Skip to main content

Supramolecular Organization of Functional Organic Materials in the Bulk and at Organic/Organic Interfaces: A Modeling and Computer Simulation Approach

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 352))

Abstract

The molecular organization of functional organic materials is one of the research areas where the combination of theoretical modeling and experimental determinations is most fruitful. Here we present a brief summary of the simulation approaches used to investigate the inner structure of organic materials with semiconducting behavior, paying special attention to applications in organic photovoltaics and clarifying the often obscure jargon hindering the access of newcomers to the literature of the field. Special attention is paid to the choice of the computational “engine” (Monte Carlo or Molecular Dynamics) used to generate equilibrium configurations of the molecular system under investigation and, more importantly, to the choice of the chemical details in describing the molecular interactions. Recent literature dealing with the simulation of organic semiconductors is critically reviewed in order of increasing complexity of the system studied, from low molecular weight molecules to semiflexible polymers, including the challenging problem of determining the morphology of heterojunctions between two different materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

1D:

One-dimensional

2D:

Two-dimensional

3D:

Three-dimensional

Alq3 :

Tris(8-hydroxyquinolinato) aluminum

BI:

Boltzmann inversion (method)

CF:

Correlation function

CG:

Coarse-grained

CPU:

Central processing unit

DPD:

Dissipative particle dynamics

FF:

Force field

GB:

Gay–Berne (potential)

GPU:

Graphics processing unit

KMC:

Kinetic Monte Carlo (method)

LC:

Liquid crystal

LJ:

Lennard–Jones (potential)

MC:

Monte Carlo (method)

MD:

Molecular dynamics

ODF:

Orientational distribution function

OLED:

Organic light emitting diode

MEH-PPV:

Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene

P3HT:

Poly(3-hexylthiophene-2,5-diyl)

PBTTT:

Poly[2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene]

PCBM:

[6,6]-Phenyl C61 butyric acid methyl ester

PPV:

Poly[phenylene vinylene]

QM:

Quantum mechanics

RDF:

Radial distribution function

RM:

Reverse mapping

SCP:

Semi conducting polymers

T6:

α-Sexithiophene

UA:

United atom (force field)

References

  1. Maddox J (1988) Nature 335:201

    Google Scholar 

  2. Pizzirusso A, Savini M, Muccioli L, Zannoni C (2011) J Mater Chem 21:125

    CAS  Google Scholar 

  3. Pasini P, Zannoni C (2000) Advances in the computer simulations of liquid crystals. NATO ASI Series, kluwer, Dordrecht

    Google Scholar 

  4. Groves C, Greenham NC (2013) Monte Carlo simulations of organic photovoltaics. Top Curr Chem. doi:10.1007/128_2013_467.

    Google Scholar 

  5. Walker A (2013) Monte Carlo studies of electronic processes in dye-sensitized solar cells. Top Curr Chem. doi:10.1007/128_2013_472.

    Google Scholar 

  6. Athanasopoulos S, Emelianova EV, Walker AB, Beljonne D (2009) Phys Rev B 80:195209

    Google Scholar 

  7. Car R, Parrinello M (1985) Phys Rev Lett 55:2471

    CAS  Google Scholar 

  8. Stone AJ (1996) The theory of intermolecular forces, international series of monographs on chemistry, vol 32. Oxford University Press, Oxford

    Google Scholar 

  9. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179

    CAS  Google Scholar 

  10. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157

    CAS  Google Scholar 

  11. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118:11225

    CAS  Google Scholar 

  12. Mackerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) J Phys Chem B 102:3586

    CAS  Google Scholar 

  13. Marcon V, van der Vegt N, Wegner G, Raos G (2006) J Phys Chem B 110:5253

    CAS  Google Scholar 

  14. Sancho-García J, Karpfen A (2009) Chem Phys Lett 473:49

    Google Scholar 

  15. Bhatta RS, Yimer YY, Tsige M, Perry DS (2012) Comput Theor Chem 995:36

    CAS  Google Scholar 

  16. Cheung DL, McMahon DP, Troisi A (2009) J Phys Chem B 113:9393

    CAS  Google Scholar 

  17. Rigby J, Izgorodina EI (2013) Phys Chem Chem Phys 15:1632

    CAS  Google Scholar 

  18. Kramer C, Gedeck P, Meuwly M (2012) J Comput Chem 33:1673

    CAS  Google Scholar 

  19. Wang B, Truhlar DG (2012) J Chem Theory Comput 8:1989

    CAS  Google Scholar 

  20. Berardi R, Muccioli L, Orlandi S, Ricci M, Zannoni C (2004) Chem Phys Lett 389:373

    CAS  Google Scholar 

  21. Lopes P, Roux B, MacKerell AD Jr (2009) Theor Chem Acc 124:11

    CAS  Google Scholar 

  22. Cieplak P, Dupradeau FY, Duan Y, Wang J (2009) J Phys Condens Matter 21:333102

    Google Scholar 

  23. Jiang W, Hardy DJ, Phillips JC, Mackerell AD, Schulten K, Roux B (2011) J Phys Chem Lett 2:87

    CAS  Google Scholar 

  24. Brooks BR, Brooks CL III, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) J Comput Chem 30:1545

    CAS  Google Scholar 

  25. Ponder JW, Wu C, Ren P, Pande VS, Chodera JD, Schnieders MJ, Haque I, Mobley DL, Lambrecht DS, DiStasio RA, Head-Gordon M, Clark GNI, Johnson ME, Head-Gordon T (2010) J Phys Chem B 114:2549

