Skip to main content

UDP-GlcNAc 2-Epimerase/ManNAc Kinase (GNE): A Master Regulator of Sialic Acid Synthesis

  • Chapter
  • First Online:
SialoGlyco Chemistry and Biology I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 366))

Abstract

UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase is the key enzyme of sialic acid biosynthesis in vertebrates. It catalyzes the first two steps of the cytosolic formation of CMP-N-acetylneuraminic acid from UDP-N-acetylglucosamine. In this review we give an overview of structure, biochemistry, and genetics of the bifunctional enzyme and its complex regulation. Furthermore, we will focus on diseases related to UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADP:

Adenosine diphosphate

ATP:

Adenosine triphosphate

AT2R:

Angiotensin 2 receptor

bp:

Basepairs

CHO:

Chinese hamster ovary

CMP:

Cytidine monophosphate

CRMP1:

Collapsin response mediator protein 1

DMRV:

Distal myopathy with rimmed vacuoles

ES cell:

Embryonic stem cell

GalNAc:

N-Acetylgalactosamine

GlcNAc:

N-Acetylglucosamine

GNE:

UDP-GlcNAc 2-epimerase/ManNAc kinase

HEK:

Human epithelial kidney

HIBM:

Hereditary inclusion body myopathy

IBM2:

Inclusion body myopathy 2

kDa:

Kilodaltons

ManNAc:

N-Acetylmannosamine

ManNGc:

N-Glycolylmannosamine

MRI:

Magnetic resonance imaging

NCAM:

Neural cell adhesion molecule

Neu5Ac:

N-Acetylneuraminic acid

Neu5Gc:

N-Glycolylneuraminic acid

PEP:

Phosphoenolpyruvate

PKC:

Protein kinase C

PLZF:

Promyelocytic leukemia zinc finger protein

PTM:

Posttranslational modification

RIF1:

Receptor interacting factor 1

ROK family:

Repressor/open reading frame/kinase protein family

SPR:

Surface plasmon resonance

STD-NMR:

Saturation-transfer difference – nuclear magnetic resonance spectroscopy

TUC family:

Toad-64/Ulip/CRMP protein family

UDP:

Uridine diphosphate

References

  1. Vimr ER, Kalivoda KA, Deszo EL, Steenbergen SM (2004) Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev 68:132–153

    CAS  Google Scholar 

  2. Luchansky SJ, Yarema KJ, Takahashi S, Bertozzi CR (2003) GlcNAc 2-epimerase can serve a catabolic role in sialic acid metabolism. J Biol Chem 278:8035–8042

    CAS  Google Scholar 

  3. Hinderlich S, Berger M, Keppler OT, Pawlita M, Reutter W (2001) Biosynthesis of N-acetylneuraminic acid in cells lacking UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. Biol Chem 382:291–297

    CAS  Google Scholar 

  4. Schauer R, Wember M (1996) Isolation and characterization of sialate lyase from pig kidney. Biol Chem Hoppe Seyler 377:293–299

    CAS  Google Scholar 

  5. Roseman S, Jourdian GW, Watson D, Rood R (1961) Enzymatic synthesis of sialic acid 9-phosphates. Proc Natl Acad Sci U S A 47:958–961

    CAS  Google Scholar 

  6. Maliekal P, Vertommen D, Delpierre G, Van Schaftingen E (2006) Identification of the sequence encoding N-acetylneuraminate-9-phosphate phosphatase. Glycobiology 16:165–172

    CAS  Google Scholar 

  7. Münster-Kühnel AK, Tiralongo J, Krapp S, Weinhold B, Ritz-Sedlacek V, Jacob U, Gerardy-Schahn R (2004) Structure and function of vertebrate CMP-sialic acid synthetases. Glycobiology 14:43R–51R

    Google Scholar 

  8. Gerardy-Schahn R, Oelmann S, Bakker H (2001) Nucleotide sugar transporters: biological and functional aspects. Biochimie 83:775–782

    CAS  Google Scholar 

  9. Sagne C, Gasnier B (2008) Molecular physiology and pathophysiology of lysosomal membrane transporters. J Inherit Metab Dis 15:15

    Google Scholar 

  10. Kean EL (1991) Sialic acid activation. Glycobiology 1:441–447

    CAS  Google Scholar 

  11. Hinderlich S, Stäsche R, Zeitler R, Reutter W (1997) A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Purification and characterization of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. J Biol Chem 272:24313–24318

    CAS  Google Scholar 

  12. Stäsche R, Hinderlich S, Weise C, Effertz K, Lucka L, Moormann P, Reutter W (1997) A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Molecular cloning and functional expression of UDP-N-acetyl-glucosamine 2-epimerase/N-acetylmannosamine kinase. J Biol Chem 272:24319–24324

    Google Scholar 

  13. Cardini CE, Leloir LF (1957) Enzymatic formation of acetylgalactosamine. J Biol Chem 225:317–324

    CAS  Google Scholar 

  14. Comb DG, Roseman S (1958) Enzymatic synthesis of N-acetyl-d-mannosamine. Biochim Biophys Acta 29:653–654

    CAS  Google Scholar 

  15. Gosh S, Roseman S (1961) Enzymatic phosphorylation of N-acetyl-d-mannosamine. Proc Natl Acad Sci U S A 47:955–958

    Google Scholar 

  16. Warren L, Felsenfeld H (1961) N-Acetylmannosamine-6-phosphate and N-acetylneuraminic acid-9-phosphate as intermediates in sialic acid biosynthesis. Biochem Biophys Res Commun 5:185–190

    CAS  Google Scholar 

  17. Spivak CT, Roseman S (1966) UDP-N-acetyl-d-glucosamine 2′-epimerase. Methods Enzymol 9:612–615

    CAS  Google Scholar 

  18. Sommar KM, Ellis DB (1972) Uridine diphosphate N-acetyl-d-glucosamine 2-epimerase from rat liver. I. Catalytic and regulatory properties. Biochim Biophys Acta 268:581–589

    CAS  Google Scholar 

  19. Kikuchi K, Tsuiki S (1973) Purification and properties of UDP-N-acetylglucosamine 2′-epimerase from rat liver. Biochim Biophys Acta 327:193–206

    CAS  Google Scholar 

  20. Kundig W, Gosh S, Roseman S (1966) The sialic acids. VII. N-Acyl-d-mannosamine kinase from rat liver. J Biol Chem 241:5619–5626

    CAS  Google Scholar 

  21. Kornfeld S, Kornfeld R, Neufeld E, O’Brien PJ (1964) The feedback control of sugar nucleotide biosynthesis in liver. Proc Natl Acad Sci U S A 52:371–379

