Skip to main content

Accurate and Robust Molecular Crystal Modeling Using Fragment-Based Electronic Structure Methods

  • Chapter
  • First Online:
Prediction and Calculation of Crystal Structures

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 345))

Abstract

Accurately modeling molecular crystal polymorphism requires careful treatment of diverse intra- and intermolecular interactions which can be difficult to achieve without the use of high-level ab initio electronic structure techniques. Fragment-based methods like the hybrid many-body interaction QM/MM technique enable the application of accurate electronic structure models to chemically interesting molecular crystals. The theoretical underpinnings of this approach and the practical requirements for the QM and MM contributions are discussed. Benchmark results and representative applications to aspirin and oxalyl dihydrazide crystals are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bauer J, Spanton S, Quick R, Quick J, Dziki W, Porter W, Morris J (2001) Ritonavir: an extraordinary example of conformational polymorphism. Pharm Res 18:859–866

    CAS  Google Scholar 

  2. Chemburkar SR, Bauer J, Deming K, Spiwek H, Patel K, Morris J, Henry R, Spanton S, Dziki W, Porter W, Quick J, Bauer P, Donaubauer J, Narayanan BA, Soldani M, Riley D, Mcfarland K (2000) Dealing with the impact of ritonavir polymorphs on the late stages of bulk drug process development. Org Process Res Dev 4(5):413–417

    CAS  Google Scholar 

  3. Raw AS, Furness MS, Gill DS, Adams RC, Holcombe FO, Yu LX (2004) Regulatory considerations of pharmaceutical solid polymorphism in abbreviated new drug applications (ANDAs). Adv Drug Deliv Rev 56(3):397–414. doi:10.1016/j.addr.2003.10.011

    CAS  Google Scholar 

  4. Goldbeck G, Pidcock E, Groom C (2012) Solid form informatics for pharmaceuticals and agrochemicals: knowledge based substance development and risk assessment. http://www.ccdc.cam.ac.uk/Lists/ResourceFileList/Solid Form informatics .pdf. Accessed 28 June 2013

  5. Bernstein J (2002) Polymorphism in molecular crystals. Clarendon, Oxford

    Google Scholar 

  6. Roth K (2005) Von Vollmilch bis Bitter, edelste Polymorphie. Chem Unserer Zeit 39:416–428

    CAS  Google Scholar 

  7. Politzer P, Murray JS (eds) (2003) Energetic materials: part 1. Decomposition, crystal, and molecular properties. Elsevier, Amsterdam

    Google Scholar 

  8. Politzer P, Murray JS (eds) (2003) Energetic materials: part 2. Detonation, combustion. Elsevier, Amsterdam

    Google Scholar 

  9. Haas S, Stassen AF, Schuck G, Pernstich KP, Gundlach DJ, Batlogg B, Berens U, Kirner HJ (2007) High charge-carrier mobility and low trap density in a rubrene derivative. Phys Rev B 76:115203

    Google Scholar 

  10. Karamertzanis PG, Kazantsev AV, Issa N, Welch GWA, Adjiman CS, Pantelides CC, Price SL (2009) Can the formation of pharmaceutical cocrystals be computationally predicted? 2 Crystal structure prediction. J Chem Theory Comput 5:1432–1448

    CAS  Google Scholar 

  11. Kazantsev AV, Karamertzanis PG, Adjiman CS, Pantelides CC, Price SL, Galek PTA, Day GM, Cruz-Cabeza AJ (2011) Successful prediction of a model pharmaceutical in the fifth blind test of crystal structure prediction. Int J Pharm 418:168–178. doi:10.1016/j.ijpharm.2011.03.058

    CAS  Google Scholar 

  12. Kendrick J, Leusen FJJ, Neumann MA, van de Streek J (2011) Progress in crystal structure prediction. Chem Eur J 17(38):10736–10744. doi:10.1002/chem.201100689

    CAS  Google Scholar 

  13. Neumann MA (2008) Tailor-made force fields for crystal-structure prediction. J Phys Chem B 112(32):9810–9829. doi:10.1021/jp710575h

    CAS  Google Scholar 

  14. Neumann MA, Perrin MA (2005) Energy ranking of molecular crystals using density functional theory calculations and an empirical van der Waals correction. J Phys Chem B 109:15531–15541

    CAS  Google Scholar 

  15. Neumann MA, Leusen FJJ, Kendrick J (2008) A major advance in crystal structure prediction. Angew Chem Int Ed 47:2427–2430

