285. Danyliv O, Kantorovich L (2004) Comparison of localization procedures for applications in crystal embedding. Phys Rev B 70:075113 (12 pp)

    Google Scholar 

  286. McWeeny R (1960) Some recent advances in density matrix theory. Rev Mod Phys 32:335–369

    Google Scholar 

  287. Huzinaga S, Cantu AA (1971) Theory of separability of many‐electron systems. J Chem Phys 55:5543–5549

    Google Scholar 

  288. Birkenheuer U, Fulde P, Stoll H (2006) A simplified method for the computation of correlation effects on the band structure of semiconductors. Theor Chem Accounts 116:398–403

    Google Scholar 

  289. Hozoi L, Birkenheuer U, Fulde P, Mitrushchenkov A, Stoll H (2007) Ab initio wave function-based methods for excited states in solids: correlation corrections to the band structure of ionic oxides. Phys Rev B 76:085109 (10 pp)

    Google Scholar 

  290. Cortona P (1991) Self-consistently determined properties of solids without band-structure calculations. Phys Rev B 44:8454–8458

    Google Scholar 

  291. Wesolowski TA, Warshel A (1993) Frozen density functional approach for ab initio calculations of solvated molecules. J Phys Chem 97:8050–8053

    Google Scholar 

  292. Govind N, Wang YA, da Silva AJR, Carter EA (1998) Accurate ab initio energetics of extended systems via explicit correlation embedded in a density functional environment. Chem Phys Lett 295:129–134

    Google Scholar 

  293. Govind N, Wang YA, Carter EA (1999) Electronic-structure calculations by first-principles density-based embedding of explicitly correlated systems. J Chem Phys 110:7677–7688

    Google Scholar 

  294. Klüner T, Govind N, Wang YA, Carter EA (2001) Prediction of electronic excited states of adsorbates on metal surfaces from first principles. Phys Rev Lett 86:5954–5957

    Google Scholar 

  295. Klüner T, Govind N, Wang YA, Carter EA (2002) Periodic density functional embedding theory for complete active space self-consistent field and configuration interaction calculations: ground and excited states. J Chem Phys 116:42–54

    Google Scholar 

  296. Klüner T, Govind N, Wang YA, Carter EA (2002) Klüner et al. reply. Phys Rev Lett 88:209702

    Google Scholar 

  297. Huang P, Carter EA (2006) Self-consistent embedding theory for locally correlated configuration interaction wave functions in condensed matter. J Chem Phys 125:084102 (14 pp)

    Google Scholar 

  298. Sharifzadeh S, Huang P, Carter EA (2009) All-electron embedded correlated wavefunction theory for condensed matter electronic structure. Chem Phys Lett 470:347–352

    Google Scholar 

  299. Thomas LH (1927) The calculation of atomic fields. Math Proc Camb Philos Soc 23:542–548

    Google Scholar 

  300. Fermi E (1928) Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Z Für Phys 48:73–79

    Google Scholar 

  301. Von Weizsäcker CF (1935) Zur Theorie der Kernmassen. Z Für Phys 96:431–458

    Google Scholar 

  302. Wang L-W, Teter MP (1992) Kinetic-energy functional of the electron density. Phys Rev B 45:13196–13220

    Google Scholar 

  303. Wang YA, Govind N, Carter EA (1998) Orbital-free kinetic-energy functionals for the nearly free electron gas. Phys Rev B 58:13465–13471

    Google Scholar 

  304. Wang YA, Govind N, Carter EA (1999) Orbital-free kinetic-energy density functionals with a density-dependent kernel. Phys Rev B 60:16350–16358

    Google Scholar 

  305. Goodpaster JD, Ananth N, Manby FR, Miller TF (2010) Exact nonadditive kinetic potentials for embedded density functional theory. J Chem Phys 133:084103–084110

    Google Scholar 

  306. Goodpaster JD, Barnes TA, Miller TF (2011) Embedded density functional theory for covalently bonded and strongly interacting subsystems. J Chem Phys 134:164108–164109

    Google Scholar 

  307. Levy M (1979) Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc Natl Acad Sci 76:6062–6065

    Google Scholar 

  308. Zhao Q, Parr RG (1992) Quantities Ts[n] and Tc[n] in density-functional theory. Phys Rev 46:2337–2343

    Google Scholar 

  309. Zhao Q, Parr RG (1993) Constrained‐search method to determine electronic wave functions from electronic densities. J Chem Phys 98:543–548

    Google Scholar 

  310. Zhao Q, Morrison RC, Parr RG (1994) From electron densities to Kohn-Sham kinetic energies, orbital energies, exchange-correlation potentials, and exchange-correlation energies. Phys Rev 50:2138–2142

    Google Scholar 

  311. King RA, Handy NC (2000) Kinetic energy functionals from the Kohn–Sham potential. Phys Chem Chem Phys 2:5049–5056

    Google Scholar 

  312. Fux S, Jacob CR, Neugebauer J, Visscher L, Reiher M (2010) Accurate frozen-density embedding potentials as a first step towards a subsystem description of covalent bonds. J Chem Phys 132:164101 (18 pp)