    Google Scholar 

  22. Weiss P, Tietze F, Gahl WA, Seppala R, Ashwell G (1989) Identification of the metabolic defect in sialuria. J Biol Chem 264:17635–17636

    CAS  Google Scholar 

  23. Horstkorte R, Nöhring S, Wiechens N, Schwarzkopf M, Danker K, Reutter W, Lucka L (1999) Tissue expression and amino acid sequence of murine UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase. Eur J Biochem 260:923–927

    CAS  Google Scholar 

  24. Lucka L, Krause M, Danker K, Reutter W, Horstkorte R (1999) Primary structure and expression analysis of human UDP-N-acetyl-glucosamine-2-epimerase/N-acetylmannosamine kinase, the bifunctional enzyme in neuraminic acid biosynthesis. FEBS Lett 454:341–344

    CAS  Google Scholar 

  25. Hong Y, Stanley P (2003) Lec3 Chinese hamster ovary mutants lack UDP-N-acetylglucosamine 2-epimerase activity because of mutations in the epimerase domain of the Gne gene. J Biol Chem 278:53045–53054

    CAS  Google Scholar 

  26. Seppala R, Lehto VP, Gahl WA (1999) Mutations in the human UDP-N-acetylglucosamine 2-epimerase gene define the disease sialuria and the allosteric site of the enzyme. Am J Hum Genet 64:1563–1569

    CAS  Google Scholar 

  27. Yarema KJ, Goon S, Bertozzi CR (2001) Metabolic selection of glycosylation defects in human cells. Nat Biotechnol 19:553–558

    CAS  Google Scholar 

  28. Keppler OT, Hinderlich S, Langner J, Schwartz-Albiez R, Reutter W, Pawlita M (1999) UDP-GlcNAc 2-epimerase: a regulator of cell surface sialylation. Science 284:1372–1376

    CAS  Google Scholar 

  29. Schwarzkopf M, Knobeloch KP, Rohde E, Hinderlich S, Wiechens N, Lucka L, Horak I, Reutter W, Horstkorte R (2002) Sialylation is essential for early development in mice. Proc Natl Acad Sci U S A 99:5267–5270

    CAS  Google Scholar 

  30. Eisenberg I, Avidan N, Potikha T, Hochner H, Chen M, Olender T, Barash M, Shemesh M, Sadeh M, Grabov-Nardini G, Shmilevich I, Friedmann A, Karpati G, Bradley WG, Baumbach L, Lancet D, Asher EB, Beckmann JS, Argov Z, Mitrani-Rosenbaum S (2001) The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nat Genet 29:83–87

    CAS  Google Scholar 

  31. Watts GD, Thorne M, Kovach MJ, Pestronk A, Kimonis VE (2003) Clinical and genetic heterogeneity in chromosome 9p associated hereditary inclusion body myopathy: exclusion of GNE and three other candidate genes. Neuromuscul Disord 13:559–567

    Google Scholar 

  32. Reinke SO, Hinderlich S (2007) Prediction of three different isoforms of the human UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. FEBS Lett 581:3327–3331

    CAS  Google Scholar 

  33. Yardeni T, Choekyi T, Jacobs K, Ciccone C, Patzel K, Anikster Y, Gahl WA, Kurochkina N, Huizing M (2011) Identification, tissue distribution, and molecular modeling of novel human isoforms of the key enzyme in sialic acid synthesis, UDP-GlcNAc 2-epimerase/ManNAc kinase. Biochemistry 50:8914–8925

    CAS  Google Scholar 

  34. Yardeni T, Jacobs K, Niethamer TK, Ciccone C, Anikster Y, Kurochkina N, Gahl WA, Huizing M (2012) Murine isoforms of UDP-GlcNAc 2-epimerase/ManNAc kinase: secondary structures, expression profiles, and response to ManNAc therapy. Glycoconj J epub

    Google Scholar 

  35. Eisenberg I, Novershtern N, Itzhaki Z, Becker-Cohen M, Sadeh M, Willems PH, Friedman N, Koopman WJ, Mitrani-Rosenbaum S (2008) Mitochondrial processes are impaired in hereditary inclusion body myopathy. Hum Mol Genet 17:3663–3674

    CAS  Google Scholar 

  36. Sela I, Milman Krentsis I, Shlomai Z, Sadeh M, Dabby R, Argov Z, Ben-Bassat H, Mitrani-Rosenbaum S (2011) The proteomic profile of hereditary inclusion body myopathy. PLoS One 6:e16334

    CAS  Google Scholar 

  37. Galeano B, Klootwijk R, Manoli I, Sun M, Ciccone C, Darvish D, Starost MF, Zerfas PM, Hoffmann VJ, Hoogstraten-Miller S, Krasnewich DM, Gahl WA, Huizing M (2007) Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N-acetylmannosamine. J Clin Invest 117:1585–1594

    CAS  Google Scholar 

  38. Reinke SO, Lehmer G, Hinderlich S, Reutter W (2009) Regulation and pathophysiological implications of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) as the key enzyme of sialic acid biosynthesis. Biol Chem 390:591–599

    CAS  Google Scholar 

  39. Reinke SO, Eidenschink C, Jay CM, Hinderlich S (2009) Biochemical characterization of human and murine isoforms of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). Glycoconj J 26:415–422

    CAS  Google Scholar 

  40. Oetke C, Hinderlich S, Reutter W, Pawlita M (2003) Epigenetically mediated loss of UDP-GlcNAc 2-epimerase/ManNAc kinase expression in hyposialylated cell lines. Biochem Biophys Res Commun 308:892–898

    CAS  Google Scholar 

  41. Giordanengo V, Ollier L, Lanteri M, Lesimple J, March D, Thyss S, Lefebvre JC (2004) Epigenetic reprogramming of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) in HIV-1-infected CEM T cells. FASEB J 18:1961–1963

    CAS  Google Scholar 

  42. Effertz K, Hinderlich S, Reutter W (1999) Selective loss of either the epimerase or kinase activity of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase due to site-directed mutagenesis based on sequence alignments. J Biol Chem 274:28771–28778

    CAS  Google Scholar 

  43. Blume A, Weidemann W, Stelzl U, Wanker EE, Lucka L, Donner P, Reutter W, Horstkorte R, Hinderlich S (2004) Domain-specific characteristics of the bifunctional key enzyme of sialic acid biosynthesis, UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. Biochem J 384:599–607

    CAS  Google Scholar 

  44. Tomimitsu H, Shimizu J, Ishikawa K, Ohkoshi N, Kanazawa I, Mizusawa H (2004) Distal myopathy with rimmed vacuoles (DMRV): new GNE mutations and splice variant. Neurology 62:1607–1610