    CAS  Google Scholar 

  16. Bardwell DA, Adjiman CS, Arnautova YA, Bartashevich E, Boerrigter SXM, Braun DE, Cruz-Cabeza AJ, Day GM, Della Valle RG, Desiraju GR, van Eijck BP, Facelli JC, Ferraro MB, Grillo D, Habgood M, Hofmann DWM, Hofmann F, Jose KVJ, Karamertzanis PG, Kazantsev AV, Kendrick J, Kuleshova LN, Leusen FJJ, Maleev AV, Misquitta AJ, Mohamed S, Needs RJ, Neumann MA, Nikylov D, Orendt AM, Pal R, Pantelides CC, Pickard CJ, Price LS, Price SL, Scheraga HA, van de Streek J, Thakur TS, Tiwari S, Venuti E, Zhitkov IK (2011) Towards crystal structure prediction of complex organic compounds – a report on the fifth blind test. Acta Crystallogr B 67:535–551. doi:10.1107/S0108768111042868

    CAS  Google Scholar 

  17. Day GM, Cooper TG, Cruz-Cabeza AJ, Hejczyk KE, Ammon HL, Boerrigter SXM, Tan JS, Della Valle RG, Venuti E, Jose J, Gadre SR, Desiraju GR, Thakur TS, van Eijck BP, Facelli JC, Bazterra VE, Ferraro MB, Hofmann DWM, Neumann MA, Leusen FJJ, Kendrick J, Price SL, Misquitta AJ, Karamertzanis PG, Welch GWA, Scheraga HA, Arnautova YA, Schmidt MU, van de Streek J, Wolf AK, Schweizer B (2009) Significant progress in predicting the crystal structures of small organic molecules – a report on the fourth blind test. Acta Crystallogr B 65(Pt 2):107–125. doi:10.1107/S0108768109004066

    CAS  Google Scholar 

  18. Zhu Q, Oganov AR, Glass CW, Stokes HT (2012) Constrained evolutionary algorithm for structure prediction of molecular crystals: methodology and applications. Acta Crystallogr B 68:215–226. doi:10.1107/S0108768112017466

    Google Scholar 

  19. Price SL (2008) Computational prediction of organic crystal structures and polymorphism. Int Rev Phys Chem 27(3):541–568. doi:10.1080/01442350802102387

    CAS  Google Scholar 

  20. Gavezzotti A, Filippini G (1995) Polymorphic forms of organic crystals at room conditions: thermodynamic and structural implications. J Am Chem Soc 117:12299–12305

    CAS  Google Scholar 

  21. Otero-de-la Roza A, Johnson ER (2012) A benchmark for non-covalent interactions in solids. J Chem Phys 137(5):054103. doi:10.1063/1.4738961

    CAS  Google Scholar 

  22. Raiteri P, Martonák R, Parrinello M (2005) Exploring polymorphism: the case of benzene. Angew Chem Int Ed 44(24):3769–3773. doi:10.1002/anie.200462760

    CAS  Google Scholar 

  23. Schnieders MJ, Baltrusaitis J, Shi Y, Chattree G, Zheng L, Yang W, Ren P (2012) The structure, thermodynamics and solubility of organic crystals from simulation with a polarizable force field. J Chem Theory Comput 8(5):1721–1736. doi:10.1021/ct300035u

    CAS  Google Scholar 

  24. Kazantsev AV, Karamertzanis PG, Adjiman CS, Pantelides CC (2011) Efficient handling of molecular flexibility in lattice energy minimization of organic crystals. J Chem Theory Comput 7:1998–2016

    CAS  Google Scholar 

  25. Price SL (2004) The computational prediction of pharmaceutical crystal structures and polymorphism. Adv Drug Deliv Rev 56(3):301–319. doi:10.1016/j.addr.2003.10.006

    CAS  Google Scholar 

  26. Price SL, Price LS (2011) Computational polymorph prediction. In: Storey R, Ymen I (eds) Solid state characterization of pharmaceuticals, 1st edn. Blackwell, London, pp 427–450

    Google Scholar 

  27. Price SL, Leslie M, Welch GWA, Habgood M, Price LS, Karamertzanis PG, Day GM (2010) Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials. Phys Chem Chem Phys 12:8478–8490. doi:10.1039/c004055j

