Skip to main content

Dispersion Corrected Hartree–Fock and Density Functional Theory for Organic Crystal Structure Prediction

  • Chapter
  • First Online:
Prediction and Calculation of Crystal Structures

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 345))

Abstract

We present and evaluate dispersion corrected Hartree–Fock (HF) and Density Functional Theory (DFT) based quantum chemical methods for organic crystal structure prediction. The necessity of correcting for missing long-range electron correlation, also known as van der Waals (vdW) interaction, is pointed out and some methodological issues such as inclusion of three-body dispersion terms are discussed. One of the most efficient and widely used methods is the semi-classical dispersion correction D3. Its applicability for the calculation of sublimation energies is investigated for the benchmark set X23 consisting of 23 small organic crystals. For PBE-D3 the mean absolute deviation (MAD) is below the estimated experimental uncertainty of 1.3 kcal/mol. For two larger π-systems, the equilibrium crystal geometry is investigated and very good agreement with experimental data is found. Since these calculations are carried out with huge plane-wave basis sets they are rather time consuming and routinely applicable only to systems with less than about 200 atoms in the unit cell. Aiming at crystal structure prediction, which involves screening of many structures, a pre-sorting with faster methods is mandatory. Small, atom-centered basis sets can speed up the computation significantly but they suffer greatly from basis set errors. We present the recently developed geometrical counterpoise correction gCP. It is a fast semi-empirical method which corrects for most of the inter- and intramolecular basis set superposition error. For HF calculations with nearly minimal basis sets, we additionally correct for short-range basis incompleteness. We combine all three terms in the HF-3c denoted scheme which performs very well for the X23 sublimation energies with an MAD of only 1.5 kcal/mol, which is close to the huge basis set DFT-D3 result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ANCOPT:

Approximate normal coordinate rational function optimization program

AO:

Gaussian atomic orbitals

B3LYP:

Combination of Becke’s three-parameter hybrid functional B3 and the correlation functional LYP of Lee, Yang, and Parr

BSE:

Basis set error

BSIE:

Basis set incompleteness error

BSSE:

Basis set superposition error

CN:

Coordination number

CRYSTAL09:

Crystalline orbital program

D3:

Third version of a semi-classical first-principles dispersion correction

DF:

Density functional

DFT:

Density Functional Theory

DFT-D3:

Density Functional Theory with atom-pairwise and three-body dispersion correction

gCP:

Geometrical counterpoise correction

GGA:

Generalized gradient approximation

HF:

Hartree–Fock

HF-3c:

Dispersion corrected Hartree–Fock with semi-empirical basis set corrections

MAD:

Mean absolute deviation

MBD:

Many-body dispersion interaction by Tkatchenko and Scheffler

MD:

Mean deviation

Me-TBTQ:

Centro-methyl tribenzotriquinazene

MINIX:

Combination of polarized minimal basis and SVP basis

PAW:

Projector augmented plane-wave

PBE:

Generalized gradient-approximated functional of Perdew, Burke, and Ernzerhof

RMSD:

Root mean square deviation

RPA:

Random phase approximation

RPBE:

Revised version of the PBE functional

SAPT:

Symmetry Adapted Perturbation Theory

SCF:

Self-consistent field

SD:

Standard deviation

SIE:

Self interaction error

SRB:

Short-range basis incompleteness correction

SVP:

Polarized split-valence basis set of Ahlrichs

TBTQ:

Tribenzotriquinazene

TS:

Tkatchenko and Scheffler dispersion correction

VASP:

Vienna ab initio simulation package

vdW:

Van der Waals

VV10:

Vydrov and van Voorhis non-local correlation functional

X23:

Benchmark set of 23 small organic crystals

XDM:

Exchange-dipole model of Becke and Johnson

ZPV:

Zero point vibrational energy

References

  1. Neumann MA, Leusen FJJ, Kendrick J (2008) A major advance in crystal structure prediction. Angew Chem Int Ed 47:2427–2430