    CAS  Google Scholar 

  45. Ghaderi D, Strauss HM, Reinke S, Cirak S, Reutter W, Lucka L, Hinderlich S (2007) Evidence for dynamic interplay of different oligomeric states of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase by biophysical methods. J Mol Biol 369:746–758

    CAS  Google Scholar 

  46. Penner J, Mantey LR, Elgavish S, Ghaderi D, Cirak S, Berger M, Krause S, Lucka L, Voit T, Mitrani-Rosenbaum S, Hinderlich S (2006) Influence of UDP-GlcNAc 2-epimerase/ManNAc kinase mutant proteins on hereditary inclusion body myopathy. Biochemistry 45:2968–2977

    CAS  Google Scholar 

  47. Kurochkina N, Yardeni T, Huizing M (2010) Molecular modeling of the bifunctional enzyme UDP-GlcNAc 2-epimerase/ ManNAc kinase and predictions of structural effects of mutations associated with HIBM and sialuria. Glycobiology 20:322–337

    CAS  Google Scholar 

  48. Tong Y, Tempel W, Nedyalkova L, Mackenzie F, Park HW (2009) Crystal structure of the N-acetylmannosamine kinase domain of GNE. PLoS One 4:e7165

    Google Scholar 

  49. Martinez J, Nguyen LD, Hinderlich S, Zimmer R, Tauberger E, Reutter W, Saenger W, Fan H, Moniot S (2012) Crystal structures of N-acetylmannosamine kinase provide insights into enzyme activity and inhibition. J Biol Chem 287:13656–13665

    CAS  Google Scholar 

  50. Nagradova N (2003) Interdomain communications in bifunctional enzymes: how are different activities coordinated? IUBMB Life 55:459–466

    CAS  Google Scholar 

  51. Salo WL, Fletcher HG (1970) Studies on the mechanism of action of uridine diphosphate N-acetylglucosamine 2-epimerase. Biochemistry 9:878–881

    CAS  Google Scholar 

  52. Blume A, Benie AJ, Stolz F, Schmidt RR, Reutter W, Hinderlich S, Peters T (2004) Characterization of ligand binding to the bifunctional key enzyme in the sialic acid biosynthesis by NMR: I. Investigation of the UDP-GlcNAc 2-epimerase functionality. J Biol Chem 279:55715–55721

    CAS  Google Scholar 

  53. Chou WK, Hinderlich S, Reutter W, Tanner ME (2003) Sialic acid biosynthesis: stereochemistry and mechanism of the reaction catalyzed by the mammalian UDP-N-acetylglucosamine 2-epimerase. J Am Chem Soc 125:2455–2461

    CAS  Google Scholar 

  54. Campbell RE, Mosimann SC, Tanner ME, Strynadka NC (2000) The structure of UDP-N-acetylglucosamine 2-epimerase reveals homology to phosphoglycosyl transferases. Biochemistry 39:14993–15001

    CAS  Google Scholar 

  55. Sommar KM, Ellis DG (1972) Uridine diphosphate N-acetyl-d-glucosamine 2-epimerase from rat liver. II. Studies on the mechanism of action. Biochim Biophys Acta 268:590–595

    CAS  Google Scholar 

  56. Kamerling JP, Strecker G, Farriaux JP, Dorland L, Haverkamp J, Vliegenthart JF (1979) 2-Acetamidoglucal, a new metabolite isolated from the urine of a patient with sialuria. Biochim Biophys Acta 583:403–408

    CAS  Google Scholar 

  57. Benie AJ, Blume A, Schmidt RR, Reutter W, Hinderlich S, Peters T (2004) Characterization of ligand binding to the bifunctional key enzyme in the sialic acid biosynthesis by NMR. II. Investigation of the ManNAc kinase functionality. J Biol Chem 279:55722–55727

    CAS  Google Scholar 

  58. Du J, Meledeo MA, Wang Z, Khanna HS, Paruchuri VD, Yarema KJ (2009) Metabolic glycoengineering: sialic acid and beyond. Glycobiology 19:1382–1401

    CAS  Google Scholar 

  59. Lowe G, Potter BV (1981) The stereochemical course of yeast hexokinase-catalysed phosphoryl transfer by using adenosine 5'[gamma(S)-16O,17O,18O]triphosphate as substrate. Biochem J 199:227–233

    CAS  Google Scholar 

  60. Pollard-Knight D, Potter BV, Cullis PM, Lowe G, Cornish-Bowden A (1982) The stereochemical course of phosphoryl transfer catalysed by glucokinase. Biochem J 201:421–423

    CAS  Google Scholar 

  61. Gagiannis D, Orthmann A, Danssmann I, Schwarzkopf M, Weidemann W, Horstkorte R (2007) Reduced sialylation status in UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE)-deficient mice. Glycoconj J 24:125–130

    CAS  Google Scholar 

  62. Ivatt RJ (1987) Transient expression of sialylated glycans during glycoprotein processing by embryonal carcinomas. Biochem Biophys Res Commun 142:489–495

    CAS  Google Scholar 

  63. Lackie PM, Zuber C, Roth J (1994) Polysialic acid of the neural cell adhesion molecule (N-CAM) is widely expressed during organogenesis in mesodermal and endodermal derivatives. Differentiation 57:119–131

    CAS  Google Scholar 

  64. Weidemann W, Klukas C, Klein A, Simm A, Schreiber F, Horstkorte R (2010) Lessons from GNE-deficient embryonic stem cells: sialic acid biosynthesis is involved in proliferation and gene expression. Glycobiology 30:107–117

    Google Scholar 

  65. Harms E, Kreisel W, Morris HP, Reutter W (1973) Biosynthesis of N-acetylneuraminic acid in Morris hepatomas. Eur J Biochem 32:254–262

    CAS  Google Scholar 

  66. Okamoto Y, Akamatsu N (1980) Metabolism of sialic acid in regenerating rat liver. Biochem J 188:905–911

    CAS  Google Scholar 

  67. Okubo H, Shibata K, Ishibashi H, Yanase T (1977) Regulation of N-acetylneuraminic acid synthesis following injury and partial hepatectomy. Proc Soc Exp Biol Med 155:152–156

    CAS  Google Scholar 

  68. Krause S, Hinderlich S, Amsili S, Horstkorte R, Wiendl H, Argov Z, Mitrani-Rosenbaum S, Lochmuller H (2005) Localization of UDP-GlcNAc 2-epimerase/ManAc kinase (GNE) in the Golgi complex and the nucleus of mammalian cells. Exp Cell Res 304:365–379

    CAS  Google Scholar 

  69. Fritsch M, Geilen CC, Reutter W (1996) Determination of cytidine 5'-monophospho-N-acetylneuraminic acid pool size in cell culture scale using high-performance anion-exchange chromatography with pulsed amperometric detection. J Chromatogr A 727:223–230