    CAS  Google Scholar 

  28. Day GM, Motherwell WDS, Ammon HL, Boerrigter SXM, Della Valle RG, Venuti E, Dzyabchenko A, Dunitz JD, Schweizer B, van Eijck BP, Erk P, Facelli JC, Bazterra VE, Ferraro MB, Hofmann DWM, Leusen FJJ, Liang C, Pantelides CC, Karamertzanis PG, Price SL, Lewis TC, Nowell H, Torrisi A, Scheraga HA, Arnautova YA, Schmidt MU, Verwer P (2005) A third blind test of crystal structure prediction. Acta Crystallogr B 61(Pt 5):511–527. doi:10.1107/S0108768105016563

    CAS  Google Scholar 

  29. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92:246401

    CAS  Google Scholar 

  30. DiStasio RA, von Lilienfeld OA, Tkatchenko A (2012) Collective many-body van der Waals interactions in molecular systems. Proc Natl Acad Sci U S A 109:14791–14795. doi:10.1073/pnas.1208121109

    CAS  Google Scholar 

  31. Grimme S (2011) Density functional theory with London dispersion corrections. WIREs Comput Mol Sci 1(2):211–228. doi:10.1002/wcms.30

    CAS  Google Scholar 

  32. Otero-de-la Roza A, Johnson ER (2013) Many-body dispersion interactions from the exchange-hole dipole moment model. J Chem Phys 138(5):054103. doi:10.1063/1.4789421

    CAS  Google Scholar 

  33. Thonhauser T, Cooper VR, Li S, Puzder A, Hyldgaard P, Langreth DC (2007) Van der Waals density functional: self-consistent potential and the nature of the van der Waals bond. Phys Rev B 76:125112

    Google Scholar 

  34. Tkatchenko A, Scheffler M (2009) Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett 102(7):073005. doi:10.1103/PhysRevLett.102.073005

    Google Scholar 

  35. Vydrov OA, Van Voorhis T (2010) Nonlocal van der Waals density functional: the simpler the better. J Chem Phys 133(24):244103. doi:10.1063/1.3521275

    Google Scholar 

  36. Ayala PY, Kudin KN, Scuseria GE (2001) Atomic orbital Laplacetransformed second-order Møller–Plesset perturbation theory for periodic systems. J Chem Phys 115:9698–9707

    CAS  Google Scholar 

  37. Hirata S, Iwata S (1998) Analytical energy gradients in second-order Moller–Plesset perturbation theory for extended systems. J Chem Phys 109(11):4147–4155

    CAS  Google Scholar 

  38. Hirata S, Shimazaki T (2009) Fast second-order many-body perturbation method for extended systems. Phys Rev B 80(8):1–7. doi:10.1103/PhysRevB.80.085118

    Google Scholar 

  39. Izmaylov AF, Scuseria GE (2009) Resolution of the identity atomic orbital Laplace transformed second-order Møller–Plesset theory for nonconducting periodic systems. Phys Chem Chem Phys 10:3421–3429

    Google Scholar 

  40. Marsman M, Grueneis A, Paier J, Kresse G (2009) Second-order Møller–Plesset perturbation theory applied to extended systems. I. Within the projector-augmented-wave formalism using a plane wave basis set. J Chem Phys 130:184103

    CAS  Google Scholar 

  41. Maschio L, Usvyat D, Manby FR, Casassa S, Pisani C, Schutz M (2007) Fast local-MP2 method with density-fitting for crystals. I. Theory and algorithms. Phys Rev B 76:075101

    Google Scholar 

  42. Ohnishi YY, Hirata S (2010) Logarithm second-order many-body perturbation method for extended systems. J Chem Phys 133(3):034106. doi:10.1063/1.3455717

    Google Scholar 

  43. Pisani C, Maschio L, Casassa S, Halo M, Schutz M, Usvyat D (2008) Periodic local MP2 method for the study of electronic correlation in crystals: theory and preliminary applications. J Comput Chem 29:2113–2124

    CAS  Google Scholar 

  44. Shiozaki T, Hirata S (2010) Communications: explicitly correlated secondorder Møller–Plesset perturbation method for extended systems. J Chem Phys 132(15):151101. doi:10.1063/1.3396079

    Google Scholar 

  45. Suhai S (1983) Quasiparticle energy-band structures in semiconducting polymers: correlation effects on the band gap in polyacetylene. Phys Rev B 27:3506–3518

    CAS  Google Scholar 

  46. Sun JQ, Bartlett RJ (1996) Second-order many-body perturbation-theory calculations in extended systems. J Chem Phys 104:8553–8565

    CAS  Google Scholar 

  47. Usvyat D, Maschio L, Manby FR, Casassa S, Pisani C, Schutz M (2007) Fast local-MP2 method with density-fitting for crystals. II. Test calculations and applications to the carbon dioxide crystal. Phys Rev B 76:075102

