Skip to main content

Excitation of Nucleobases from a Computational Perspective I: Reaction Paths

  • Chapter
  • First Online:
Photoinduced Phenomena in Nucleic Acids I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 355))

Abstract

The main intrinsic photochemical events in nucleobases can be described on theoretical grounds within the realm of non-adiabatic computational photochemistry. From a static standpoint, the photochemical reaction path approach (PRPA), through the computation of the respective minimum energy path (MEP), can be regarded as the most suitable strategy in order to explore the electronically excited isolated nucleobases. Unfortunately, the PRPA does not appear widely in the studies reported in the last decade. The main ultrafast decay observed experimentally for the gas-phase excited nucleobases is related to the computed barrierless MEPs from the bright excited state connecting the initial Franck–Condon region and a conical intersection involving the ground state. At the highest level of theory currently available (CASPT2//CASPT2), the lowest excited 1(ππ*) hypersurface for cytosine has a shallow minimum along the MEP deactivation pathway. In any case, the internal conversion processes in all the natural nucleobases are attained by means of interstate crossings, a self-protection mechanism that prevents the occurrence of photoinduced damage of nucleobases by ultraviolet radiation. Many alternative and secondary paths have been proposed in the literature, which ultimately provide a rich and constructive interplay between experimentally and theoretically oriented research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Adenine

AC:

Avoided crossing

ANO:

Atomic natural orbital

aug-cc-pVDZ:

Augmented correlation-consistent valence double-ζ plus polarization

C:

Cytosine

CASPT2:

Complete active space second-order perturbation theory

CASSCF:

Complete active space self-consistent field

CC:

Coupled cluster

CC2-LR:

Approximate coupled cluster singles and doubles linear response

cc-pVDZ:

Correlation-consistent valence double-ζ plus polarization

CCSD(T):

Coupled cluster singles, doubles, and perturbative triples

CI:

Conical intersection

CIS:

Configuration interaction singles

CPU:

Central processing unit

CR-EOM-CC:

Completely renormalized equation of motion coupled cluster

DFT:

Density functional theory

DNA:

Deoxyribonucleic acid

DZP:

Double-ζ plus polarization

EA:

Electron affinity

EOMEE-CC:

Equation-of-motion excitation-energy coupled cluster

FC:

Franck Condon

G:

Guanine

gs:

Ground state

HL:

Highest-occupied molecular orbital lowest-unoccupied molecular orbital

HOMO:

Highest-occupied molecular orbital

IC:

Internal conversion

IP:

Ionization potential

IR:

Infrared

IRC:

Intrinsic reaction coordinate

ISC:

Intersystem crossing

LIIC:

Linear interpolation of internal coordinates

LUMO:

Lowest-occupied molecular orbital

MECP:

Minimum energy crossing point

MEP:

Minimum energy path

min:

Minimum

MO:

Molecular orbital

MRCI:

Multireference configuration interaction

MRCISD:

Multireference configuration interaction singles and doubles

MS-CASPT2:

Multistate complete active space second-order perturbation theory

NAB:

Nucleic acid base

NO:

Natural orbital

OM2:

Orthogonalization model 2

PCO:

Projected constraint optimization

PEH:

Potential energy hypersurface

PRPA:

Photochemical reaction path approach

QCEXVAL:

Quantum chemistry of the excited state of Valencia

RI-CC2:

Resolution of identity approximate coupled cluster singles and doubles

RNA:

Ribonucleic acid

SOC:

Spin-orbit coupling

STC:

Singlet-triplet crossing

T:

Thymine

TDDFT:

Time-dependent density functional theory

TS:

Transition state

TZVP:

Valence triple-ζ plus polarization

U:

Uracil

UDFT:

Unrestricted density functional theory

UV:

Ultraviolet

Vis:

Visible

XMS-CASPT2:

Extended multistate complete active space second-order perturbation theory

References

  1. Olivucci M (2005) Computational photochemistry. Elsevier, Amsterdam

    Google Scholar 

  2. Fuß W, Lochbrunner S, Müller AM, Schikarski T, Schmid WE, Trushin SA (1998) Chem Phys 232:161. doi:10.1016/s0301-0104(98)00114-1