    CAS  Google Scholar 

  70. Horstkorte R, Nöhring S, Danker K, Effertz K, Reutter W, Lucka L (2000) Protein kinase C phosphorylates and regulates UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase. FEBS Lett 470:315–318

    CAS  Google Scholar 

  71. Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O (2011) Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 80:825–858

    CAS  Google Scholar 

  72. Weidemann W, Stelzl U, Lisewski U, Bork K, Wanker EE, Hinderlich S, Horstkorte R (2006) The collapsin response mediator protein 1 (CRMP-1) and the promyelocytic leukemia zinc finger protein (PLZF) bind to UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), the key enzyme of sialic acid biosynthesis. FEBS Lett 580:6649–6654

    CAS  Google Scholar 

  73. Goshima Y, Nakamura F, Strittmatter P, Strittmatter SM (1995) Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature 376:509–514

    CAS  Google Scholar 

  74. Shih JY, Lee YC, Yang SC, Hong TM, Huang CY, Yang PC (2003) Collapsin response mediator protein-1: a novel invasion-suppressor gene. Clin Exp Metastasis 20:69–76

    CAS  Google Scholar 

  75. Hamajima N, Matsuda K, Sakata S, Tamaki N, Sasaki M, Nonaka M (1996) A novel gene family defined by human dihydropyrimidinase and three related proteins with differential tissue distribution. Gene 180:157–163

    CAS  Google Scholar 

  76. Büttner B, Kannicht C, Löster K, Reutter W, Lee H-Y, Nöhring S, Horstkorte R (2002) Biochemical engineering of cell surface sialic acids stimulates axonal outgrowth. J Neurosci 22:8869–8875

    Google Scholar 

  77. Yeyati PL, Shaknovich R, Boterashvili S, Li J, Ball HJ, Waxman S, Nason-Burchenal K, Dmitrovsky E, Zelent A, Licht JD (1999) Leukemia translocation protein PLZF inhibits cell growth and expression of cyclin A. Oncogene 18:925–934

    CAS  Google Scholar 

  78. Barna M, Merghoub T, Costoya JA, Ruggero D, Branford M, Bergia A, Samori B, Pandolfi PP (2002) Plzf mediates transcriptional repression of HoxD gene expression through chromatin remodeling. Dev Cell 3:499–510

    CAS  Google Scholar 

  79. Pintard L, Willems A, Peter M (2004) Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. EMBO J 23:1681–1687

    CAS  Google Scholar 

  80. Senbonmatsu T, Saito T, Landon EJ, Watanabe O, Price E Jr, Roberts RL, Imboden H, Fitzgerald TG, Gaffney FA, Inagami T (2003) A novel angiotensin II type 2 receptor signaling pathway: possible role in cardiac hypertrophy. EMBO J 22:6471–6482

    CAS  Google Scholar 

  81. Seidel K, Kirsch S, Lucht K, Zaade D, Reinemund J, Schmitz J, Klare S, Li Y, Schefe JH, Schmerbach K, Goldin-Lang P, Zollmann FS, Thöne-Reineke C, Unger T, Funke-Kaiser H (2011) The promyelocytic leukemia zinc finger (PLZF) protein exerts neuroprotective effects in neuronal cells and is dysregulated in experimental stroke. Brain Pathol 21:31–43

    CAS  Google Scholar 

  82. Amsili S, Zer H, Hinderlich S, Krause S, Becker-Cohen M, MacArthur DG, North KN, Mitrani-Rosenbaum S (2008) UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) binds to alpha-actinin 1: novel pathways in skeletal muscle? PLoS One 3:e2477

    Google Scholar 

  83. Montreuil J, Biserte G, Strecker G, Spik G, Fontaine G, Farriaux JP (1968) Description of a new type of melituria, called sialuria. Clin Chim Acta 21:61–69

    CAS  Google Scholar 

  84. Fontaine G, Biserte G, Montreuil J, Dupont A, Farriaux JP (1968) Sialuria: an original metabolic disorder. Helv Paediatr Acta 17:1–32

    Google Scholar 

  85. Seppala R, Tietze F, Krasnewich D, Weiss P, Ashwell G, Barsh G, Thomas GH, Packman S, Gahl WA (1991) Sialic acid metabolism in sialuria fibroblasts. J Biol Chem 266:7456–7461

    CAS  Google Scholar 

  86. Ferreira H, Seppala R, Pinto R, Huizing M, Martins E, Braga AC, Gomes L, Krasnewich DM, Sa Miranda MC, Gahl WA (1999) Sialuria in a Portuguese girl: clinical, biochemical, and molecular characteristics. Mol Genet Metab 67:131–137

    CAS  Google Scholar 

  87. Leroy JG, Seppala R, Huizing M, Dacremont G, De Simpel H, Van Coster RN, Orvisky E, Krasnewich DM, Gahl WA (2001) Dominant inheritance of sialuria, an inborn error of feedback inhibition. Am J Hum Genet 68:1419–1427

    CAS  Google Scholar 

  88. Enns GM, Seppala R, Musci TJ, Weisiger K, Ferrell LD, Wenger DA, Gahl WA, Packman S (2001) Clinical course and biochemistry of sialuria. J Inherit Metab Dis 24:328–336

    CAS  Google Scholar 

  89. Strehle EM (2003) Sialic acid storage disease and related disorders. Genet Test 7:113–121

    CAS  Google Scholar 

  90. Bork K, Reutter W, Gerardy-Schahn R, Horstkorte R (2005) The intracellular concentration of sialic acid regulates the polysialylation of the neural cell adhesion molecule. FEBS Lett 579:5079–5083

    CAS  Google Scholar 

  91. Son YD, Jeong YT, Park SY, Kim JH (2011) Enhanced sialylation of recombinant human EPO in Chinese hamster ovary cells by combinatorial engineering of selected genes. Glycobiology 21:1019–1028

    CAS  Google Scholar 

  92. Wang Z, Sun Z, Li AV, Yarema KJ (2006) Roles for UDP-GlcNAc 2-epimerase/ManNAc 6-kinase outside of sialic acid biosynthesis: modulation of sialyltransferase and BiP expression, GM3 and GD3 biosynthesis, proliferation, and apoptosis, and ERK1/2 phosphorylation. J Biol Chem 281:27016–27028

    CAS  Google Scholar 

  93. Bork K, Horstkorte R, Weidemann W (2009) Increasing the sialylation of therapeutic glycoproteins: the potential of the sialic acid biosynthetic pathway. J Pharm Sci 98:3499–3508