    Article  CAS  Google Scholar 

  2. Oganov AR (2010) Modern methods of crystal structure prediction. Wiley-VCH, Berlin

    Book  Google Scholar 

  3. Oganov AR, Glass CW (2006) Crystal structure prediction using ab initio evolutionary techniques. Principles and applications. J Chem Phys 124:244–704

    Google Scholar 

  4. Sanderson K (2007) Model predicts structure of crystals. Nature 450:771–771

    Article  CAS  Google Scholar 

  5. Woodley SM, Catlow R (2008) Crystal structure prediction from first principles. Nat Mater 7:937–964

    Article  CAS  Google Scholar 

  6. Dreizler J, Gross EKU (1990) Density functional theory, an approach to the quantum many-body problem. Springer, Berlin

    Google Scholar 

  7. Koch W, Holthausen MC (2001) A chemist’s guide to Density Functional Theory. Wiley-VCH, New York

    Book  Google Scholar 

  8. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  9. Paverati R, Truhlar DG (2013) The quest for a universal density functional. The accuracy of density functionals across a braod spectrum of databases in chemistry and physics. Phil Trans R Soc A, in press. http://arxiv.org/abs/1212.0944

  10. Allen M, Tozer DJ (2002) Helium dimer dispersion forces and correlation potentials in density functional theory. J Chem Phys 117:11113

    Article  CAS  Google Scholar 

  11. Hobza P, Sponer J, Reschel T (1995) Density functional theory and molecular clusters. J Comput Chem 16:1315–1325

    Article  CAS  Google Scholar 

  12. Kristy´an S, Pulay P (1994) Can (semi)local density functional theory account for the London dispersion forces? Chem Phys Lett 229:175–180

    Article  Google Scholar 

  13. Pérez-Jord´a JM, Becke AD (1995) A density-functional study of van der Waals forces. Rare gas diatomics. Chem Phys Lett 233:134–137

    Article  Google Scholar 

  14. Kaplan IG (2006) Intermolecular interactions. Wiley, Chichester

    Book  Google Scholar 

  15. Stone AJ (1997) The theory of intermolecular forces. Oxford University Press, Oxford

    Google Scholar 

  16. Burns LA, Vazquez-Mayagoitia A, Sumpter BG, Sherrill CD (2011) A comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. J Chem Phys 134:084,107

    Google Scholar 

  17. Civalleri B, Zicovich-Wilson CM, Valenzano L, Ugliengo P (2008) B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals. CrystEngComm 10:405–410

    CAS  Google Scholar 

  18. Gräfenstein J, Cremer D (2009) An efficient algorithm for the density functional theory treatment of dispersion interactions. J Chem Phys 130:124,105

    Google Scholar 

  19. Grimme S (2011) Density functional theory with London dispersion corrections. WIREs Comput Mol Sci 1:211–228

    Article  CAS  Google Scholar 

  20. Grimme S, Antony J, Schwabe T, Mück-Lichtenfeld C (2007) Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules. Org Biomol Chem 5:741–758

    Article  CAS  Google Scholar 

  21. Jacobsen H, Cavallo L (2012) On the accuracy of DFT methods in reproducing ligand substitution energies for transition metal complexes in solution. The role of dispersive interactions. ChemPhysChem 13:562–569

    Google Scholar 

  22. Johnson ER, Mackie ID, DiLabio GA (2009) Dispersion interactions in density-functional theory. J Phys Org Chem 22:1127–1135

    Article  CAS  Google Scholar 

  23. Klimes J, Michaelides A (2012) Perspective. Advances and challenges in treating van der Waals dispersion forces in density functional theory. J Chem Phys 137:120901

    Article  Google Scholar 

  24. de-la Roza AO, Johnson ER (2012) A benchmark for non-covalent interactions in solids. J Chem Phys 137:054103

    Google Scholar 

  25. Vydrov OA, Van Voorhis T (2010) Nonlocal van derWaals density functional. The simpler the better. J Chem Phys 133:244103