    Google Scholar 

  3. Robb MA, Garavelli M, Olivucci M, Bernardi F (2000) Rev Comput Chem 15:87. doi:10.1002/9780470125922.ch2

    CAS  Google Scholar 

  4. Olivucci M, Sinicropi A (2005) In: Olivucci M (ed) Theoretical and computational chemistry. Elsevier, Amsterdam, p 1

    Google Scholar 

  5. Garavelli M, Bernardi F, Cembran A (2005) In: Olivucci M (ed) Theoretical and computational chemistry. Elsevier, Amsterdam, p 191

    Google Scholar 

  6. Serrano-Andrés L, Merchán M (2009) J Photoch Photobio C-Photochem Rev 10:21. doi:10.1016/j.jphotochemrev.2008.12.001

    Google Scholar 

  7. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523. doi:10.1021/j100377a021

    CAS  Google Scholar 

  8. Fukui K (1981) Acc Chem Res 14:363. doi:10.1021/ar00072a001

    CAS  Google Scholar 

  9. De Vico L, Olivucci M, Lindh R (2005) J Chem Theor Comput 1:1029. doi:10.1021/ct0500949

    Google Scholar 

  10. Anglada JM, Bofill JM (1997) J Comput Chem 18:992. doi:10.1002/(sici)1096-987x(199706)18:8<992::aid-jcc3>3.0.co;2-l

    CAS  Google Scholar 

  11. Müller K, Brown LD (1979) Theor Chim Acta 53:75. doi:10.1007/bf00547608

    Google Scholar 

  12. Truhlar DG, Steckler R, Gordon MS (1987) Chem Rev 87:217. doi:10.1021/cr00077a011

    CAS  Google Scholar 

  13. Serrano-Andrés L, Merchán M (2002) Encyclopedia of computational chemistry. Wiley, Chichester, p 1

    Google Scholar 

  14. Merchán M, Serrano-Andrés L (2005) In: Olivucci M (ed) Theoretical and computational chemistry. Elsevier, Amsterdam, p 35

    Google Scholar 

  15. Serrano-Andrés L, Merchán M (2005) J Mol Struc-Theochem 729:99. doi:10.1016/j.theochem.2005.03.020

    Google Scholar 

  16. Serrano-Andrés L, Serrano-Pérez JJ (2012) In: Leszczynski J (ed) Handbook of computational chemistry. Springer, The Netherlands, p 483

    Google Scholar 

  17. González L, Escudero D, Serrano-Andrés L (2012) Chemphyschem 13:28. doi:10.1002/cphc.201100200

    Google Scholar 

  18. Serrano-Andrés L, Roca-Sanjuán D, Olaso-González G (2010) Photochemistry. Roy Soc Chem 38:10

    Google Scholar 

  19. Domcke W, Yarkony D, Köppel H (2004) Conical intersections electronic structure, dynamics & spectroscopy. World Scientific. http://public.eblib.com/EBLPublic/PublicView.do?ptiID=238336

  20. Klessinger M, Michl J (1995) Excited states and photochemistry of organic molecules. VCH, New York

    Google Scholar 

  21. Köppel H, Domcke W, Cederbaum LS (1984) Adv Chem Phys 57:59

    Google Scholar 

  22. Robb MA, Olivucci M, Bernardi F (1998) In: PvR S, Schreiner PR, Schaefer HF III, Jorgensen WL, Thiel W, Glen RC (eds) Encyclopedia of computational chemistry. Wiley, Chichester

    Google Scholar 

  23. Crespo-Hernández CE, Cohen B, Hare PM, Kohler B (2004) Chem Rev 104:1977. doi:10.1021/cr0206770

    Google Scholar 

  24. Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA, repair and mutagenesis. ASM, Washington, DC

    Google Scholar 

  25. Serrano-Andrés L, Merchán M, Borin AC (2006) Proc Natl Acad Sci U S A 103:8691. doi:10.1073/pnas.0602991103

    Google Scholar 

  26. Merchán M, González-Luque R, Climent T, Serrano-Andrés L, Rodríguez E, Reguero M, Peláez D (2006) J Phys Chem B 110:26471. doi:10.1021/jp066874a