    CAS  Google Scholar 

  26. Wang J, Cieplak P, Li J, Wang J, Cai Q, Hsieh M, Lei H, Luo R, Duan Y (2011) J Phys Chem B 115:3100

    CAS  Google Scholar 

  27. Vorobyov IV, Anisimov VM, Mackerell AD (2005) J Phys Chem B 109:18988

    CAS  Google Scholar 

  28. Lopes PEM, Lamoureux G, Roux B, Mackerell AD (2007) J Phys Chem B 111:2873

    CAS  Google Scholar 

  29. Yang L, Tan C, Hsieh MJ, Wang J, Duan Y, Cieplak P, Caldwell J, Kollman PA, Luo R (2006) J Phys Chem B 110:13166

    CAS  Google Scholar 

  30. von Lilienfeld OA, Andrienko D (2006) J Chem Phys 124:054307

    Google Scholar 

  31. Scott WRP, Hünenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Krüger P, van Gunsteren WF (1999) J Phys Chem A 103:3596

    CAS  Google Scholar 

  32. Keasler SJ, Charan SM, Wick CD, Economou IG, Siepmann JI (2012) J Phys Chem B 116:11234

    CAS  Google Scholar 

  33. Papadopoulos TA, Muccioli L, Athanasopoulos S, Walker AB, Zannoni C, Beljonne D (2011) Chem Sci 2:1025

    CAS  Google Scholar 

  34. Olivier Y, Muccioli L, Lemaur V, Geerts YH, Zannoni C, Cornil J (2009) J Phys Chem B 113:14102

    CAS  Google Scholar 

  35. Sapay N, Tieleman DP (2011) J Comput Chem 32:1400

    CAS  Google Scholar 

  36. Palermo MF, Pizzirusso A, Muccioli L, Zannoni C (2013) J Chem Phys 138:204901

    Google Scholar 

  37. Theodorou DN (2007) Chem Eng Sci 62:5697

    CAS  Google Scholar 

  38. Huang DM, Faller R, Do K, Moule AJ (2010) J Chem Theory Comput 6:526

    CAS  Google Scholar 

  39. Liu DJ, Selinger RLB, Weeks JD (1996) J Chem Phys 105:4751

    CAS  Google Scholar 

  40. Girifalco LA (1992) J Phys Chem 96:858

    CAS  Google Scholar 

  41. Sazonovas A, Orlandi S, Ricci M, Zannoni C, Gorecka E (2006) Chem Phys Lett 430:297

    CAS  Google Scholar 

  42. Kniaz K, Girifalco LA, Fischer JE (1995) J Phys Chem 99:16804

    CAS  Google Scholar 

  43. Girifalco LA, Hodak M, Lee RS (2000) Phys Rev B 62:13104

    CAS  Google Scholar 

  44. Peter C, Kremer K (2010) Faraday Discuss 144:9

    CAS  Google Scholar 

  45. Peter C, Kremer K (2009) Soft Matter 5:4357

    CAS  Google Scholar 

  46. Karimi-Varzaneh HA, Müller-Plathe F (2012) In: Kirchner B, Vrabec J (eds) Multiscale molecular methods in applied chemistry, Topics in current chemistry, vol 307. Springer, Berlin, pp. 295–321