    Google Scholar 

  313. Wu Q, Yang W (2003) A direct optimization method for calculating density functionals and exchange–correlation potentials from electron densities. J Chem Phys 118:2498–2509

    Google Scholar 

  314. Roncero O, de Lara-Castells MP, Villarreal P, Flores F, Ortega J, Paniagua M, Aguado A (2008) An inversion technique for the calculation of embedding potentials. J Chem Phys 129:184104 (12 pp)

    Google Scholar 

  315. Roncero O, Zanchet A, Villarreal P, Aguado A (2009) A density-division embedding potential inversion technique. J Chem Phys 131:234110 (7 pp)

    Google Scholar 

  316. Huang C, Pavone M, Carter EA (2011) Quantum mechanical embedding theory based on a unique embedding potential. J Chem Phys 134:154110 (11 pp)

    Google Scholar 

  317. Cohen MH, Wasserman A (2003) Revisiting N-continuous density-functional theory: chemical reactivity and “atoms” in “molecules”. Isr J Chem 43:219–227

    Google Scholar 

  318. Cohen MH, Wasserman A (2006) On hardness and electronegativity equalization in chemical reactivity theory. J Stat Phys 125:1121–1139

    Google Scholar 

  319. Cohen MH, Wasserman A (2007) On the foundations of chemical reactivity theory. J Phys Chem A 111:2229–2242

    Google Scholar 

  320. Elliott P, Cohen MH, Wasserman A, Burke K (2009) Density functional partition theory with fractional occupations. J Chem Theory Comput 5:827–833

    Google Scholar 

  321. Elliott P, Burke K, Cohen MH, Wasserman A (2010) Partition density-functional theory. Phys Rev 82:024501 (4 pp)

    Google Scholar 

  322. Huang C, Carter EA (2011) Potential-functional embedding theory for molecules and materials. J Chem Phys 135:194104 (17 pp)

    Google Scholar 

  323. Manby FR, Stella M, Goodpaster JD, Miller TF (2012) A simple, exact density-functional-theory embedding scheme. J Chem Theory Comput 8:2564–2568

    Google Scholar 

  324. Nafziger J, Wu Q, Wasserman A (2011) Molecular binding energies from partition density functional theory. J Chem Phys 135:234101 (6 pp)

    Google Scholar 

  325. Huang P, Carter EA (2006) Local electronic structure around a single Kondo impurity. Nano Lett 6:1146–1150

    Google Scholar 

  326. Huang P, Carter EA (2008) Ab initio explanation of tunneling line shapes for the Kondo impurity state. Nano Lett 8:1265–1269

    Google Scholar 

  327. Sharifzadeh S, Huang P, Carter EA (2009) Origin of tunneling lineshape trends for Kondo states of Co adatoms on coinage metal surfaces. J Phys Condens Matter 21:355501 (8 pp)

    Google Scholar 

  328. Libisch F, Huang C, Liao P, Pavone M, Carter EA (2012) Origin of the energy barrier to chemical reactions of O2 on Al(111): evidence for charge transfer, not spin selection. Phys Rev Lett 109:198303 (5 pp)

    Google Scholar 

  329. Mukherjee S, Libisch F, Large N, Neumann O, Brown LV, Cheng J, Lassiter JB, Carter EA, Nordlander P, Halas NJ (2013) Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett 13:240–247

    Google Scholar 

  330. Roessler DM, Walker WC (1967) Electronic spectrum and ultraviolet optical properties of crystalline MgO. Phys Rev 159:733–738

    Google Scholar 

  331. Bortz ML, French RH, Jones DJ, Kasowski RV, Ohuchi FS (1990) Temperature dependence of the electronic structure of oxides: MgO, MgAl2O4 and Al2O3. Phys Scr 41:537–541

    Google Scholar 

  332. Benedict LX, Shirley EL, Bohn RB (1998) Optical absorption of insulators and the electron–hole interaction: an ab initio calculation. Phys Rev Lett 80:4514–4517

    Google Scholar 

  333. Wang N-P, Rohlfing M, Krüger P, Pollmann J (2004) Electronic excitations of CO adsorbed on MgO(001). Appl Phys 78:213–221

    Google Scholar 

  334. Hozoi L, Siurakshina L, Fulde P, van den Brink J (2011) Ab initio determination of Cu 3d orbital energies in layered copper oxides. Sci Rep 1:65. doi:10.1038/srep00065

    Google Scholar 

Download references

Acknowledgments

We are grateful to the U.S. Air Force Office of Scientific Research and the U.S. Department of Energy, Basic Energy Sciences for support of our research in this area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Ann Carter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bendavid, L.I., Carter, E.A. (2014). Status in Calculating Electronic Excited States in Transition Metal Oxides from First Principles. In: Di Valentin, C., Botti, S., Cococcioni, M. (eds) First Principles Approaches to Spectroscopic Properties of Complex Materials. Topics in Current Chemistry, vol 347. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2013_503

Download citation

Publish with us

Policies and ethics