    Google Scholar 

  27. Serrano-Andrés L, Merchán M, Borin AC (2006) Chem-Eur J 12:6559. doi:10.1002/chem.200501515

    Google Scholar 

  28. Serrano-Andrés L, Merchán M, Borin AC (2008) J Am Chem Soc 130:2473. doi:10.1021/ja0744450

    Google Scholar 

  29. Middleton CT, de La Harpe K, Su C, Law YK, Crespo-Hernández CE, Kohler B (2009) Annu Rev Phys Chem 60:217. doi:10.1146/annurev.physchem.59.032607.093719

    CAS  Google Scholar 

  30. Kleinermanns K, Nachtigallová D, de Vries MS (2013) Int Rev Phys Chem 32:308. doi:10.1080/0144235x.2012.760884

    CAS  Google Scholar 

  31. Kang H, Lee KT, Jung B, Ko YJ, Kim SK (2002) J Am Chem Soc 124:12958. doi:10.1021/ja027627x

    CAS  Google Scholar 

  32. Canuel C, Mons M, Piuzzi F, Tardivel B, Dimicoli I, Elhanine M (2005) J Chem Phys 122:074316. doi:10.1063/1.1850469

    Google Scholar 

  33. Samoylova E, Lippert H, Ullrich S, Hertel IV, Radloff W, Schultz T (2005) J Am Chem Soc 127:1782. doi:10.1021/ja044369q

    CAS  Google Scholar 

  34. Kuimova MK, Dyer J, George MW, Grills DC, Kelly JM, Matousek P, Parker AW, Sun XZ, Towrie M, Whelan AM (2005) Chem Commun 1182. doi:10.1039/b414450c

  35. Michl J (2005) In: Olivucci M (ed) Theoretical and computational chemistry. Elsevier, Amsterdam, p 9

    Google Scholar 

  36. Serrano-Andrés L, Merchán M, Lindh R (2005) J Chem Phys 122:104107. doi:10.1063/1.1866096

    Google Scholar 

  37. Klessinger M (1995) Angew Chem Int Edit 34:549. doi:10.1002/anie.199505491

    CAS  Google Scholar 

  38. Yarkony DR (2001) J Chem Phys 114:2601. doi:10.1063/1.1329644

    CAS  Google Scholar 

  39. Yarkony DR (1996) Rev Mod Phys 68:985. doi:10.1103/RevModPhys.68.985

    CAS  Google Scholar 

  40. Yarkony DR (2012) Chem Rev 112:481. doi:10.1021/cr2001299

    CAS  Google Scholar 

  41. Lischka H, Dallos M, Szalay PG, Yarkony DR, Shepard R (2004) J Chem Phys 120:7322. doi:10.1063/1.1668615

    CAS  Google Scholar 

  42. Koga N, Morokuma K (1985) Chem Phys Lett 119:371. doi:10.1016/0009-2614(85)80436-x

    CAS  Google Scholar 

  43. Farazdel A, Dupuis M (1991) J Comput Chem 12:276. doi:10.1002/jcc.540120219

    CAS  Google Scholar 

  44. Yarkony DR (1993) J Phys Chem 97:4407. doi:10.1021/j100119a026

    CAS  Google Scholar 

  45. Manaa MR, Yarkony DR (1993) J Chem Phys 99:5251. doi:10.1063/1.465993

    CAS  Google Scholar 

  46. Ragazos IN, Robb MA, Bernardi F, Olivucci M (1992) Chem Phys Lett 197:217. doi:10.1016/0009-2614(92)85758-3

    CAS  Google Scholar 

  47. Bearpark MJ, Robb MA, Schlegel HB (1994) Chem Phys Lett 223:269. doi:10.1016/0009-2614(94)00433-1

    CAS  Google Scholar 

  48. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ő, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian, Wallingford CT