    Google Scholar 

  47. Karimi-Varzaneh HA, van der Vegt NFA, Müller-Plathe F, Carbone P (2012) Chemphyschem 13:3428

    CAS  Google Scholar 

  48. Müller-Plathe F (2002) Chemphyschem 3:754

    Google Scholar 

  49. Takada S (2012) Curr Opin Struct Biol 22:130

    CAS  Google Scholar 

  50. Ayton GS, Lyman E, Voth GA (2010) Faraday Discuss 144:347

    CAS  Google Scholar 

  51. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) J Phys Chem B 111:7812

    CAS  Google Scholar 

  52. Rudzinski JF, Noid WG (2011) J Chem Phys 135:214101

    Google Scholar 

  53. Reith D, Pütz M, Müller-Plathe F (2003) J Comput Chem 24:1624

    CAS  Google Scholar 

  54. Lyubartsev AP, Laaksonen A (1995) Phys Rev E 52:3730

    CAS  Google Scholar 

  55. Wong-Ekkabut J, Baoukina S, Triampo W, Tang IM, Tieleman DP, Monticelli L (2008) Nat Nanotechnol 3:363

    CAS  Google Scholar 

  56. Rossi G, Monticelli L, Puisto SR, Vattulainen I, Ala-Nissila T (2011) Soft Matter 7:698

    CAS  Google Scholar 

  57. Tschöp W, Kremer K, Hahn O, Batoulis J, Bürger T (1998) Acta Polymerica 49:75

    Google Scholar 

  58. Marcon V, Fritz D, van der Vegt NFA (2012) Soft Matter 8:5585

    CAS  Google Scholar 

  59. Fritz D, Herbers CR, Kremer K, van der Vegt NFA (2009) Soft Matter 5:4556

    CAS  Google Scholar 

  60. Fritz D, Koschke K, Harmandaris VA, van der Vegt NFA, Kremer K (2011) Phys Chem Chem Phys 13:10412

    CAS  Google Scholar 

  61. Harmandaris VA, Kremer K (2009) Macromolecules 42(3):791

    CAS  Google Scholar 

  62. Mukherjee B, Delle Site L, Kremer K, Peter C (2012) J Phys Chem B 116:8474

    CAS  Google Scholar 

  63. Huang DM, Moule AJ, Faller R (2011) Fluid Phase Equilibria 302:21

    CAS  Google Scholar 

  64. Gay J, Berne B (1981) J Chem Phys 74:3316

    CAS  Google Scholar 

  65. Lennard-Jones J (1924) Proc R Soc London Ser A 106:463

    Google Scholar 

  66. Zannoni C (2001) J Mater Chem 11:2637

    CAS  Google Scholar 

  67. Emerson A, Luckhurst G, Whatling S (1994) Mol Phys 82:113

    CAS  Google Scholar 

  68. Orlandi S, Muccioli L, Ricci M, Berardi R, Zannoni C (2007) Chem Cent J 1:15

    Google Scholar 

  69. Cleaver D, Care C, Allen M, Neal M (1996) Phys Rev E 54:559

    CAS  Google Scholar 

  70. Berardi R, Fava C, Zannoni C (1998) Chem Phys Lett 297:8

    CAS  Google Scholar 

  71. Fejer SN, Chakrabarti D, Wales DJ (2011) Soft Matter 7:3553

    CAS  Google Scholar 

  72. Berardi R, Orlandi S, Zannoni C (1996) Chem Phys Lett 261:357

    CAS  Google Scholar 

  73. Wilson M (1997) J Chem Phys 107:8654

    CAS  Google Scholar 

  74. Berardi R, Micheletti D, Muccioli L, Ricci M, Zannoni C (2004) J Chem Phys 121:9123

    CAS  Google Scholar 

  75. Stimson L, Wilson M (2005) J Chem Phys 123:034908

    Google Scholar 

  76. Lee CK, Hua CC, Chen SA (2010) J Chem Phys 133:064902

    Google Scholar 

  77. Lee CK, Hua CC, Chen SA (2012) J Chem Phys 136:084901

    Google Scholar 

  78. Wilson M, Stimson L, Ilnytskyi J (2006) Liq Cryst 33:1167

    CAS  Google Scholar 

  79. Skacej G, Zannoni C (2012) PNAS 109:10193

    CAS  Google Scholar 

  80. Orlandi S, Muccioli L, Ricci M, Zannoni C (2009) Soft Matter 5:4484

    CAS  Google Scholar 

  81. Bacchiocchi C, Hennebicq E, Orlandi S, Muccioli L, Beljonne D, Zannoni C (2008) J Phys Chem B 112:1752

    CAS  Google Scholar 

  82. Kremer K, Grest GS (1990) J Chem Phys 92:5057

    CAS  Google Scholar 

  83. Everaers R, Sukumaran SK, Grest GS, Svaneborg C, Sivasubramanian A, Kremer K (2004) Science 303:823

    CAS  Google Scholar 

  84. Hoogerbrugge P, Koelman J (1992) Europhys Lett 19:155

    Google Scholar 

  85. Groot RD, Madden TJ, Tildesley DJ (1999) J Chem Phys 110:9739

    CAS  Google Scholar 

  86. Martinez-Veracoechea FJ, Escobedo FA (2006) J Chem Phys 125:104907/1

    CAS  Google Scholar 

  87. Huang HK, Lin CH (2008) Phys Rev E 77:031804/1

    CAS  Google Scholar 

  88. Pal S, Seidel C (2006) Macromol Theor Simul 15:668

    CAS  Google Scholar 

  89. Espanol P (1995) Phys Rev E 52:1734

    CAS  Google Scholar 

  90. Espanol P, Warren P (1995) Europhys Lett 30:191

    CAS  Google Scholar 

  91. Groot R, Warren P (1997) J Chem Phys 107:4423

    CAS  Google Scholar 

  92. Chen S, Phan-Thien N, Fan XJ, Khoo B (2004) J Nonnewton Fluid Mech 118:65

    CAS  Google Scholar 

  93. Cheung DL, Troisi A (2009) Phys Chem Chem Phys 11:2105

    CAS  Google Scholar 

  94. Lintuvuori JS, Wilson MR (2009) Phys Chem Chem Phys 11:2116

    CAS  Google Scholar 

  95. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, Oxford

    Google Scholar 

  96. Frenkel D, Smit B (2001) Understanding molecular simulations, 2nd edn. Academic, San Diego

    Google Scholar 

  97. Voter AF, Montalenti F, Germann TC (2002) Annu Rev Mater Res 32:321

    CAS  Google Scholar 

  98. Theodorou DN (2010) Ind Eng Chem Res 49:3047

    CAS  Google Scholar 

  99. Chipot C, Pohorille A (2007) Free energy calculations: theory and applications in chemistry and biology, Springer series in chemical physics. Springer–Verlag, Berlin Heidelberg

    Google Scholar 

  100. Christ CD, Mark AE, van Gunsteren WF (2010) J Comput Chem 31:1569

    CAS  Google Scholar 

  101. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) J Chem Phys 21:1087

    CAS  Google Scholar 

  102. Alder BJ, Wainwright TE (1959) J Chem Phys 31:459

    CAS  Google Scholar 

  103. Knuth D (1998) Seminumerical algorithms. Addison–Wesley

    Google Scholar 

  104. Van Kampen N (1992) Stochastic processes in physics and chemistry. North-Holland Personal Library, Elsevier Science, Amsterdam

    Google Scholar 

  105. Chatterjee A, Vlachos DG (2007) J Comp Mater Design 14:253

    Google Scholar 

  106. Gillespie DT (2007) Ann Rev Phys Chem 58:35

    CAS  Google Scholar 

  107. Kamberaj H, Low RJ, Neal MP (2005) J Chem Phys 122:224114

    CAS  Google Scholar 

  108. Altmann SL (2005) Rotations, quaternions, and double groups. Dover, New York

    Google Scholar 

  109. Berardi R, Muccioli L, Zannoni C (2008) J Chem Phys 128:024905

    Google Scholar 

  110. Hünenberger PH (2005) In: Holm C, Kremer K (eds) Advanced computer simulation approaches for soft matter sciences I—series: advances in polymer science, vol 173. Springer, chap. 2, pp 105–149. http://link.springer.com/chapter/10.1007/b99427