    CAS  Google Scholar 

  94. Wopereis S, Abd Hamid UM, Critchley A, Royle L, Dwek RA, Morava E, Leroy JG, Wilcken B, Lagerwerf AJ, Huijben KM, Lefeber DJ, Rudd PM, Wevers RA (2006) Abnormal glycosylation with hypersialylated O-glycans in patients with sialuria. Biochim Biophys Acta 1762:598–607

    CAS  Google Scholar 

  95. Stanley CA, Lieu YK, Hsu BY, Burlina AB, Greenberg CR, Hopwood NJ, Perlman K, Rich BH, Zammarchi E, Poncz M (1998) Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med 338:1352–1357

    CAS  Google Scholar 

  96. Krasnewich DM, Tietze F, Krause W, Pretzlaff R, Wenger DA, Diwadkar V, Gahl WA (1993) Clinical and biochemical studies in an American child with sialuria. Biochem Med Metab Biol 49:90–96

    CAS  Google Scholar 

  97. Miller VM, Xia H, Marrs GL, Gouvion CM, Lee G, Davidson BL, Paulson HL (2003) Allele-specific silencing of dominant disease genes. Proc Natl Acad Sci U S A 100:7195–7200

    CAS  Google Scholar 

  98. Klootwijk RD, Savelkoul PJ, Ciccone C, Manoli I, Caplen NJ, Krasnewich DM, Gahl WA, Huizing M (2008) Allele-specific silencing of the dominant disease allele in sialuria by RNA interference. FASEB J 22:3846–3852

    CAS  Google Scholar 

  99. Grimm D, Kay MA (2007) Therapeutic application of RNAi: is mRNA targeting finally ready for prime time? J Clin Invest 117:3633–3641

    CAS  Google Scholar 

  100. Nonaka I, Sunohara N, Ishiura S, Satoyoshi E (1981) Familial distal myopathy with rimmed vacuole and lamellar (myeloid) body formation. J Neurol Sci 51:141–155

    CAS  Google Scholar 

  101. Argov Z, Yarom R (1984) “Rimmed vacuole myopathy” sparing the quadriceps. A unique disorder in Iranian Jews. Neurol Sci 64:33–43

    CAS  Google Scholar 

  102. Nishino I, Noguchi S, Murayama K, Driss A, Sugie K, Oya Y, Nagata T, Chida K, Takahashi T, Takusa Y, Ohi T, Nishimiya J, Sunohara N, Ciafaloni E, Kawai M, Aoki M, Nonaka I (2002) Distal myopathy with rimmed vacuoles is allelic to hereditary inclusion body myopathy. Neurology 59:1689–1693

    CAS  Google Scholar 

  103. Huizing M, Krasnewich DM (2009) Hereditary inclusion body myopathy: a decade of progress. Biochim Biophys Acta 1792:881–887

    CAS  Google Scholar 

  104. Sivakumar K, Dalakas MC (1996) The spectrum of familial inclusion body myopathies in 13 families and a description of a quadriceps-sparing phenotype in non-Iranian Jews. Neurology 47:977–984

    CAS  Google Scholar 

  105. Askanas V, Engel WK (1995) New advances in the understanding of sporadic inclusion-body myositis and hereditary inclusion-body myopathies. Curr Opin Rheumatol 7:486–496

    CAS  Google Scholar 

  106. Sadeh M, Gadoth N, Hadar H, Ben-David E (1993) Vacuolar myopathy sparing the quadriceps. Brain 116:217–232

    Google Scholar 

  107. Yabe I, Higashi T, Kikuchi S, Sasaki H, Fukazawa T, Yoshida K, Tashiro K (2003) GNE mutations causing distal myopathy with rimmed vacuoles with inflammation. Neurology 61:384–386

    CAS  Google Scholar 

  108. Griggs RC, Askanas V, DiMauro S, Engel A, Karpati G, Mendell JR, Rowland LP (1995) Inclusion body myositis and myopathies. Ann Neurol 38:705–713

    CAS  Google Scholar 

  109. Malicdan MC, Noguchi S, Nishino I (2007) Autophagy in a mouse model of distal myopathy with rimmed vacuoles or hereditary inclusion body myopathy. Autophagy 3:396–398

    CAS  Google Scholar 

  110. Malicdan MC, Noguchi S, Nishino I (2008) Recent advances in distal myopathy with rimmed vacuoles (DMRV) or hIBM: treatment perspectives. Curr Opin Neurol 21:596–600

    Google Scholar 

  111. Eisenberg I, Grabov-Nardini G, Hochner H, Korner M, Sadeh M, Bertorini T, Bushby K, Castellan C, Felice K, Mendell J, Merlini L, Shilling C, Wirguin I, Argov Z, Mitrani-Rosenbaum S (2003) Mutations spectrum of the GNE gene in hereditary inclusion body myopathy sparing the quadriceps. Hum Mutat 21:99

    Google Scholar 

  112. Tomimitsu H, Ishikawa K, Shimizu J, Ohkoshi N, Kanazawa I, Mizusawa H (2002) Distal myopathy with rimmed vacuoles: novel mutations in the GNE gene. Neurology 59:451–454

    CAS  Google Scholar 

  113. Noguchi S, Keira Y, Murayama K, Ogawa M, Fujita M, Kawahara G, Oya Y, Imazawa M, Goto Y, Hayashi YK, Nonaka I, Nishino I (2004) Reduction of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase activity and sialylation in distal myopathy with rimmed vacuoles. J Biol Chem 279:11402–11407

    CAS  Google Scholar 

  114. Hinderlich S, Salama I, Eisenberg I, Potikha T, Mantey LR, Yarema KJ, Horstkorte R, Argov Z, Sadeh M, Reutter W, Mitrani-Rosenbaum S (2004) The homozygous M712T mutation of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase results in reduced enzyme activities but not in altered overall cellular sialylation in hereditary inclusion body myopathy. FEBS Lett 566:105–109

    CAS  Google Scholar 

  115. Sparks SE, Ciccone C, Lalor M, Orvisky E, Klootwijk R, Savelkoul PJ, Dalakas MC, Krasnewich DM, Gahl WA, Huizing M (2005) Use of a cell-free system to determine UDP-N-acetylglucosamine 2-epimerase and N-acetylmannosamine kinase activities in human hereditary inclusion body myopathy. Glycobiology 15:1102–1110

    CAS  Google Scholar 

  116. Salama I, Hinderlich S, Shlomai Z, Eisenberg I, Krause S, Yarema K, Argov Z, Lochmuller H, Reutter W, Dabby R, Sadeh M, Ben-Bassat H, Mitrani-Rosenbaum S (2005) No overall hyposialylation in hereditary inclusion body myopathy myoblasts carrying the homozygous M712T GNE mutation. Biochem Biophys Res Commun 328:221–226