    Google Scholar 

  49. Foresman JB, Aeleen F (1996) Exploring chemistry with electronic structure methods. Gaussian, Pittsburgh

    Google Scholar 

  50. Schlegel HB (1987) In: Lawley KP (ed) Ab initio methods in quantum chemistry II. Wiley, New York, p 249

    Google Scholar 

  51. Merchán M, Serrano-Andrés L, Robb MA, Blancafort L (2005) J Am Chem Soc 127:1820. doi:10.1021/ja044371h

    Google Scholar 

  52. Blancafort L, Cohen B, Hare PM, Kohler B, Robb MA (2005) J Phys Chem A 109:4431. doi:10.1021/jp045614v

    CAS  Google Scholar 

  53. Blancafort L (2006) J Am Chem Soc 128:210. doi:10.1021/ja054998f

    CAS  Google Scholar 

  54. Conti I, Garavelli M, Orlandi G (2009) J Am Chem Soc 131:16108. doi:10.1021/ja902311y

    CAS  Google Scholar 

  55. González-Luque R, Climent T, González-Ramírez I, Merchán M, Serrano-Andrés L (2010) J Chem Theor Comput 6:2103. doi:10.1021/ct100164m

    Google Scholar 

  56. Serrano-Pérez JJ, González-Luque R, Merchán M, Serrano-Andrés L (2007) J Phys Chem B 111:11880. doi:10.1021/jp0765446

    Google Scholar 

  57. Asturiol D, Lasorne B, Robb MA, Blancafort L (2009) J Phys Chem A 113:10211. doi:10.1021/jp905303g

    CAS  Google Scholar 

  58. Blancafort L, Robb MA (2004) J Phys Chem A 108:10609. doi:10.1021/jp046985b

    CAS  Google Scholar 

  59. Blancafort L (2007) Photochem Photobiol 83:603. doi:10.1562/2006-05-29-ra-903

    CAS  Google Scholar 

  60. Climent T, González-Luque R, Merchán M, Serrano-Andrés L (2007) Chem Phys Lett 441:327. doi:10.1016/j.cplett.2007.05.040

    CAS  Google Scholar 

  61. Nakayama A, Harabuchi Y, Yamazaki S, Taketsugu T (2013) Phys Chem Chem Phys 15(29):12322–12339. doi:10.1039/C3CP51617B

    CAS  Google Scholar 

  62. Roca-Sanjuán D, Aquilante F, Lindh R (2012) WIREs Comput Mol Sci 2:585. doi:10.1002/wcms.97

    Google Scholar 

  63. Andersson K, Malmqvist PÅ, Roos BO, Sadlej AJ, Wolinski K (1990) J Phys Chem 94:5483. doi:10.1021/j100377a012

    CAS  Google Scholar 

  64. Andersson K, Malmqvist PÅ, Roos BO (1992) Adv Chem Phys 96:1218. doi:10.1063/1.462209

    CAS  Google Scholar 

  65. Roos BO, Andersson K, Fülscher MP, Malmqvist PÅ, Serrano-Andrés L, Pierloot K, Merchán M (1996) Adv Chem Phys 93:219. doi:10.1002/9780470141526.ch5

    CAS  Google Scholar 

  66. Finley J, Malmqvist PÅ, Roos BO, Serrano-Andrés L (1998) Chem Phys Lett 288:299. doi:10.1016/s0009-2614(98)00252-8

    CAS  Google Scholar 

  67. Buenker RJ, Sd P (1974) Theor Chim Acta 35:33. doi:10.1007/bf02394557

    CAS  Google Scholar 

  68. Marian CM, Gilka N (2008) J Chem Theor Comput 4:1501. doi:10.1021/ct8001738

    CAS  Google Scholar 

  69. Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157. doi:10.1016/0301-0104(80)80045-0

    CAS  Google Scholar 

  70. Lawley KP (1987) Ab initio methods in quantum chemistry II. Wiley, New York

    Google Scholar 

  71. Andersson K, Barysz M, Bernhardsson A, Blomberg MRA, Carissan Y, Cooper DL, Cossi M, Fülscher MP, Gagliardi L, de Graaf C, Hess B, Hagberg G, Karlström G, Lindh R, Malmqvist PÅ, Nakajima T, Neogrády P, Olsen J, Raab J, Roos BO, Ryde U, Schimmelpfennig B, Schütz M, Seijo L, Serrano-Andrés L, Siegbahn PEM, Stålring J, Thorsteinsson T, Veryazov V, Widmark P-O (2006) Department of Theoretical Chemistry, Chemical Centre, University of Lund, Lund, Sweden