  111. Kirkpatrick J, Marcon V, Kremer K, Nelson J, Andrienko D (2008) J Chem Phys 129:094506

    Google Scholar 

  112. Poelking C, Cho E, Malafeev A, Ivanov V, Kremer K, Risko C, Brédas JL, Andrienko D (2013) J Chem Phys C 117:1633

    CAS  Google Scholar 

  113. Cinacchi G, Colle R, Tani A (2004) J Phys Chem B 108:7969

    CAS  Google Scholar 

  114. Andrienko D, Marcon V, Kremer K (2006) J Chem Phys 125:124902

    Google Scholar 

  115. Zannoni C (1994) In: Luckhurst G, Veracini C (eds) The molecular dynamics of liquid crystals. Kluwer, Dordrecht, Chap. 2, pp 11–36

    Google Scholar 

  116. Pizzirusso A, Berardi R, Muccioli L, Ricci M, Zannoni C (2012) Chem Sci 3:573

    CAS  Google Scholar 

  117. Roscioni OM, Muccioli L, Della Valle RG, Pizzirusso A, Ricci M, Zannoni C (2013) Langmuir 23:8950

    Google Scholar 

  118. Marconi UMB, Puglisi A, Rondoni L, Vulpiani A (2008) Phys Rep 461:111

    Google Scholar 

  119. Muccioli L, D’Avino G, Zannoni C (2011) Adv Mat 23:4532

    CAS  Google Scholar 

  120. De Leener C, Hennebicq E, Sancho-Garcia JC, Beljonne D (2009) J Phys Chem B 113:1311

    Google Scholar 

  121. D’Avino G, Mothy S, Muccioli L, Zannoni C, Wang L, Cornil J, Beljonne D, Castet F (2013) J Phys Chem C 117:12981

    Google Scholar 

  122. Cantrell R, Clancy P (2008) Surf Sci 602:3499

    CAS  Google Scholar 

  123. Cantrell RA, James C, Clancy P (2011) Langmuir 27:9944

    CAS  Google Scholar 

  124. O’Neill M, Kelly SM (2011) Adv Mater 23:566

    Google Scholar 

  125. Bardwell DA, Adjiman CS, Arnautova YA, Bartashevich E, Boerrigter SXM, Braun DE, Cruz-Cabeza AJ, Day GM, Della Valle RG, Desiraju GR, van Eijck BP, Facelli JC, Ferraro MB, Grillo D, Habgood M, Hofmann DWM, Hofmann F, Jose KVJ, Karamertzanis PG, Kazantsev AV, Kendrick J, Kuleshova LN, Leusen FJJ, Maleev AV, Misquitta AJ, Mohamed S, Needs RJ, Neumann MA, Nikylov D, Orendt AM, Pal R, Pantelides CC, Pickard CJ, Price LS, Price SL, Scheraga HA, van de Streek J, Thakur TS, Tiwari S, Venuti E, Zhitkov IK (2011) Acta Crystallogr B 67:535

    CAS  Google Scholar 

  126. Anwar J, Zahn D (2011) Angew Chem Int Ed 50:1996

    CAS  Google Scholar 

  127. Martinelli NG, Savini M, Muccioli L, Olivier Y, Castet F, Zannoni C, Beljonne D, Cornil J (2009) Adv Funct Mater 19:3254

    CAS  Google Scholar 

  128. Troisi A, Orlandi G (2006) J Phys Chem A 110:4065

    CAS  Google Scholar 

  129. Motta SD, Donato ED, Negri F, Orlandi G, Fazzi D, Castiglioni C (2009) JACS 131:6591

    Google Scholar 

  130. Wang L, Li Q, Shuai Z, Chen L, Shi Q (2010) Phys Chem Chem Phys 12:3309

    CAS  Google Scholar 

  131. Troisi A (2007) Adv Mater 19:2000

    CAS  Google Scholar 

  132. Martinelli NG, Ide J, Sanchez-Carrera RS, Coropceanu V, Bredas JL, Ducasse L, Castet F, Cornil J, Beljonne D (2010) J Phys Chem C 114:20678

    CAS  Google Scholar 

  133. Martinelli NG, Olivier Y, Athanasopoulos S, Delgado MCR, Pigg KR, da Silva Filho DA, Sanchez-Carrera RS, Venuti E, Valle RGD, Bredas JL, Beljonne D, Cornil J (2009) Chemphyschem 10:2265

    CAS  Google Scholar 

  134. Motta SD, Siracusa M, Negri F (2011) J Phys Chem C 115:20754

    Google Scholar 

  135. Schrader M, Fitzner R, Hein M, Elschner C, Baumeier B, Leo K, Riede M, Bäuerle P, Andrienko D (2012) J Am Chem Soc 134:6052