    CAS  Google Scholar 

  117. Kershaw DB, Beck SG, Wharram BL, Wiggins JE, Goyal M, Thomas PE, Wiggins RC (1997) Molecular cloning and characterization of human podocalyxin-like protein. Orthologous relationship to rabbit PCLP1 and rat podocalyxin. J Biol Chem 272:15708–15714

    CAS  Google Scholar 

  118. Niethamer TK, Yardeni T, Leoyklang P, Ciccone C, Astiz-Martinez A, Jacobs K, Dorward HM, Zerfas PM, Gahl WA, Huizing M (2012) Oral monosaccharide therapies to reverse renal and muscle hyposialylation in a mouse model of GNE myopathy. Mol Genet Metab 107:748–755

    CAS  Google Scholar 

  119. Malicdan MC, Noguchi S, Nonaka I, Hayashi YK, Nishino I (2007) A GNE knockout mouse expressing human GNE D176V mutation develops features similar to distal myopathy with rimmed vacuoles or hereditary inclusion body myopathy. Hum Mol Genet 16:2669–2682

    CAS  Google Scholar 

  120. Malicdan MC, Noguchi S, Hayashi YK, Nishino I (2008) Muscle weakness correlates with muscle atrophy and precedes the development of inclusion body or rimmed vacuoles in the mouse model of DMRV/hIBM. Physiol Genomics 35:106–115

    CAS  Google Scholar 

  121. Malicdan MC, Noguchi S, Hayashi YK, Nonaka I, Nishino I (2009) Prophylactic treatment with sialic acid metabolites precludes the development of the myopathic phenotype in the DMRV-hIBM mouse model. Nat Med 15:690–695

    CAS  Google Scholar 

  122. Savelkoul PJ, Manoli I, Sparks SE, Ciccone C, Gahl WA, Krasnewich DM, Huizing M (2006) Normal sialylation of serum N-linked and O-GalNAc-linked glycans in hereditary inclusion-body myopathy. Mol Genet Metab 88:389–390

    CAS  Google Scholar 

  123. Huizing M, Rakocevic G, Sparks SE, Mamali I, Shatunov A, Goldfarb L, Krasnewich D, Gahl WA, Dalakas MC (2004) Hypoglycosylation of alpha-dystroglycan in patients with hereditary IBM due to GNE mutations. Mol Genet Metab 81:196–202

    CAS  Google Scholar 

  124. Ricci E, Broccolini A, Gidaro T, Morosetti R, Gliubizzi C, Frusciante R, Di Lella GM, Tonali PA, Mirabella M (2006) NCAM is hyposialylated in hereditary inclusion body myopathy due to GNE mutations. Neurology 66:755–758

    CAS  Google Scholar 

  125. Broccolini A, Gidaro T, De Cristofaro R, Morosetti R, Gliubizzi C, Ricci E, Tonali PA, Mirabella M (2008) Hyposialylation of neprilysin possibly affects its expression and enzymatic activity in hereditary inclusion-body myopathy muscle. J Neurochem 105:971–981

    CAS  Google Scholar 

  126. Tajima Y, Uyama E, Go S, Sato C, Tao N, Kotani M, Hino H, Suzuki A, Sanai Y, Kitajima K, Sakuraba H (2005) Distal myopathy with rimmed vacuoles: impaired O-glycan formation in muscular glycoproteins. Am J Pathol 166:1121–1130

    CAS  Google Scholar 

  127. Paccalet T, Coulombe Z, Tremblay JP (2010) Ganglioside GM3 levels are altered in a mouse model of HIBM: GM3 as a cellular marker of the disease. PLoS One 5:e10055

    Google Scholar 

  128. Krause S, Aleo A, Hinderlich S, Merlini L, Tournev I, Walter MC, Argov Z, Mitrani-Rosenbaum S, Lochmüller H (2007) GNE protein expression and subcellular distribution are unaltered in HIBM. Neurology 69:655–659

    CAS  Google Scholar 

  129. Amsili S, Shlomai Z, Levitzki R, Krause S, Lochmüller H, Ben-Bassat H, Mitrani-Rosenbaum S (2007) Characterization of hereditary inclusion body myopathy myoblasts: possible primary impairment of apoptotic events. Cell Death Differ 14:1916–1924

    CAS  Google Scholar 

  130. Darvish D (2003) Magnesium may help patients with recessive hereditary inclusion body myopathy, a pathological review. Med Hypotheses 60:94–101

    CAS  Google Scholar 

  131. Sparks S, Rakocevic G, Joe G, Manoli I, Shrader J, Harris-Love M, Sonies B, Ciccone C, Dorward H, Krasnewich D, Huizing M, Dalakas MC, Gahl WA (2007) Intravenous immune globulin in hereditary inclusion body myopathy: a pilot study. BMC Neurol 7:3

    Google Scholar 

  132. Miyagoe-Suzuki Y, Takeda S (2010) Gene therapy for muscle disease. Exp Cell Res 316:3087–3092

    CAS  Google Scholar 

  133. Sohn RL, Gussoni E (2004) Stem cell therapy for muscular dystrophy. Expert Opin Biol Ther 4:1–9

    CAS  Google Scholar 

  134. Skuk D, Tremblay JP (2011) Intramuscular cell transplantation as a potential treatment of myopathies: clinical and preclinical relevant data. Expert 11:359–374

    Google Scholar 

  135. Nemunaitis G, Jay CM, Maples PB, Gahl WA, Huizing M, Yardeni T, Tong AW, Phadke AP, Pappen BO, Bedell C, Allen H, Hernandez C, Templeton NS, Kuhn J, Senzer N, Nemunaitis J (2011) Hereditary inclusion body myopathy: single patient response to intravenous dosing of GNE gene lipoplex. Hum Gene Ther 22:1331–1341

    CAS  Google Scholar 

  136. Nemunaitis G, Maples PB, Jay C, Gahl WA, Huizing M, Poling J, Tong AW, Phadke AP, Pappen BO, Bedell C, Templeton NS, Kuhn J, Senzer N, Nemunaitis J (2010) Hereditary inclusion body myopathy: single patient response to GNE gene lipoplex therapy. J Gene Med 12:403–412

    CAS  Google Scholar 

  137. Varki A (2008) Sialic acids in human health and disease. Trends Mol Med 14:351–360

    CAS  Google Scholar 

  138. Ivanov S, Gavazova E, Antonova M, Chelibonova-Lorer H (1985) Studies on N-acetylneuraminic acid biosynthesis in chicken liver and hepatoma Mc-29 by using [14C]N-acetylmannosamine and [14C]glucosamine. Int J Biochem 17:1125–1128