    Google Scholar 

  72. Aquilante F, De Vico L, Ferré N, Ghigo G, Malmqvist PÅ, Neogrády P, Pedersen TB, Pitoňák M, Reiher M, Roos BO, Serrano-Andrés L, Urban M, Veryazov V, Lindh R (2010) J Comput Chem 31:224. doi:10.1002/jcc.21318

    CAS  Google Scholar 

  73. Aquilante F, Pedersen TB, Veryazov V, Lindh R (2013) WIREs Comput Mol Sci 3:143. doi:10.1002/wcms.1117

    CAS  Google Scholar 

  74. Werner H-J, Knowles PJ, Knizia G, Manby FR, Schültz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Höppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, O′Neill DP, Palmieri P, Peng D, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M (2012) MOLPRO, version 2012.1, a package of ab initio programs. Cardiff University, UK

    Google Scholar 

  75. Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M (2012) WIREs Comput Mol Sci 2:242. doi:10.1002/wcms.82

    CAS  Google Scholar 

  76. Gozem S, Huntress M, Schapiro I, Lindh R, Granovsky AA, Angeli C, Olivucci M (2012) J Chem Theor Comput 8:4069. doi:10.1021/ct3003139

    CAS  Google Scholar 

  77. Ismail N, Blancafort L, Olivucci M, Kohler B, Robb MA (2002) J Am Chem Soc 124:6818. doi:10.1021/ja0258273

    CAS  Google Scholar 

  78. Merchán M, Serrano-Andrés L (2003) J Am Chem Soc 125:8108. doi:10.1021/ja0351600

    Google Scholar 

  79. Giussani A, Serrano-Andrés L, Merchán M, Roca-Sanjuán D, Garavelli M (2013) J Phys Chem B 117:1999. doi:10.1021/jp307200g

    CAS  Google Scholar 

  80. Serrano-Andrés L, Merchán M (2008) In: Shukla M, Leszczynski J (eds) Radiation induced molecular phenomena in nucleic acids. Springer, The Netherlands, p 435

    Google Scholar 

  81. Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M (2012) WIREs Comput Mol Sci 2:242

    CAS  Google Scholar 

  82. Ghigo G, Roos BO, Malmqvist PÅ (2004) Chem Phys Lett 396:142. doi:10.1016/j.cplett.2004.08.032

    CAS  Google Scholar 

  83. Roca-Sanjuán D, Rubio M, Merchán M, Serrano-Andrés L (2006) J Chem Phys 125:084302

    Google Scholar 

  84. Rubio M, Roca-Sanjuán D, Merchán M, Serrano-Andrés L (2006) J Phys Chem B 110:10234

    CAS  Google Scholar 

  85. Rubio M, Roca-Sanjuán D, Serrano-Andrés L, Merchán M (2009) J Phys Chem B 113:2451

    CAS  Google Scholar 

  86. Roca-Sanjuán D, Olaso-González G, Rubio M, Coto PB, Merchán M, Ferré N, Ludwig V, Serrano-Andrés L (2009) Pure Appl Chem 81:743

    Google Scholar 

  87. Roca-Sanjuán D, Merchán M, Serrano-Andrés L, Rubio M (2008) J Chem Phys 129:095104

    Google Scholar 

  88. Crespo R, Merchán M, Michl J (2000) J Phys Chem A 104:8593

    CAS  Google Scholar 

  89. Rubio M, Serrano-Andrés L, Merchán M (2008) J Chem Phys 128:104305

    Google Scholar 

  90. Granovsky AA (2011) J Chem Phys 134:214113

    Google Scholar 

  91. Shiozaki T, Györffy W, Celani P, Werner H-J (2011) J Chem Phys 135:081106

    Google Scholar 

  92. Almlöf J, Taylor PR (1987) J Chem Phys 86:4070

    Google Scholar 

  93. Pierloot K, Dumez B, Widmark PO, Roos BO (1995) Theor Chim Acta 90:87. doi:10.1007/s002140050063

    CAS  Google Scholar 

  94. Widmark PO, Malmqvist PÅ, Roos BO (1990) Theor Chim Acta 77:291. doi:10.1007/bf01120130

    CAS  Google Scholar 

  95. Liu Y-J, Roca-Sanjuán D, Lindh R (2012) Photochemistry. Roy Soc Chem 40:42

    Google Scholar 

  96. Roos BO, Fülscher M, Malmqvist PÅ, Merchán M, Serrano-Andrés L (1995) In: Langhoff SR (ed) Quantum mechanical electronic structure calculations with chemical accuracy. Kluwer Academic Publishers, The Netherlands, p 357