    Google Scholar 

  48. Förner W, Knab R, Čižek J, Ladik J (1997) Numerical application of the coupled cluster theory with localized orbitals to polymers. IV. Band structure corrections in model systems and polyacetylene. J Chem Phys 106:10248–10264

    Google Scholar 

  49. Hirata S, Podeszwa R, Tobita M, Bartlett RJ (2004) Coupled-cluster singles and doubles for extended systems. J Chem Phys 120:2581–2592

    CAS  Google Scholar 

  50. Reinhardt P (2000) Dressed coupled-electron-pair-approximation methods for periodic systems. Theor Chem Acc 104:426–438

    CAS  Google Scholar 

  51. Yu M, Kalvoda S, Dolg M (1997) An incremental approach for correlation contributions to the structural and cohesive properties of polymers. Coupled-cluster study of trans-polyacetylene. Chem Phys 224:121–131

    CAS  Google Scholar 

  52. Fedorov DG, Kitaura K (2007) Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. J Phys Chem A 111:6904–6914

    CAS  Google Scholar 

  53. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313:701–706

    CAS  Google Scholar 

  54. Yang W (1991) Direct calculation of electron density in density functional theory. Phys Rev Lett 66(11):1438–1441

    CAS  Google Scholar 

  55. Paulus B (2006) The method of increments - a wavefunction-based ab initio correlation method for solids. Phys Rep 428(1):1–52. doi:10.1016/j.physrep.2006.01.003

    CAS  Google Scholar 

  56. Stoll H (1992) Correlation energy of diamond. Phys Rev B 46:6700–6704

    CAS  Google Scholar 

  57. Gordon MS, Fedorov DG, Pruitt SR, Slipchenko L (2012) Fragmentation methods: a route to accurate calculations on large systems. Chem Rev 112:632–672. doi:10.1021/cr200093j

    CAS  Google Scholar 

  58. Wen S, Nanda K, Huang Y, Beran GJO (2012) Practical quantum mechanics-based fragment methods for predicting molecular crystal properties. Phys Chem Chem Phys 14:7578–7590. doi:10.1039/c2cp23949c

    CAS  Google Scholar 

  59. Beran GJO, Hirata S (2012) Fragment and localized orbital methods in electronic structure theory. Phys Chem Chem Phys 14:7559–7561. doi:10.121/cg300358n

    CAS  Google Scholar 

  60. Mayhall NJ, Raghavachari K (2012) Many-overlapping-body (MOB) expansion: a generalized many body expansion for nondisjoint monomers in molecular fragmentation calculations of covalent molecules. J Chem Theory Comput 8(8):2669–2675. doi:10.1021/ct300366e

    CAS  Google Scholar 

  61. Richard RM, Herbert JM (2012) A generalized many-body expansion and a unified view of fragment-based methods in electronic structure theory. J Chem Phys 137(6):064113. doi:10.1063/1.4742816

    Google Scholar 

  62. Dahlke EE, Truhlar DG (2006) Assessment of the pairwise additive approximation and evaluation of many-body terms for water clusters. J Phys Chem B 3:10595–10601

    Google Scholar 

  63. Dahlke EE, Truhlar DG (2007) Electrostatically embedded many-body correlation energy, with applications to the calculation of accurate second-order Møller–Plesset perturbation theory energies for large water clusters. J Chem Theory Comput 3:1342–1348

    CAS  Google Scholar 

  64. Dahlke EE, Truhlar DG (2007) Electrostatically embedded many-body expansion for large systems, with applications to water clusters. J Chem Theory Comput 3:46–53

    CAS  Google Scholar 

  65. Hirata S (2008) Fast electron-correlation methods for molecular crystals: an application to the alpha, beta(1), and beta(2) modifications of solid formic acid. J Chem Phys 129(20):204104. doi:10.1063/1.3021077

    Google Scholar 

  66. Sode O, Keceli M, Hirata S, Yagi K (2009) Coupled-cluster and many-body perturbation study of energies, structures, and phonon dispersions of solid hydrogen fluoride. Int J Quantum Chem 109:1928–1939

    CAS  Google Scholar 

  67. Sode O, Keceli M, Hirata S, Yagi K (2009) Coupled-cluster and many-body perturbation study of energies, structures, and phonon dispersions of solid hydrogen fluoride phonon dispersions. Int J Quantum Chem 109:1928–1939. doi:10.1002/qua