    CAS  Google Scholar 

  136. Vehoff T, Chung YS, Johnston K, Troisi A, Yoon DY, Andrienko D (2010) J Phys Chem C 114:10592

    CAS  Google Scholar 

  137. Vehoff T, Baumeier B, Troisi A, Andrienko D (2010) J Am Chem Soc 132:11702

    CAS  Google Scholar 

  138. Chang J, Sandler SI (2006) J Chem Phys 125:054705

    Google Scholar 

  139. Cheung DL, Troisi A (2010) J Phys Chem C 114:20479

    CAS  Google Scholar 

  140. Frigerio F, Casalegno M, Carbonera C, Nicolini T, Meille SV, Raos G (2012) J Mater Chem 22:5434

    CAS  Google Scholar 

  141. May F, Al-Helwi M, Baumeier B, Kowalsky W, Fuchs E, Lennartz C, Andrienko D (2012) J Am Chem Soc 134:13818

    CAS  Google Scholar 

  142. Kwiatkowski JJ, Nelson J, Li H, Bredas JL, Wenzel W, Lennartz C (2008) Phys Chem Chem Phys 10:1852

    CAS  Google Scholar 

  143. Nagata Y, Lennartz C (2008) J Chem Phys 129:034709

    Google Scholar 

  144. Lukyanov A, Lennartz C, Andrienko D (2009) Phys Status Solidi A 206:2737

    CAS  Google Scholar 

  145. Schrader M, Körner C, Elschner C, Andrienko D (2012) J Mater Chem 22:22258

    CAS  Google Scholar 

  146. Tiberio G, Muccioli L, Berardi R, Zannoni C (2009) Chem Phys Chem 10:125

    CAS  Google Scholar 

  147. Tant J, Geerts YH, Lehmann M, De Cupere V, Zucchi G, Laursen BW, Bjornholm T, Lemaur V, Marcq V, Burquel A, Hennebicq E, Gardebien F, Viville P, Beljonne D, Lazzaroni R, Cornil J (2005) J Phys Chem B 109:20315

    CAS  Google Scholar 

  148. Marcon V, Breiby DW, Pisula W, Dahl J, Kirkpatrick J, Patwardhan S, Grozema F, Andrienko D (2009) J Am Chem Soc 131:11426

    CAS  Google Scholar 

  149. Lemaur V, Bouzakraoui S, Olivier Y, Brocorens P, Burhin C, El Beghdadi J, Martin-Hoyas A, Jonas AM, Serban DA, Vlad A, Boucher N, Leroy J, Sferrazza M, Mouthuy PO, Melinte S, Sergeev S, Geerts Y, Lazzaroni R, Cornil J, Nysten B (2010) J Phys Chem C 114:4617

    CAS  Google Scholar 

  150. May F, Marcon V, Hansen MR, Grozema F, Andrienko D (2011) J Mater Chem 21:9538

    CAS  Google Scholar 

  151. Marcon V, Vehoff T, Kirkpatrick J, Jeong C, Yoon DY, Kremer K, Andrienko D (2008) J Chem Phys 129:094505

    Google Scholar 

  152. Feng X, Marcon V, Pisula W, Hansen MR, Kirkpatrick J, Grozema F, Andrienko D, Kremer K, Müllen K (2009) Nat Mater 8:1476

    Google Scholar 

  153. Idé J, Mereau R, Ducasse L, Castet F, Olivier Y, Martinelli N, Cornil J, Beljonne D (2011) J Phys Chem B 115:5593

    Google Scholar 

  154. Lamarra M, Muccioli L, Orlandi S, Zannoni C (2012) Phys Chem Chem Phys 14:5368

    CAS  Google Scholar 

  155. Doi M, Edwards S (1988) The theory of polymer dynamics. Oxford science publications. Oxford University Press

    Google Scholar 

  156. McMahon DP, Troisi A (2010) Chemphyschem 11:2067

    CAS  Google Scholar 

  157. Topham PD, Parnell AJ, Hiorns RC (2011) J Polym Sci Part B Polym Phys 49:1131

    CAS  Google Scholar 

  158. Yassar A, Miozzo L, Gironda R, Horowitz G (2013) Prog Polym Sci 38:791

    CAS  Google Scholar 

  159. Bates FS, Hillmyer MA, Lodge TP, Bates CM, Delaney KT, Fredrickson GH (2012) Science 336:434

    CAS  Google Scholar 

  160. Ramanathan M, Darling SB (2011) Prog Polym Sci 36:793

    CAS  Google Scholar 

  161. Micheletti D, Muccioli L, Berardi R, Ricci M, Zannoni C (2005) J Chem Phys 123:224705

    Google Scholar 

  162. Yung KL, He L, Xu Y, Shen YW (2005) Polymer 46:11881

    CAS  Google Scholar 

  163. Berardi R, Lintuvuori JS, Wilson MR, Zannoni C (2011) J Chem Phys 135:134119

    Google Scholar 

  164. Makke A, Lame O, Perez M, Barrat JL (2012) Macromolecules 45:8445

    CAS  Google Scholar 

  165. Arosio P, Moreno M, Famulari A, Raos G, Catellani M, Meille SV (2009) Chem Mater 21:78

    CAS  Google Scholar 

  166. Moreno M, Casalegno M, Raos G, Meille SV, Po R (2010) J Phys Chem B 114:1591

    CAS  Google Scholar 

  167. Niedzialek D, Lemaur V, Dudenko D, Shu J, Hansen MR, Andreasen JW, Pisula W, Müllen K, Cornil J, Beljonne D (2013) Adv Mater 25:1939

    CAS  Google Scholar 

  168. DuBay KH, Hall ML, Hughes TF, Wu C, Reichman DR, Friesner RA (2012) J Chem Theory Comput 8:4556

    CAS  Google Scholar 

  169. Arbe A, Alvarez F, Colmenero J (2012) Soft Matter 8:8257

    CAS  Google Scholar 

  170. Rivnay J, Mannsfeld SCB, Miller CE, Salleo A, Toney MF (2012) Chem Rev 112:5488

    CAS  Google Scholar 

  171. Brocorens P, Van Vooren A, Chabinyc ML, Toney MF, Shkunov M, Heeney M, McCulloch I, Cornil J, Lazzaroni R (2009) Adv Mat 21:1193