    Google Scholar 

  97. Merchán M, Serrano-Andrés L, Fülscher M, Roos BO (1999) In: Hirao K (ed) Recent advances in multireference theory. World Scientific Publishing, Singapore, p 161

    Google Scholar 

  98. Serrano-Andrés L, Merchán M, Roca-Sanjuán D, Olaso-González G, Rubio M (2007) International conference on computational methods in science and engineering (AIP Conference Proceedings), vol 963. Corfu, GREECE, p 526

    Google Scholar 

  99. Shukla MK, Leszczynski J (2004) J Comput Chem 25:768. doi:10.1002/jcc.20007

    CAS  Google Scholar 

  100. Fleig T, Knecht S, Hättig C (2007) J Phys Chem A 111:5482

    CAS  Google Scholar 

  101. Szalay PG, Watson T, Perera A, Lotrich VF, Bartlett RJ (2012) J Phys Chem A 116:6702. doi:10.1021/jp300977a

    CAS  Google Scholar 

  102. Silva-Junior MR, Schreiber M, Sauer SPA, Thiel W (2008) J Chem Phys 129:104103. doi:10.1063/1.2973541

    Google Scholar 

  103. Lorentzon J, Fülscher MP, Roos BO (1995) J Am Chem Soc 117:9265

    CAS  Google Scholar 

  104. Schreiber M, Silva MR, Sauer SPA, Thiel W (2008) J Chem Phys 128:134110. doi:10.1063/1.2889385

    Google Scholar 

  105. Perun S, Sobolewski AL, Domcke W (2006) J Phys Chem A 110:13238. doi:10.1021/jp0633897

    CAS  Google Scholar 

  106. Hudock HR, Levine BG, Thompson AL, Satzger H, Townsend D, Gador N, Ullrich S, Stolow A, Martínez TJ (2007) J Phys Chem A 111:8500

    CAS  Google Scholar 

  107. Yamazaki S, Taketsugu T (2012) J Phys Chem A 116:491. doi:10.1021/jp206546g

    CAS  Google Scholar 

  108. Zechmann G, Barbatti M (2008) J Phys Chem A 112:8273. doi:10.1021/jp804309x

    CAS  Google Scholar 

  109. González L, González-Vázquez J, Samoylova E, Schultz T (2008) 5th international conference on radiation damage in biomolecular systems, vol 1080. Debrecen, Hungary, p 169