    Article  Google Scholar 

  26. Eshuis H, Bates JE, Furche F (2012) Electron correlation methods based on the random phase approximation. Theor Chem Acc 131:1084

    Article  Google Scholar 

  27. Heßelmann A, Jansen G, Schütz M (2005) Density-functional theorysymmetry-adapted intermolecular perturbation theory with density fitting. A new efficient method to study intermolecular interaction energies. J Chem Phys 122:014103

    Article  Google Scholar 

  28. Nanda K, Beran G (2012) Prediction of organic molecular crystal geometries from MP2-level fragment quantum mechanical/molecular mechanical calculations. J Chem Phys 138:174106

    Article  Google Scholar 

  29. Wen S, Nanda K, Huang Y, Beran G (2012) Practical quantum mechanics based fragment methods for predicting molecular crystal properties. Phys Chem Chem Phys 14:7578–7590

    Article  CAS  Google Scholar 

  30. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  31. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    Article  CAS  Google Scholar 

  32. Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys Chem Chem Phys 13:6670–6688

    Article  CAS  Google Scholar 

  33. Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys 125:224106

    Article  Google Scholar 

  34. Brandenburg JG, Grimme S, Jones PG, Markopoulos G, Hopf H, Cyranski MK, Kuck D (2013) Unidirectional molecular stacking of tribenzotriquinacenes in the solid state – a combined X-ray and theoretical study. Chem Eur J 19:9930–9938

    Article  CAS  Google Scholar 

  35. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  36. Kruse H, Grimme S (2012) A geometrical correction for the inter- and intramolecular basis set superposition error in Hartree–Fock and density functional theory calculations for large systems. J Chem Phys 136:154101

    Article  Google Scholar 

  37. Brandenburg JG, Alessio M, Civalleri B, Peintinger MF, Bredow T, Grimme S (2013) Geometrical correction for the inter- and intramolecular basis set superposition error in periodic density functional theory calculations. J Phys Chem A 117:9282–9292

    Google Scholar 

  38. Dion M, Rydberg H, Schr¨oder E, Langreth DC, Lundqvist BI (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92:246401

    Article  CAS  Google Scholar 

  39. Lee K, Murray ED, Kong L, Lundqvist BI, Langreth DC (2010) Higher accuracy van der Waals density functional. Phys Rev B 82:081101

    Article  Google Scholar 

  40. Grimme S, Hujo W, Kirchner B (2012) Performance of dispersion-corrected density functional theory for the interactions in ionic liquids. Phys Chem Chem Phys 14:4875–4883

    Article  CAS  Google Scholar 

  41. Hujo W, Grimme S (2011) Comparison of the performance of dispersion corrected density functional theory for weak hydrogen bonds. Phys Chem Chem Phys 13:13942–13950

    Article  CAS  Google Scholar 

  42. Hujo W, Grimme S (2011) Performance of the van der Waals density functional VV10 and (hybrid) GGA variants for thermochemistry and noncovalent interactions. J Chem Theory Comput 7:3866–3871

    Article  CAS  Google Scholar 

  43. HujoW GS (2013) Performance of non-local and atom-pairwise dispersion corrections to DFT for structural parameters of molecules with noncovalent interactions. J Chem Theory Comput 9:308–315

    Article  Google Scholar 

  44. Casimir HBG, Polder D (1948) The influence of retardation on the London van der Waals forces. Phys Rev 73:360–372

    Article  CAS  Google Scholar 

  45. Grimme S (2012) Supramolecular binding thermodynamics by dispersion-corrected density functional theory. Chem Eur J 18:9955–9964

    Article  CAS  Google Scholar 

  46. Becke AD, Johnson ER (2005) A density-functional model of the dispersion interaction. J Chem Phys 123:154101

    Article  Google Scholar 

  47. Starkschall G, Gordon RG (1972) Calculation of coefficients in the power series expansion of the long range dispersion force between atoms. J Chem Phys 56:2801