    CAS  Google Scholar 

  68. Manby FR, Stella M, Goodpaster JD, Miller TF (2012) A simple, exact density-functional-theory embedding scheme. J Chem Theory Comput 8(8):2564–2568. doi:10.1021/ct300544e

    CAS  Google Scholar 

  69. Reilly AM, Tkatchenko A (2013) Seamless and accurate modeling of organic molecular materials. J Phys Chem Lett 4:1028–1033

    CAS  Google Scholar 

  70. Wen S, Beran GJO (2012) Crystal polymorphism in oxalyl dihydrazide: is empirical DFT-D accurate enough? J Chem Theory Comput 8:2698–2705. doi:10.1021/ct300484h

    CAS  Google Scholar 

  71. Neill DPO, Allan NL, Manby FR (2010) Ab initio Monte Carlo simulations of liquid water. In: Manby F (ed) Accurate quantum chemistry in the condensed phase. CRC, Boca Raton, pp 163–193

    Google Scholar 

  72. Subotnik JE, Sodt A, Head-Gordon M (2008) The limits of local correlation theory: electronic delocalization and chemically smooth potential energy surfaces. J Chem Phys 128:034103

    Google Scholar 

  73. Nanda K, Beran GJO (2012) Improved prediction of organic molecular crystal geometries from MP2-level fragment QM/MM calculations. J Chem Phys 137:174106. doi:10.1063/1.4764063

    Google Scholar 

  74. Beran GJO (2009) Approximating quantum many-body intermolecular interactions in molecular clusters using classical polarizable force fields. J Chem Phys 130:164115. doi:10.1063/1.3121323

    Google Scholar 

  75. Ponder JW, Wu C, Ren P, Pande VS, Chodera JD, Schnieders MJ, Haque I, Mobley DL, Lambrecht DS, DiStasio RA, Head-Gordon M, Clark GNI, Johnson ME, Head-Gordon T (2010) Current status of the AMOEBA polarizable force field. J Phys Chem B 114(8):2549–2564. doi:10.1021/jp910674d

    CAS  Google Scholar 

  76. Ren P, Ponder JW (2003) Polarizable atomic multipole water model for molecular mechanics simulation. J Phys Chem B 107:5933–5947

    CAS  Google Scholar 

  77. Sebetci A, Beran GJO (2010) Spatially homogeneous QM/MM for systems of interacting molecules with on-the-fly ab initio force-field parameterization. J Chem Theory Comput 6:155–167. doi:10.1021/ct900545v

    CAS  Google Scholar 

  78. Wen S, Beran GJO (2011) Accurate molecular crystal lattice energies from a fragment QM/MM approach with on-the-fly ab initio force-field parameterization. J Chem Theory Comput 7:3733–3742. doi:10.1021/ct200541h

    CAS  Google Scholar 

  79. Stone AJ (1981) Distributed multipole analysis, or how to describe a molecular charge distribution. Chem Phys Lett 83:233–239

    CAS  Google Scholar 

  80. Stone AJ (2005) Distributed multipole analysis: stability for large basis sets. J Chem Theory Comput 1:1128–1132

    CAS  Google Scholar 

  81. Stone AJ, Alderton M (1985) Distributed multipole analysis – methods and applications. Mol Phys 56:1047–1064

    CAS  Google Scholar 

  82. Misquitta AJ, Stone AJ (2008) Accurate induction energies for small organic molecules: 1. Theory. J Chem Theory Comput 4:7–18

    CAS  Google Scholar 

  83. Misquitta AJ, Stone AJ, Price SL (2008) Accurate induction energies for small organic molecules: 2. Development and testing of distributed polarizability models against SAPT(DFT) energies. J Chem Theory Comput 4:19–32

    CAS  Google Scholar 

  84. Misquitta AJ, Stone AJ (2008) Dispersion energies for small organic molecules: first row atoms. Mol Phys 106(12):1631–1643. doi:10.1080/00268970802258617

    CAS  Google Scholar 

  85. Stone AJ (2002) The theory of intermolecular forces. Clarendon, Oxford

    Google Scholar 

  86. Stone AJ, Misquitta AJ (2007) Atom-atom potentials. Int Rev Phys Chem 26:193–222

    CAS  Google Scholar 

  87. Neumann MA, Perrin MA (2009) Can crystal structure prediction guide experimentalists to a new polymorph of paracetamol? CrystEngComm 11(11):2475. doi:10.1039/b909819d

    CAS  Google Scholar 

  88. Leslie M (2008) DL MULTI – a molecular dynamics program to use distributed multipole electrostatic models to simulate the dynamics of organic crystals. Mol Phys 106(12):1567–1578. doi:10.1080/00268970802175308