    CAS  Google Scholar 

  172. Cho E, Risko C, Kim D, Gysel R, Cates Miller N, Breiby DW, McGehee MD, Toney MF, Kline RJ, Bredas JL (2012) J Am Chem Soc 134:6177

    CAS  Google Scholar 

  173. Ren XK, Wu YC, Wang SJ, Jiang SD, Zheng JF, Yang S, Chen EQ, Wang CL, Hsu CS (2013) Macromolecules 46:155

    CAS  Google Scholar 

  174. Fonner JM, Schmidt CE, Ren P (2010) Polymer 51:4985

    CAS  Google Scholar 

  175. Granadino-Roldan J, Vukmirovic N, Fernandez-Gomez M, Wang LW (2011) Phys Chem Chem Phys 13:14501

    Google Scholar 

  176. Curcó D, Alemán C (2007) J Comput Chem 28:1743

    Google Scholar 

  177. Kilina S, Batista ER, Yang P, Tretiak S, Saxena A, Martin RL, Smith DL (2008) ACS Nano 2:1381

    CAS  Google Scholar 

  178. Jakobsson M, Linares M, Stafstrom S (2012) J Chem Phys 137:114901

    Google Scholar 

  179. Do K, Huang DM, Faller R, Moule AJ (2010) Phys Chem Chem Phys 12:14735

    CAS  Google Scholar 

  180. Vehoff T, Baumeier B, Andrienko D (2010) J Chem Phys 133:134901

    Google Scholar 

  181. Shaytan AK, Schillinger EK, Khalatur PG, Mena-Osteritz E, Hentschel J, Börner HG, Bäuerle P, Khokhlov AR (2011) ACS Nano 5:6894