    Article  CAS  Google Scholar 

  48. Moellmann J, Grimme S (2010) Importance of London dispersion effects for the packing of molecular crystals: a case study for intramolecular stacking in a bis-thiophene derivative. Phys Chem Chem Phys 12:8500–8504

    Article  CAS  Google Scholar 

  49. Axilrod BM, Teller E (1943) Interaction of the van der Waals type between three atoms. J Chem Phys 11:299

    Article  CAS  Google Scholar 

  50. Ehrlich S, Moellmann J, Grimme S (2013) Dispersion-corrected density functional theory for aromatic interactions in complex systems. Acc Chem Res 46:916–926

    Article  CAS  Google Scholar 

  51. Reckien W, Janetzko F, Peintinger MF, Bredow T (2012) Implementation of empirical dispersion corrections to density functional theory for periodic systems. J Comput Chem 33:2023–2031

    Article  CAS  Google Scholar 

  52. Ahlrichs R, Penco R, Scoles G (1977) Intermolecular forces in simple systems. Chem Phys 19:119–130

    Article  CAS  Google Scholar 

  53. Cohen JS, Pack RT (1974) Modified statistical method for intermolecular potentials. Combining rules for higher van der Waals coefficients. J Chem Phys 61:2372–2382

    Article  CAS  Google Scholar 

  54. Gianturco FA, Paesani F, Laranjeira MF, Vassilenko V, Cunha MA (1999) Intermolecular forces from density functional theory. III. A multiproperty analysis for the Ar(1S)-CO(1) interaction. J Chem Phys 110:7832

    Google Scholar 

  55. Wu Q, Yang W (2002) Empirical correction to density functional theory for van der Waals interactions. J Chem Phys 116:515–524

    Article  CAS  Google Scholar 

  56. Wu X, Vargas MC, Nayak S, Lotrich V, Scoles G (2001) Towards extending the applicability of density functional theory to weakly bound systems. J Chem Phys 115:8748

    Article  CAS  Google Scholar 

  57. Tkatchenko A, Scheffler M (2009) Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett 102:073005

    Article  Google Scholar 

  58. Tkatchenko A, DiStasio RA, Car R, Scheffler M (2012) Accurate and efficient method for many-body van der Waals interactions. Phys Rev Lett 108:236402

    Article  Google Scholar 

  59. Sato T, Nakai H (2009) Density functional method including weak interactions. Dispersion coefficients based on the local response approximation. J Chem Phys 131:224104

    Article  Google Scholar 

  60. Becke AD, Johnson ER (2007) A unified density-functional treatment of dynamical, nondynamical, and dispersion correlations. J Chem Phys 127:124108

    Article  Google Scholar 

  61. Johnson ER, Becke AD (2006) A post-Hartree–Fock model of intermolecular interactions. Inclusion of higher-order corrections. J Chem Phys 124:174,104

    Google Scholar 

  62. Johnson ER, de-la Roza AO (2012) Adsorption of organic molecules on kaolinite from the exchange-hole dipole moment dispersion model. J Chem Theory Comput 8:5124–5131

    Google Scholar 

  63. Kim HJ, Tkatchenko A, Cho JH, Scheffler M (2012) Benzene adsorbed on Si(001). The role of electron correlation and finite temperature. Phys Rev B 85:041403

    Google Scholar 

  64. de-la Roza AO, Johnson ER, Contreras-García J (2012) Revealing non-covalent interactions in solids. NCI plots revisited. Phys Chem Chem Phys 14:12165–12172

    Google Scholar 

  65. Ruiz VG, Liu W, Zojer E, Scheffler M, Tkatchenko A (2012) Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic–organic systems. Phys Rev Lett 108:146103

    Article  Google Scholar 

  66. Chickos JS (2003) Enthalpies of sublimation after a century of measurement. A view as seen through the eyes of a collector. Netsu Sokutei 30:116–124