    Google Scholar 

  110. Lan Z, Fabiano E, Thiel W (2009) J Phys Chem B 113:3548. doi:10.1021/jp809085h

    CAS  Google Scholar 

  111. Etinski M, Fleig T, Marian CA (2009) J Phys Chem A 113:11809. doi:10.1021/jp902944a

    CAS  Google Scholar 

  112. Szymczak JJ, Barbatti M, Hoo JTS, Adkins JA, Windus TL, Nachtigallová D, Lischka H (2009) J Phys Chem A 113:12686

    CAS  Google Scholar 

  113. Ullrich S, Schultz T, Zgierski MZ, Stolow A (2004) Phys Chem Chem Phys 6:2796. doi:10.1039/b316324e

    CAS  Google Scholar 

  114. Asturiol D, Lasorne B, Worth GA, Robb MA, Blancafort L (2010) Phys Chem Chem Phys 12:4949. doi:10.1039/c001556c

    CAS  Google Scholar 

  115. Imakubo K (1968) J Physical Soc Japan 24:143. doi:10.1143/jpsj.24.143

    CAS  Google Scholar 

  116. Szerenyi P, Dearman HH (1972) Chem Phys Lett 15:81. doi:10.1016/0009-2614(72)87021-0

    CAS  Google Scholar 

  117. Arce R, Rodríguez G (1986) J Photochem 33:89

    CAS  Google Scholar 

  118. Barbatti M, Aquino AJA, Szymczak JJ, Nachtigallová D, Hobza P, Lischka H (2010) Proc Natl Acad Sci U S A 107:21453

    CAS  Google Scholar 

  119. Nachtigallová D, Aquino AJA, Szymczak JJ, Barbatti M, Hobza P, Lischka H (2011) J Phys Chem A 115:5247

    Google Scholar 

  120. Tomić K, Tatchen J, Marian CM (2005) J Phys Chem A 109:8410

    Google Scholar 

  121. Sobolewski AL, Domcke W (2004) Phys Chem Chem Phys 6:2763. doi:10.1039/b314419d

    CAS  Google Scholar 

  122. Zgierski MZ, Patchkovskii S, Lim EC (2005) J Chem Phys 123:081101

    Google Scholar 

  123. Zgierski MZ, Patchkovskii S, Fujiwara T, Lim EC (2005) J Phys Chem A 109:9384. doi:10.1021/jp054158n

    CAS  Google Scholar 

  124. Zgierski MZ, Fujiwara T, Lim EC (2008) Chem Phys Lett 463:289. doi:10.1016/j.cplett.2008.06.024

    CAS  Google Scholar 

  125. Kistler KA, Matsika S (2007) J Phys Chem A 111:2650. doi:10.1021/jp0663661

    CAS  Google Scholar 

  126. Kotur M, Weinacht TC, Zhou C, Kistler KA, Matsika S (2011) J Chem Phys 134:184309

    Google Scholar 

  127. Kistler KA, Matsika S (2008) J Chem Phys 128:215102

    Google Scholar 

  128. Hudock HR, Martínez TJ (2008) Chemphyschem 9:2486. doi:10.1002/cphc.200800649

    CAS  Google Scholar 

  129. González-Vázquez J, González L (2010) Chemphyschem 11:3617

    Google Scholar 

  130. Barbatti M, Aquino AJA, Szymczak JJ, Nachtigallová D, Lischka H (2011) Phys Chem Chem Phys 13:6145

    CAS  Google Scholar 

  131. Richter M, Marquetand P, González-Vázquez J, Solá I, González L (2012) J Phys Chem Lett 3:3090

    CAS  Google Scholar 

  132. Lobsiger S, Trachsel MA, Frey H-M, Leutwyler S (2013) J Phys Chem B 117:6106. doi:10.1021/jp401881b

    CAS  Google Scholar 

  133. Matsika S (2004) J Phys Chem A 108:7584. doi:10.1021/jp048284n

    CAS  Google Scholar 

  134. Matsika S (2005) J Phys Chem A 109:7538. doi:10.1021/jp0513622

    CAS  Google Scholar 

  135. Mercier Y, Santoro F, Reguero M, Improta R (2008) J Phys Chem B 112:10769. doi:10.1021/jp804785p

    CAS  Google Scholar 

  136. Delchev VB, Sobolewski AL, Domcke W (2010) Phys Chem Chem Phys 12:5007. doi:10.1039/b922505f

    CAS  Google Scholar 

  137. Gustavsson T, Bányász A, Lazzarotto E, Markovitsi D, Scalmani G, Frisch MJ, Barone V, Improta R (2006) J Am Chem Soc 128:607

    CAS  Google Scholar 

  138. Gustavsson T, Sarkar N, Lazzarotto E, Markovitsi D, Improta R (2006) Chem Phys Lett 429:551. doi:10.1016/j.cplett.2006.08.058