    CAS  Google Scholar 

  89. Grafova L, Pitonak M, Rezac J, Hobza P (2010) Comparative study of selected wave function and density functional methods for noncovalent interaction energy calculations using the extended S22 data set. J Chem Theory Comput 6(8):2365–2376. doi:10.1021/ct1002253

    CAS  Google Scholar 

  90. Rezac J, Riley KE, Hobza P (2011) Extensions of the S66 data set: more accurate interaction energies and angular-displaced nonequilibrium geometries. J Chem Theory Comput 7:3466–3470. doi:10.1021/ct200523a

    CAS  Google Scholar 

  91. Riley KE, Pitonak M, Jurecka P, Hobza P (2010) Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev 110(9):5023–5063. doi:10.1021/cr1000173

    CAS  Google Scholar 

  92. Chalasinski G, Szczesniak MM (1988) On the connection between the supermolecular Møller–Plesset treatment of the interaction energy and the perturbation theory of intermolecular forces. Mol Phys 63:205–224

    CAS  Google Scholar 

  93. Cybulski SM, Chalasinski G, Moszynski R (1990) On decomposition of second-order Møller–Plesset supermolecular interaction energy and basis set effects. J Chem Phys 92:4357–4363

    CAS  Google Scholar 

  94. Cybulski SM, Lytle ML (2007) The origin of deficiency of the supermolecule second-order Møller–Plesset approach for evaluating interaction energies. J Chem Phys 127:141102

    Google Scholar 

  95. Hesselmann A (2008) Improved supermolecular second order Møller–Plesset intermolecular interaction energies using time-dependent density functional response theory. J Chem Phys 128(14):144112

    Google Scholar 

  96. Pitonak M, Hesselmann A (2010) Accurate intermolecular interaction energies from a combination of MP2 and TDDFT response theory. J Chem Theory Comput 6(1):168–178. doi:10.1021/ct9005882

    CAS  Google Scholar 

  97. Tkatchenko A, Distasio RA, Head-Gordon M, Scheffler M (2009) Dispersion-corrected Møller–Plesset second-order perturbation theory. J Chem Phys 131:094106

    Google Scholar 

  98. Granatier J, Pitonak M, Hobza P (2012) Accuracy of several wave function and density functional theory methods for description of noncovalent interaction of saturated and unsaturated hydrocarbon dimers. J Chem Theory Comput 8:2282–2292

    CAS  Google Scholar 

  99. Hesselmann A, Korona T (2011) On the accuracy of DFT-SAPT, MP2, SCSMP2, MP2C, and DFT + Disp methods for the interaction energies of endohedral complexes of the C(60) fullerene with a rare gas atom. Phys Chem Chem Phys 13(2):732–743. doi:10.1039/c0cp00968g

    CAS  Google Scholar 

  100. Hohenstein EG, Jaeger HM, Carrell EJ, Tschumper GS, Sherrill CD (2011) Accurate interaction energies for problematic dispersion-bound complexes: homogeneous dimers of NCCN, P2, and PCCP. J Chem Theory Comput 7(9):2842–2851. doi:10.1021/ct200374m

    CAS  Google Scholar 

  101. Jenness GR, Karalti O, Al-Saidi WA, Jordan KD (2011) Evaluation of theoretical approaches for describing the interaction of water with linear acenes. J Phys Chem A 115:5955–5964

    CAS  Google Scholar 

  102. Karalti O, Alfe D, Gillan MJ, Jordan KD (2012) Adsorption of a water molecule on the MgO(100) surface as described by cluster and slab models. Phys Chem Chem Phys 14(21):7846–7853. doi:10.1039/c2cp00015f

    CAS  Google Scholar 

  103. Huang Y, Shao Y, Beran GJO (2013) Accelerating MP2C dispersion corrections for dimers and molecular crystals. J Chem Phys 138:224112. doi:10.1063/1.4809981

    Google Scholar 

  104. Distasio RA, Head-Gordon M (2007) Optimized spin-component-scaled second-order Møller–Plesset perturbation theory for intermolecular interaction energies. Mol Phys 105:1073–1083

    CAS  Google Scholar 

  105. Gerenkamp M, Grimme S (2004) Spin-component scaled second-order Møller–Plesset perturbation theory for the calculation of molecular geometries and harmonic vibrational frequencies. Chem Phys Lett 392:229–235

    CAS  Google Scholar 

  106. Hill JG, Platts JA (2007) Spin-component scaling methods for weak and stacking interactions. J Chem Theory Comput 3:80