    CAS  Google Scholar 

  67. Reilly AM, Tkatchenko A (2013) Seamless and accurate modeling of organic molecular materials. J Phys Chem Lett 4:1028–1033

    Article  CAS  Google Scholar 

  68. Bucko T, Hafner J, Lebegue S, Angyan JG (2010) Improved description of the structure of molecular and layered crystals. Ab initio DFT calculations with van der Waals corrections. J Phys Chem A 114(11):814–11824

    Google Scholar 

  69. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mat Sci 6:15–50

    Article  CAS  Google Scholar 

  70. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865, erratum: Phys Rev Lett 78:1369 (1997)

    Google Scholar 

  71. Bl¨ochl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953

    Article  Google Scholar 

  72. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  73. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  74. Grimme S (2013) ANCOPT. Approximate normal coordinate rational function optimization program. Universität Bonn, Bonn

    Google Scholar 

  75. de-la Roza AO, Johnson ER (2013) Many-body dispersion interactions from the exchange-hole dipole moment model. J Chem Phys 138:054103

    Google Scholar 

  76. Reilly AM, Tkatchenko A (2013) Understanding the role of vibrations, exact exchange, and many-body van der Waals interactions in the cohesive properties of molecular crystals. J Chem Phys 139:024705

    Google Scholar 

  77. Grimme S, Steinmetz M (2013) Effects of London dispersion correction in density functional theory on the structures of organic molecules in the gas phase. Phys Chem Chem Phys 15:16031–16042

    Google Scholar 

  78. Hammer B, Hansen LB, Norskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys Rev B 59:7413

    Article  Google Scholar 

  79. Kannemann FO, Becke AD (2010) van der Waals interactions in density-functional theory. Intermolecular complexes. J Chem Theory Comput 6:1081–1088

    Article  CAS  Google Scholar 

  80. de-la Roza AO, Johnson ER (2012) Van der Waals interactions in solids using the exchange-hole dipole moment model. J Chem Phys 136:174109

    Google Scholar 

  81. Sure R, Grimme S (2013) Corrected small basis set Hartree–Fock method for large systems. J Comput Chem 34:1672–1685

    Article  CAS  Google Scholar 

  82. Gritsenko O, Ensing B, Schipper PRT, Baerends EJ (2000) Comparison of the accurate Kohn–Sham solution with the generalized gradient approximations (GGAs) for the SN2 reaction F+CH3F→FCH3+F: a qualitative rule to predict success or failure of GGAs. J Phys Chem A 104:8558–8565

    Article  CAS  Google Scholar 

  83. Zhang Y, Yang W (1998) A challenge for density functionals: self-interaction error increases for systems with a noninteger number of electrons. J Chem Phys 109:2604–2608

    Article  CAS  Google Scholar 

  84. Řezáč J, Riley KE, Hobza P (2011) S66: a well-balanced database of benchmark interaction energies relevant to biomolecular structures. J Chem Theory Comput 7:2427–2438

    Article  Google Scholar 

  85. Weigend F, Furche F, Ahlrichs R (2003) Gaussian basis sets of quadruple zeta valence quality for atoms HKr. J Chem Phys 119:12753

    Article  CAS  Google Scholar 

  86. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn. Design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  87. Dovesi R, Orlando R, Civalleri B, Roetti C, Saunders VR, Zicovich-Wilson CM (2005) CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals. Z Kristallogr 220:571–573

    CAS  Google Scholar 

  88. Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, DArco P, Llunell M (2009) CRYSTAL09 user’s manual. University of Torino, Torino

    Google Scholar 

  89. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  90. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  91. Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Grimme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brandenburg, J.G., Grimme, S. (2013). Dispersion Corrected Hartree–Fock and Density Functional Theory for Organic Crystal Structure Prediction. In: Atahan-Evrenk, S., Aspuru-Guzik, A. (eds) Prediction and Calculation of Crystal Structures. Topics in Current Chemistry, vol 345. Springer, Cham. https://doi.org/10.1007/128_2013_488

Download citation

Publish with us

Policies and ethics