    CAS  Google Scholar 

  182. Melis C, Colombo L, Mattoni A (2011) J Chem Phys C 115:576

    CAS  Google Scholar 

  183. Dag S, Wang LW (2010) J Phys Chem B 114:5997

    CAS  Google Scholar 

  184. Buono A, Son NH, Raos G, Gila L, Cominetti A, Catellani M, Meille SV (2010) Macromolecules 43:6772

    CAS  Google Scholar 

  185. Alexiadis O, Mavrantzas VG (2013) Macromolecules 46:2450

    CAS  Google Scholar 

  186. McMahon DP, Cheung DL, Goris L, na Javier D, Salleo A, Troisi A (2011) J Chem Phys C 115:19386

    CAS  Google Scholar 

  187. Lee CK, Hua CC, Chen SA (2008) J Phys Chem B 112:11479

    CAS  Google Scholar 

  188. Lee CK, Hua CC, Chen SA (2011) Macromolecules 44:320

    Google Scholar 

  189. Chiu M, Kee TW, Huang DM (2012) Aust J Chem 65:463

    CAS  Google Scholar 

  190. Lukyanov A, Malafeev A, Ivanov V, Chen HL, Kremer K, Andrienko D (2010) J Mater Chem 20:10475

    CAS  Google Scholar 

  191. Lee CK, Pao CW, Chu CW (2011) Energy Environ Sci 4:4124

    CAS  Google Scholar 

  192. Lee CK, Pao CW (2012) J Chem Phys C 116:12455

    CAS  Google Scholar 

  193. Beljonne D, Cornil J, Muccioli L, Zannoni C, Brédas JL, Castet F (2011) Chem Mater 23:591

    CAS  Google Scholar 

  194. Tsige M, Grest GS (2005) J Phys Condens Matter 17:S4119

    CAS  Google Scholar 

  195. Yimer YY, Dhinojwala A, Tsige M (2012) J Chem Phys 137:044703

    Google Scholar 

  196. Marsh HS, Jayaraman A (2013) J Polym Sci Part B Polym Phys 51:64

    CAS  Google Scholar 

  197. Verlaak S, Beljonne D, Cheyns D, Rolin C, Linares M, Castet F, Cornil J, Heremans P (2009) Adv Funct Mater 19:3809

    CAS  Google Scholar 

  198. Meredig B, Salleo A, Gee R (2009) ACS Nano 3:2881

    CAS  Google Scholar 

  199. Poschlad A, Meded V, Maul R, Wenzel W (2012) Nanoscale Res Lett 7:1

    Google Scholar 

  200. Liu T, Cheung DL, Troisi A (2011) Phys Chem Chem Phys 13:21461

    CAS  Google Scholar 

  201. McMahon DP, Cheung DL, Troisi A (2011) J Phys Chem Lett 2:2737

    CAS  Google Scholar 

  202. Marcon V, Raos G (2006) J Am Chem Soc 128:1408

    CAS  Google Scholar 

  203. Yost SR, Wang LP, Van Voorhis T (2011) J Chem Phys C 115:14431

    CAS  Google Scholar 

  204. Reddy SY, Kuppa VK (2012) J Chem Phys C 116:14873

    CAS  Google Scholar 

  205. Reddy SY, Kuppa VK (2012) Synth Met 162:2117

    CAS  Google Scholar 

  206. Mou W, Ohmura S, Hattori S, Nomura K, Shimojo F, Nakano A (2012) J Chem Phys 136:184705

    Google Scholar 

  207. Hattori S, Mou W, Rajak P, Shimojo F, Nakano A (2013) Appl Phys Lett 102:093302

    Google Scholar 

  208. Fu YT, Risko C, Brédas JL (2013) Adv Mater 25:878

    CAS  Google Scholar 

  209. Clancy P (2011) Chem Mater 23:522

    CAS  Google Scholar 

  210. Verlaak S, Rolin C, Heremans P (2007) J Phys Chem B 111:139

    CAS  Google Scholar 

  211. Liu H, Lin Z, Zhigilei LV, Reinke P (2008) J Chem Phys C 112:4687

    CAS  Google Scholar 

  212. Cantrell RA, Clancy P (2012) J Chem Theory Comput 8:1048

    CAS  Google Scholar 

  213. Goose JE, First EL, Clancy P (2010) Phys Rev B 81:205310

    Google Scholar 

  214. Goose JE, Clancy P (2007) J Chem Phys C 111:15653

    CAS  Google Scholar 

  215. Goose JE, Killampalli A, Clancy P, Engstrom JR (2009) J Phys Chem C 113:6068

    CAS  Google Scholar 

  216. Tuckerman M, Berne BJ, Martyna GJ (1992) J Chem Phys 97:1990

    CAS  Google Scholar 

  217. Ryckaert J, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327

    CAS  Google Scholar 

  218. Harvey M, Frabritiis GD (2009) J Chem Theory Comput 5:2371

    CAS  Google Scholar 

  219. Case D, Darden T, Cheatham T III, Simmerling C, Wang J, Duke R, Luo R, Walker R, Zhang W, Merz K, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Goetz A, Kolossvry I, Wong K, Paesani F, Vanicek J, Wolf R, Liu J, Wu X, Brozell S, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, Roe D, Mathews D, Seetin M, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman P. Amber 12. http://ambermd.org. University of California, San Francisco

  220. Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE (2006) In: Proceedings of the 2006 ACM/IEEE conference on Supercomputing, SC’06. ACM, New York

    Google Scholar 

  221. Smith Y (2002) Mol Sim 28:385

    CAS  Google Scholar 

  222. Limbach H, Arnold A, Mann B, Holm C (2006) Comput Phys Comm 174:704

    CAS  Google Scholar 

  223. Berendsen HJC, van der Spoel D, van Drunen R (1995) Comput Phys Commun 91:43

    CAS  Google Scholar 

  224. Morozov I, Kazennov A, Bystryi R, Norman G, Pisarev V, Stegailov V (2011) Comput Phys Commun 182:1974

    CAS  Google Scholar 

  225. Plimpton S (1995) J Comput Phys 117:1

    CAS  Google Scholar 

  226. Accelrys Software Inc. (2013) Material studio, release 6.1. Accelrys Software Inc., San Diego

    Google Scholar 

  227. Phillips J, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R, Kale L, Schulten K (2005) J Comput Chem 26:1781

    CAS  Google Scholar 

  228. Eastman P, Friedrichs MS, Chodera JD, Radmer RJ, Bruns CM, Ku JP, Beauchamp KA, Lane TJ, Wang LP, Shukla D, Tye T, Houston M, Stich T, Klein C, Shirts MR, Pande VS (2013) J Chem Theory Comput 9:461

    CAS  Google Scholar 

  229. Matthey T, Cickovski T, Hampton SS, Ko A, Ma Q, Nyerges M, Raeder T, Slabach T, Izaguirre JA (2004) ACM Trans Math Softw 30:237

    Google Scholar 

  230. Rühle V, Junghans C, Lukyanov A, Kremer K, Andrienko D (2009) J Chem Theory Comput 5:3211

    Google Scholar 

  231. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) J Chem Theory Comput 4:435

    CAS  Google Scholar 

  232. Vmd – visual molecular dynamics. www.ks.uiuc.edu/Research/vmd

  233. Humphrey W, Dalke A, Schulten K (1996) J Mol Graphics 14:33

    CAS  Google Scholar 

  234. Eargle J, Wright D, Luthey-Schulten Z (2006) Bioinformatics 22:504

    CAS  Google Scholar 

  235. Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org

  236. Mercury-crystal structure visualisation, exploration and analysis made easy. http://www.ccdc.cam.ac.uk/products/mercury/

  237. GDIS, a program for the display and manipulation of isolated molecules and periodic systems. http://gdis.sourceforge.net/

  238. Avogadro: an open-source molecular builder and visualization tool. http://avogadro.openmolecules.net

  239. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) J Chem Inf 4:17

    CAS  Google Scholar 

  240. OVITO – the open visualization tool. http://www.ovito.org

  241. Stukowski A (2010) Model Simul Mater Sci Eng 18:015012

    Google Scholar 

  242. Schrödinger LLC (2013) The PyMOL molecular graphics system, version 1.5.0.4. http://pymol.org/

  243. Varetto U Molekel molecular visualization. http://molekel.cscs.ch. Swiss National Supercomputing Centre, Lugano

  244. Sayle R, Milner-White EJ (1995) Trends Biochem Sci 20:374

    CAS  Google Scholar 

  245. Fox wiki. http://vincefn.net/Fox/

  246. Favre-Nicolin V, Cerny R (2007) Z Kristallogr 222:105

    Google Scholar 

  247. QMGA: Qt-based molecular graphics application. www.qmga.sourceforge.net

  248. Gabriel AT, Meyer T, Germano G (2008) J Chem Theory Comput 4:468

    CAS  Google Scholar 

  249. UCSF Chimera package. http://www.cgl.ucsf.edu/chimera

  250. Pettersen E, Goddard T, Huang C, Couch G, Greenblatt D, Meng E, Ferrin T (2004) J Comput Chem 25:1605

    CAS  Google Scholar 

  251. BALLView – the BALL website. www.ballview.org/

  252. Moll A, Hildebrandt A, Lenhof H, Kohlbacher O (2006) Bioinformatics 22:365

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Zannoni .