    CAS  Google Scholar 

  107. Marchetti O, Werner HJ (2009) Accurate calculations of intermolecular interaction energies using explicitly correlated coupled cluster wave functions and a dispersion-weighted MP2 method. J Phys Chem A 113:11580

    CAS  Google Scholar 

  108. Eshuis H, Bates JE, Furche F (2012) Electron correlation methods based on the random phase approximation. Theor Chem Acc 131(1):1084. doi:10.1007/s00214-011-1084-8

    Google Scholar 

  109. Li Y, Lu D, Nguyen HV, Galli G (2010) van der Waals interactions in molecular assemblies from first-principles calculations. J Phys Chem A 114:1944–1952

    CAS  Google Scholar 

  110. Lu D, Li Y, Rocca D, Galli G (2009) Ab initio calculation of van der Waals bonded molecular crystals. Phys Rev Lett 102:206411

    Google Scholar 

  111. Ren X, Tkatchenko A, Rinke P, Scheffler M (2011) Beyond the random-phase approximation for the electron correlation energy: the importance of single excitations. Phys Rev Lett 106(15):153003. doi:10.1103/PhysRevLett.106.153003

    Google Scholar 

  112. Williams HL, Mas EM, Szalewicz K, Jeziorski B (1995) On the effectiveness of monomer-, dimer-, and bond-centered basis functions in calculations of intermolecular interaction energies. J Chem Phys 103(17):7374–7391. doi:10.1063/1.470309

    CAS  Google Scholar 

  113. Hättig C, Klopper W, Köhn A, Tew DP (2011) Explicitly correlated electrons in molecules. Chem Rev 112:4–74. doi:10.1021/cr200168z

    Google Scholar 

  114. Kong L, Bischoff FA, Valeev EF (2011) Explicitly correlated R12/F12 methods for electronic structure. Chem Rev 112:75–107. doi:10.1021/cr200204r

    Google Scholar 

  115. Beran GJO, Nanda K (2010) Predicting organic crystal lattice energies with chemical accuracy. J Phys Chem Lett 1:3480–3487. doi:10.1021/jz101383z

    CAS  Google Scholar 

  116. Sadlej AJ (1988) Medium-size polarized basis sets for high-level correlated calculations of molecular electronic properties. Collect Czech Chem Commun 53:1995–2016

    CAS  Google Scholar 

  117. Sadlej AJ (1991) Medium-size polarized basis sets for high-level correlated calculations of molecular electronic properties II. Second-row atoms Si–Cl. Theor Chim Acta 79:123–140

    CAS  Google Scholar 

  118. Civalleri B, Zicovich-Wilson CM, Valenzano L, Ugliengo P (2008) B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals. CrystEngComm 10:405–410. doi:10.1039/b715018k

    CAS  Google Scholar 

  119. Wheatley PJ (1964) The crystal and molecular structure of aspirin. J Chem Soc 6036–6048 doi: 10.1039/JR9640006036

  120. Ouvrard C, Price SL (2004) Toward crystal structure prediction for conformationally flexible molecules: the headaches illustrated by aspirin. Cryst Growth Des 4(6):1119–1127. doi:10.1021/cg049922u

    CAS  Google Scholar 

  121. Vishweshwar P, McMahon JA, Oliveira M, Peterson ML, Zaworotko MJ (2005) The predictably elusive form II of aspirin. J Am Chem Soc 127(48):16802–16803. doi:10.1021/ja056455b

    CAS  Google Scholar 

  122. Bond AD, Boese R, Desiraju GR (2007) On the polymorphism of aspirin. Angew Chem Int Ed 46(4):615–617. doi:10.1002/anie.200602378

    CAS  Google Scholar 

  123. Bond AD, Boese R, Desiraju GR (2007) On the polymorphism of aspirin: crystalline aspirin as intergrowths of two ”polymorphic” domains. Angew Chem Int Ed 46(4):618–622. doi:10.1002/anie.200603373

    CAS  Google Scholar 

  124. Bauer JD, Haussuhl E, Winkler B, Arbeck D, Milman V, Robertson S (2010) Elastic properties, thermal expansion, and polymorphism of acetylsalicylic acid. Cryst Growth Des 10(7):3132–3140. doi:10.1021/cg100241c

    CAS  Google Scholar 

  125. Bond AD, Solanko KA, Parsons S, Redder S, Boese R (2011) Single crystals of aspirin form II: crystallisation and stability. CrystEngComm 13(2):399. doi:10.1039/c0ce00588f