    CAS  Google Scholar 

  139. Suzuki O, Tasaki K, Kusakabe T, Abe M (2008) UDP-GlcNAc2-epimerase regulates cell surface sialylation and ceramide-induced cell death in human malignant lymphoma. Int J Mol Med 22:339–348

    CAS  Google Scholar 

  140. Coll MJ, Serratosa J, Bachs O, Gahmberg CG, Enrich C (1986) Calmodulin may decrease cell surface sialic acid and be involved in the expression of fibronectin during liver regeneration. FEBS Lett 208:418–422

    CAS  Google Scholar 

  141. De Smet C, Loriot A (2013) DNA hypomethylation and activation of germline-specific genes in cancer. Adv Exp Med Biol 754:149–166

    Google Scholar 

  142. Hughes RC, Sanford B, Jeanloz RW (1972) Regeneration of the surface glycoproteins of a transplantable mouse tumor cell after treatment with neuraminidase. Proc Natl Acad Sci U S A 69:942–945

    CAS  Google Scholar 

  143. Bekesi JG, Roboz JP, Holland JF (1976) Therapeutic effectiveness of neuraminidase-treated tumor cells as an immunogen in man and experimental animals with leukemia. Ann N Y Acad Sci 277:313–331

    CAS  Google Scholar 

  144. Grünholz HJ, Harms E, Opetz M, Reutter W, Cerny M (1981) Inhibition of in vitro biosynthesis of N-acetylneuraminic acid by N-acyl- and N-alkyl-2-amino-2-deoxyhexoses. Carbohydr Res 96:259–270

    Google Scholar 

  145. Blume A, Chen H, Reutter W, Schmidt RR, Hinderlich S (2002) 2',3'-Dialdehydo-UDP-N-acetylglucosamine inhibits UDP-N-acetylglucosamine 2-epimerase, the key enzyme of sialic acid biosynthesis. FEBS Lett 521:127–132

    CAS  Google Scholar 

  146. Zeitler R, Giannis A, Danneschewski S, Henk E, Henk T, Bauer C, Reutter W, Sandhoff K (1992) Inhibition of N-acetylglucosamine kinase and N-acetylmannosamine kinase by 3-O-methyl-N-acetyl-d-glucosamine in vitro. Eur J Biochem 204:1165–1168

    CAS  Google Scholar 

  147. Zhu X, Stolz F, Schmidt RR (2004) Synthesis of thioglycoside-based UDP-sugar analogues. J Org Chem 69:7367–7370

    CAS  Google Scholar 

  148. Stolz F, Reiner M, Blume A, Reutter W, Schmidt RR (2004) Novel UDP-glycal derivatives as transition state analogue inhibitors of UDP-GlcNAc 2-epimerase. J Org Chem 69:665–679

    CAS  Google Scholar 

  149. Al-Rawi S, Hinderlich S, Reutter W, Giannis A (2004) Synthesis and biochemical properties of reversible inhibitors of UDP-N-acetylglucosamine 2-epimerase. Angew Chem Int Ed Engl 43:4366–4370

    CAS  Google Scholar 

  150. Miller ML, Blom N (2009) Kinase-specific prediction of protein phosphorylation sites. Methods Mol Biol 527:299–310

    Google Scholar 

  151. Wilcken B, Don N, Greenaway R, Hammond J, Sosula L (1987) Sialuria: a second case. J Inherit Metab Dis 10:97–102

    CAS  Google Scholar 

  152. Saechao C, Valles-Ayoub Y, Esfandiarifard S, Haghighatgoo A, No D, Shook S, Mendell JR, Rosales-Quintero X, Felice KJ, Morel CF, Pietruska M, Darvish D (2010) Novel GNE mutations in hereditary inclusion body myopathy patients of non-Middle Eastern descent. Genet Test Mol Biomarkers 14:157–162

    CAS  Google Scholar 

  153. Kim BJ, Ki CS, Kim JW, Sung DH, Choi YC, Kim SH (2006) Mutation analysis of the GNE gene in Korean patients with distal myopathy with rimmed vacuoles. J Hum Genet 51:137–140

    CAS  Google Scholar 

  154. Weihl CC, Miller SE, Zaidman CM, Pestronk A, Baloh RH, Al-Lozi M (2011) Novel GNE mutations in two phenotypically distinct HIBM2 patients. Neuromuscul Disord 21:102–105

    Google Scholar 

  155. Broccolini A, Ricci E, Cassandrini D, Gliubizzi C, Bruno C, Tonoli E, Silvestri G, Pescatori M, Rodolico C, Sinicropi S, Servidei S, Zara F, Minetti C, Tonali PA, Mirabella M (2004) Novel GNE mutations in Italian families with autosomal recessive hereditary inclusion-body myopathy. Hum Mutat 23:632

    Google Scholar 

  156. Li H, Chen Q, Liu F, Zhang X, Liu T, Li W, Liu S, Zhao Y, Wen B, Dai T, Lin P, Gong Y, Yan C (2011) Clinical and molecular genetic analysis in Chinese patients with distal myopathy with rimmed vacuoles. J Hum Genet 56:335–338

    CAS  Google Scholar 

  157. Liewluck T, Pho-Iam T, Limwongse C, Thongnoppakhun W, Boonyapisit K, Raksadawan N, Murayama K, Hayashi YK, Nishino I, Sangruchi T (2006) Mutation analysis of the GNE gene in distal myopathy with rimmed vacuoles (DMRV) patients in Thailand. Muscle Nerve 34:775–778

    CAS  Google Scholar 

  158. Del Bo R, Baron P, Prelle A, Serafini M, Moggio M, Fonzo AD, Castagni M, Bresolin N, Comi GP (2003) Novel missense mutation and large deletion of GNE gene in autosomal-recessive inclusion-body myopathy. Muscle Nerve 28:113–117

    Google Scholar 

  159. Broccolini A, Pescatori M, D'Amico A, Sabino A, Silvestri G, Ricci E, Servidei S, Tonali PA, Mirabella M (2002) An Italian family with autosomal recessive inclusion-body myopathy and mutations in the GNE gene. Neurology 59:1808–1809

    CAS  Google Scholar 

  160. Grandis M, Gulli R, Cassandrini D, Gazzerro E, Benedetti L, Narciso E, Nobbio L, Bruno C, Minetti C, Bellone E, Reni L, Mancardi GL, Mandich P, Schenone A (2010) The spectrum of GNE mutations: allelic heterogeneity for a common phenotype. Neurol Sci 31:377–380

    Google Scholar 

  161. Vasconcelos OM, Raju R, Dalakas MC (2002) GNE mutations in an American family with quadriceps-sparing IBM and lack of mutations in s-IBM. Neurology 59:1776–1779