    CAS  Google Scholar 

  139. Broo A (1998) J Phys Chem A 102:526. doi:10.1021/jp9713625

    CAS  Google Scholar 

  140. Mennucci B, Toniolo A, Tomasi J (2001) J Phys Chem A 105:4749. doi:10.1021/jp0045843

    CAS  Google Scholar 

  141. Perun S, Sobolewski AL, Domcke W (2005) J Am Chem Soc 127:6257. doi:10.1021/ja044321c

    CAS  Google Scholar 

  142. Chen H, Li SH (2005) J Phys Chem A 109:8443. doi:10.1021/jp0537207

    CAS  Google Scholar 

  143. Marian CM (2005) J Chem Phys 122:104314

    Google Scholar 

  144. Nielsen SB, Sølling TI (2005) Chemphyschem 6:1276. doi:10.1002/cphc.200400644

    CAS  Google Scholar 

  145. Sobolewski AL, Domcke W (2002) Eur Phys J D 20:369. doi:10.1140/epjd/e2002-00164-5

    CAS  Google Scholar 

  146. Perun S, Sobolewski AL, Domcke W (2005) Chem Phys 313:107. doi:10.1016/j.chemphys.2005.01.005

    CAS  Google Scholar 

  147. Ullrich S, Schultz T, Zgierski MZ, Stolow A (2004) J Am Chem Soc 126:2262. doi:10.1021/ja030532q

    CAS  Google Scholar 

  148. Holmén A, Nordén B, Albinsson B (1997) J Am Chem Soc 119:3114

    Google Scholar 

  149. Santhosh C, Mishra PC (1991) Spectrochim Acta A 47:1685. doi:10.1016/0584-8539(91)80006-5

    Google Scholar 

  150. Zgierski MZ, Patchkovskii S, Lim EC (2007) Can J Chem 85:124. doi:10.1139/v07-006

    CAS  Google Scholar 

  151. Fabiano E, Thiel W (2008) J Phys Chem A 112:6859. doi:10.1021/jp8033402

    CAS  Google Scholar 

  152. Satzger H, Townsend D, Zgierski MZ, Patchkovskii S, Ullrich S, Stolow A (2006) Proc Natl Acad Sci U S A 103:10196. doi:10.1073/pnas.0602663103

    CAS  Google Scholar 

  153. Satzger H, Townsend D, Stolow A (2006) Chem Phys Lett 430:144. doi:10.1016/j.cplett.2006.08.122

    CAS  Google Scholar 

  154. Barbatti M, Lan ZG, Crespo-Otero R, Szymczak JJ, Lischka H, Thiel W (2012) J Chem Phys 137:22A503. doi:10.1063/1.4731649

    Google Scholar 

  155. Mitrić R, Werner U, Wohlgemuth M, Seifert G, Bonačić-Koutecký V (2009) J Phys Chem A 113:12700

    Google Scholar 

  156. Alexandrova AN, Tully JC, Granucci G (2010) J Phys Chem B 114:12116. doi:10.1021/jp103322c

    CAS  Google Scholar 

  157. Lei Y, Yuan S, Dou Y, Wang Y, Wen Z (2008) J Phys Chem A 112:8497. doi:10.1021/jp802483b

    CAS  Google Scholar 

  158. Chen H, Li SH (2006) J Chem Phys 124:154315

    Google Scholar 

  159. Marian CM (2007) J Phys Chem A 111:1545. doi:10.1021/jp068620v

    CAS  Google Scholar 

  160. Zgierski MZ, Patchkovskii S, Fujiwara T, Lim EC (2007) Chem Phys Lett 440:145. doi:10.1016/j.cplett.2007.04.017

    CAS  Google Scholar 

  161. Yamazaki S, Domcke W, Sobolewski AL (2008) J Phys Chem A 112:11965. doi:10.1021/jp806622m

    CAS  Google Scholar 

  162. Lan ZG, Fabiano E, Thiel W (2009) Chemphyschem 10:1225. doi:10.1002/cphc.200900030

    CAS  Google Scholar 

  163. Barbatti M, Szymczak JJ, Aquino AJA, Nachtigallová D, Lischka H (2011) J Chem Phys 134:014304

    Google Scholar 

Download references

Acknowledgments

The research has been supported by project CTQ2010-14892 of the Spanish MINECO. A.G. gratefully acknowledges Ph.D. fellowship “V segles” from the Universitat de València.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Merchán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giussani, A., Segarra-Martí, J., Roca-Sanjuán, D., Merchán, M. (2013). Excitation of Nucleobases from a Computational Perspective I: Reaction Paths. In: Barbatti, M., Borin, A., Ullrich, S. (eds) Photoinduced Phenomena in Nucleic Acids I. Topics in Current Chemistry, vol 355. Springer, Cham. https://doi.org/10.1007/128_2013_501

Download citation

Publish with us

Policies and ethics