Editor information

Editors and Affiliations

Appendix: Simulation Packages

Appendix: Simulation Packages

This Appendix is intended to serve as an overview of the more common computer simulation packages suitable for molecular simulation studies of organic materials. Actually the landscape of available packages is essentially dominated by MD-based codes. In fact, MC and KMC codes are commonly developed in-house by researchers to handle specific problems requiring ad hoc sampling algorithms, and hence have a much less wide user base than MD ones. In contrast, many computer codes are available to the end-user willing to carry out MD simulations. Some of them come with an extensive support including manuals, tutorials, and online discussion boards such as forums and mailing lists. Here we report a selection of packages which are suitable for simulating large systems of organic molecules and which are used by a large community of users. This is of course not a measure of the quality of the program, but rather it ensures that a large body of published works are available as reference, therefore constituting a valuable starting point for those approaching the field of MD for the first time. Moreover, the more popular codes are continuously maintained and updated, an important aspect to take into account as machine architectures change very often. It is worth noting that while the standard packages provide MD trajectories (as sequences of instantaneous configurations), the calculation of many observables of interest have to be specifically added by the end-user and suitable algorithms often have to be devised. The available MD packages are characterized by various factors:

  1. 1.

    Features and capabilities, e.g., multiple-timestep integration algorithms [96, 216], physical representation of simulated objects (coarse-grained or all-atoms), constrained dynamics (e.g., SHAKE [217]) with many codes allowing for multiple options.

  2. 2.

    License and cost, i.e., free-academic, open source, commercial.

  3. 3.

    Portability, i.e., the code can easily be compiled and run on many platforms, from common (e.g., computer desktops) to specialized hardware (e.g., IBM’s BlueGene).

  4. 4.

    Performance and parallelization, i.e., the ability to run faster and simulate bigger systems by splitting work among multiple processors. Nowadays support of GPU boards is widely available and allows the deployment of graphics cards alongside traditional CPUs.

  5. 5.

    Extensibility of the code in order to tailor specific problems or to implement new force-fields/simulation algorithms/computation of observables, which were not available in the original code.

The choice of a particular MD package depends on the first instance on the system being studied, particularly on the model used to describe the interactions between the particles and on its scalability (i.e., the computational efficiency as the number of processing units increases), which can be a limiting factor when the system size exceed tens or even hundreds of thousands of particles. A necessarily partial list of computer programs to carry out MD simulations is reported in Table 1.

Table 1 Partial list of MD simulation packages

Two well-established computer programs for MD simulations are CHARMM [24] and AMBER [219], which implement a similar functional form of the atomistic force field and include a large number of tools for setting up the files required to run an MD simulation.

NAMD [227] is a more recent program which works with AMBER and CHARMM potential functions, parameters, and file formats, and it is specifically designed for high-performance simulation of large systems. The current version (2.9) is able to run on heterogeneous architectures made up of multiple CPUs and GPUs.

LAMMPS [225] is a classical MD program implementing potentials for soft materials (biomolecules, polymers), solid-state materials (metals, semiconductors), and coarse-grained or mesoscopic systems. The code is designed to be easy to modify or extend with new functionalities. The comprehensive manual compensates for the somewhat clumsy input script syntax. Most of its model potentials have been parallelized and run on systems with multiple CPUs and GPUs, granting very good speedups, especially for the most complicated pair potential styles, like the Gay–Berne and other CG potentials.

GROMACS [231] is conceived to carry out simulations with millions of particles. The syntax of input files is user-friendly and a major advantage is that the program comes with a large selection of tools for trajectory analysis. In version 4.5 only single GPU support is present, but from version 4.6 multiple GPUs will also be enabled.

The output of an MD simulation typically includes a trajectory file containing the position of every particle, saved with a given time increment. Trajectory files can be visualized with specific programs such as VMD [232234], which also offers basic tools for data analysis, Jmol [235], a powerful and highly portable program written in Java, Mercury [236], and GDIS [237], two programs particularly well suited to visualize and manipulate crystal structures, and Avogadro [238, 239], which offers advanced molecular modeling tools. Among the other visualizers available, we mention OVITO [240, 241], PyMOL [242], Molekel [243], V_Sim (http://www-drfmc.cea.fr/L_Sim/V_Sim/index.en.html), Ras-Mol [(http://rasmol.org/), 244], FOX [245, 246], QMGA [247, 248], UCSF Chimera [249, 250], and BALLView [251, 252].

The vast choice of available packages might be a bit intimidating at first, so here are listed some of our (objectionable) views on the key issues. Given the high quality of many open source packages, they are probably to be preferred over commercial ones with closed sources, both for their plentiful features (as everybody can contribute to further development) and because the sources can be directly inspected to check how algorithms are implemented and can be customized to suit particular needs. As many algorithms work well only under specific conditions and many compromises are usually made, this is in some cases the most reliable way to check the validity of the simulation results.

As long as small samples and/or short timescales are needed and the package provides the required features, it really does not matter which code is used, and the one easier to run is to be preferred. If instead the problem at hand requires what can be accomplished currently to be pushed to the limits, a well optimized code becomes the only choice. Given the typical speedups of GPU systems, codes able to run on heterogeneous architectures (mixed CPU/GPU) environments are the best performers. Note: most of the codes running today on GPU use CUDA (http://www.nvidia.com/object/cuda_home_new.html) instead of OpenCL (http://www.khronos.org/opencl), which means they will run only on NVidia cards.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Muccioli, L. et al. (2013). Supramolecular Organization of Functional Organic Materials in the Bulk and at Organic/Organic Interfaces: A Modeling and Computer Simulation Approach. In: Beljonne, D., Cornil, J. (eds) Multiscale Modelling of Organic and Hybrid Photovoltaics. Topics in Current Chemistry, vol 352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2013_470

Download citation

Publish with us

Policies and ethics