    CAS  Google Scholar 

  126. Chan EJ, Welberry TR, Heerdege AP, Goossens DJ (2010) Diffuse scattering study of aspirin forms (I) and (II). Acta Crystallogr B 66:696–707

    CAS  Google Scholar 

  127. Li T (2007) Understanding the polymorphism of aspirin with electronic calculations. J Pharm Sci 96(4):755–760. doi:10.1002/jps

    CAS  Google Scholar 

  128. Li T, Feng S (2006) Empirically augmented density functional theory for predicting lattice energies of aspirin, acetaminophen polymorphs, and ibuprofen homochiral and racemic crystals. Pharm Res 23(10):2326–2332

    CAS  Google Scholar 

  129. Copley RCB, Barnett SA, Karamertzanis PG, Harris KDM, Kariuki BM, Xu M, Nickels EA, Lancaster RW, Price SL (2008) Predictable disorder versus polymorphism in the rationalization of structural diversity: a multidisciplinary study of eniluracil. Cryst Growth Des 8(9):3474–3481. doi:10.1021/cg800517h

    CAS  Google Scholar 

  130. Torrisi A, Leech CK, Shankland K, David WIF, Ibberson RM, Benet-Buchholz J, Boese R, Leslie M, Catlow CRA, Price SL (2008) Solid phases of cyclopentane: combined experimental and simulation study. J Phys Chem B 112(12):3746–3758. doi:10.1021/jp710017y

    CAS  Google Scholar 

  131. Winkel K, Hage W, Loerting T, Price SL, Mayer E (2007) Carbonic acid: from polyamorphism to polymorphism. J Am Chem Soc 129(45):13863–13871. doi:10.1021/ja073594f

    CAS  Google Scholar 

  132. Wen S, Beran GJO (2012) Accidental degeneracy in crystalline aspirin: new insights from high-level ab initio calculations. Cryst Growth Des 12:2169–2172. doi:10.121/cg300358n

    CAS  Google Scholar 

  133. Perlovich GL, Kurkov SV, Kinchin AN, Bauer-Brandl A (2004) Solvation and hydration characteristics of ibuprofen and acetylsalicylic acid. AAPS PharmSci 6(1):22–30. doi:10.1208/ps060103

    Google Scholar 

  134. Ahn S, Guo F, Kariuki BM, Harris KDM (2006) Abundant polymorphism in a system with multiple hydrogen-bonding opportunities: oxalyl dihydrazide. J Am Chem Soc 128(26):8441–8452. doi:10.1021/ja0573155

    CAS  Google Scholar 

  135. Karamertzanis PG, Day GM, Welch GWA, Kendrick J, Leusen FJJ, Neumann MA, Price SL (2008) Modeling the interplay of inter- and intramolecular hydrogen bonding in conformational polymorphs. J Chem Phys 128(24):244708. doi:10.1063/1.2937446

    Google Scholar 

  136. Perrin MA, Neumann MA, Elmaleh H, Zaske L (2009) Crystal structure determination of the elusive paracetamol form III. Chem Commun 22:3181–3183. doi:10.1039/b822882e

    Google Scholar 

  137. van de Streek J, Neumann MA (2010) Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations. Acta Crystallogr B 66(Pt 5):544–558. doi:10.1107/S0108768110031873

    Google Scholar 

  138. van de Streek J, Neumann MA (2011) Crystal-structure prediction of pyridine with four independent molecules. CrystEngComm 13(23):7135. doi:10.1039/c1ce05881a

    Google Scholar 

  139. Jurečka P, Šponer J, Černỳ J, Hobza P (2006) Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys Chem Chem Phys 8:1985–1993

    Google Scholar 

  140. Chisholm JA, Motherwell WDS (2005) COMPACK: a program for identifying crystal structure similarity using distances. J Appl Crystall 38(1):228–231. doi:10.1107/S0021889804027074

    Google Scholar 

Download references

Acknowledgements

Funding for this work from the National Science Foundation (CHE-1112568) and supercomputer time from XSEDE (TG-CHE110064) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. O. Beran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beran, G.J.O., Wen, S., Nanda, K., Huang, Y., Heit, Y. (2013). Accurate and Robust Molecular Crystal Modeling Using Fragment-Based Electronic Structure Methods. In: Atahan-Evrenk, S., Aspuru-Guzik, A. (eds) Prediction and Calculation of Crystal Structures. Topics in Current Chemistry, vol 345. Springer, Cham. https://doi.org/10.1007/128_2013_502

Download citation

Publish with us

Policies and ethics