    CAS  Google Scholar 

  162. Darvish D, Vahedifar P, Huo Y (2002) Four novel mutations associated with autosomal recessive inclusion body myopathy (MIM: 600737). Mol Genet Metab 77:252–256

    CAS  Google Scholar 

  163. Chu CC, Kuo HC, Yeh TH, Ro LS, Chen SR, Huang CC (2007) Heterozygous mutations affecting the epimerase domain of the GNE gene causing distal myopathy with rimmed vacuoles in a Taiwanese family. Clin Neurol Neurosurg 109:250–256

    Google Scholar 

  164. Ro LS, Lee-Chen GJ, Wu YR, Lee M, Hsu PY, Chen CM (2005) Phenotypic variability in a Chinese family with rimmed vacuolar distal myopathy. J Neurol Neurosurg Psychiatry 76:752–755

    Google Scholar 

  165. Stober A, Aleo A, Kuhl V, Bornemann A, Walter MC, Lochmüller H, Lindner A, Krause S (2010) Novel missense mutation p.A310P in the GNE gene in autosomal-recessive hereditary inclusion-body myopathy/distal myopathy with rimmed vacuoles in an Italian family. Neuromuscul Disord 20:335–336

    Google Scholar 

  166. Behin A, Dubourg O, Laforet P, Pecheux C, Bernard R, Levy N, Eymard B (2008) [Distal myopathy due to mutations of GNE gene: clinical spectrum and diagnosis]. Rev Neurol (Paris) 164:434–443

    Google Scholar 

  167. Fisher J, Towfighi J, Darvish D, Simmons Z (2006) A case of hereditary inclusion body myopathy: 1 patient, 2 novel mutations. J Clin Neuromuscul Dis 7:179–184

    Google Scholar 

  168. Krause S, Schlotter-Weigel B, Walter MC, Najmabadi H, Wiendl H, Müller-Hocker J, Müller-Felber W, Pongratz D, Lochmüller H (2003) A novel homozygous missense mutation in the GNE gene of a patient with quadriceps-sparing hereditary inclusion body myopathy associated with muscle inflammation. Neuromuscul Disord 13:830–834

    Google Scholar 

  169. Amouri R, Driss A, Murayama K, Kefi M, Nishino I, Hentati F (2005) Allelic heterogeneity of GNE gene mutation in two Tunisian families with autosomal recessive inclusion body myopathy. Neuromuscul Disord 15:361–363

    CAS  Google Scholar 

  170. Voermans NC, Guillard M, Doedee R, Lammens M, Huizing M, Padberg GW, Wevers RA, van Engelen BG, Lefeber DJ (2010) Clinical features, lectin staining, and a novel GNE frameshift mutation in hereditary inclusion body myopathy. Clin Neuropathol 29:71–77

    CAS  Google Scholar 

  171. Kayashima T, Matsuo H, Satoh A, Ohta T, Yoshiura K, Matsumoto N, Nakane Y, Niikawa N, Kishino T (2002) Nonaka myopathy is caused by mutations in the UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase gene (GNE). J Hum Genet 47:77–79

    CAS  Google Scholar 

  172. Motozaki Y, Komai K, Hirohata M, Asaka T, Ono K, Yamada M (2007) Hereditary inclusion body myopathy with a novel mutation in the GNE gene associated with proximal leg weakness and necrotizing myopathy. Eur J Neurol 14:e14–e15

    CAS  Google Scholar 

  173. Mori-Yoshimura M, Monma K, Suzuki N, Aoki M, Kumamoto T, Tanaka K, Tomimitsu H, Nakano S, Sonoo M, Shimizu J, Sugie K, Nakamura H, Oya Y, Hayashi YK, Malicdan MC, Noguchi S, Murata M, Nishino I (2012) Heterozygous UDP-GlcNAc 2-epimerase and N-acetylmannosamine kinase domain mutations in the GNE gene result in a less severe GNE myopathy phenotype compared to homozygous N-acetylmannosamine kinase domain mutations. J Neurol Sci 318:100–105

    CAS  Google Scholar 

  174. Lu X, Pu C, Huang X, Liu J, Mao Y (2011) Distal myopathy with rimmed vacuoles: clinical and muscle morphological characteristics and spectrum of GNE gene mutations in 53 Chinese patients. Neurol Res 33:1025–1031

    CAS  Google Scholar 

  175. Park YE, Kim HS, Choi ES, Shin JH, Kim SY, Son EH, Lee CH, Kim DS (2012) Limb-girdle phenotype is frequent in patients with myopathy associated with GNE mutations. J Neurol Sci 321:77–81

    CAS  Google Scholar 

  176. No D, Valles-Ayoub Y, Carbajo R, Khokher Z, Sandoval L, Stein B, Tarnopolsky MA, Mozaffar T, Darvish B, Pietruszka M, Darvish D (2013) Novel GNE mutations in autosomal recessive hereditary inclusion body myopathy patients. Genet Test Mol Biomarkers 17:376–382

    CAS  Google Scholar 

  177. Kannan MA, Challa S, Urtizberea AJ, Krahn M, Jabeen AS, Borgohain R (2012) Distal myopathy with rimmed vacuoles and inflammation: a genetically proven case. Neurol India 60:631–634

    Google Scholar 

  178. Tasca G, Ricci E, Monforte M, Laschena F, Ottaviani P, Rodolico C, Barca E, Silvestri G, Iannaccone E, Mirabella M, Broccolini A (2012) Muscle imaging findings in GNE myopathy. J Neurol 259:1358–1365

    Google Scholar 

  179. Boyden SE, Duncan AR, Estrella EA, Lidov HG, Mahoney LJ, Katz JS, Kunkel LM, Kang PB (2011) Molecular diagnosis of hereditary inclusion body myopathy by linkage analysis and identification of a novel splice site mutation in GNE. BMC Med Genet 12:87

    CAS  Google Scholar 

Download references

Acknowledgments

This work was performed in partial fulfillment of the requirements for a PhD degree of T.Y., Sackler Faculty of Medicine, Tel Aviv University, Israel. This study was supported by the Intramural Research Program of the National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA, to T.Y. and M.H. S.H. acknowledges financial support of the Bundesministerium für Bildung und Forschung and the German-Israeli Foundation for Scientific Research and Development; R.H. acknowledges support of the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Hinderlich .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hinderlich, S., Weidemann, W., Yardeni, T., Horstkorte, R., Huizing, M. (2013). UDP-GlcNAc 2-Epimerase/ManNAc Kinase (GNE): A Master Regulator of Sialic Acid Synthesis. In: SialoGlyco Chemistry and Biology I. Topics in Current Chemistry, vol 366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2013_464

Download citation

Publish with us

Policies and ethics