Skip to main content

Synthetic and Editing Mechanisms of Aminoacyl-tRNA Synthetases

  • Chapter
  • First Online:
Aminoacyl-tRNA Synthetases in Biology and Medicine

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 344))

Abstract

Aminoacyl-tRNA synthetases (aaRS) ensure the faithful transmission of genetic information in all living cells. The 24 known aaRS families are divided into 2 structurally distinct classes (class I and class II), each featuring a catalytic domain with a common fold that binds ATP, amino acid, and the 3′-terminus of tRNA. In a common two-step reaction, each aaRS first uses the energy stored in ATP to synthesize an activated aminoacyl adenylate intermediate. In the second step, either the 2′- or 3′-hydroxyl oxygen atom of the 3′-A76 tRNA nucleotide functions as a nucleophile in synthesis of aminoacyl-tRNA. Ten of the 24 aaRS families are unable to distinguish cognate from noncognate amino acids in the synthetic reactions alone. These enzymes possess additional editing activities for hydrolysis of misactivated amino acids and misacylated tRNAs, with clearance of the latter species accomplished in spatially separate post-transfer editing domains. A distinct class of trans-acting proteins that are homologous to class II editing domains also perform hydrolytic editing of some misacylated tRNAs. Here we review essential themes in catalysis with a view toward integrating the kinetic, stereochemical, and structural mechanisms of the enzymes. Although the aaRS have now been the subject of investigation for many decades, it will be seen that a significant number of questions regarding fundamental catalytic functioning still remain unresolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA-AMP:

Aminoacyl-AMP

aaRS:

Aminoacyl-tRNA synthetase

LUCA:

Last universal common ancestor

MARS:

Multi-tRNA synthetase complex

UAA:

Unnatural amino acid

References

  1. Perona JJ, Hadd A (2012) Structural diversity and protein engineering of the aminoacyl-tRNA synthetases. Biochemistry 51:8705–8729

    CAS  Google Scholar 

  2. Yadavalli SS, Ibba M (2012) Quality control in aminoacyl-tRNA synthesis its role in translational fidelity. Adv Protein Chem Struct Biol 86:1–43

    CAS  Google Scholar 

  3. Perona JJ, Hou YM (2007) Indirect readout of tRNA for aminoacylation. Biochemistry 46:10419–10432

    CAS  Google Scholar 

  4. Post CB, Ray WJ Jr (1995) Reexamination of induced fit as a determinant of substrate specificity in enzymatic reactions. Biochemistry 34:15881–15885

    CAS  Google Scholar 

  5. Bruice TC (2002) A view at the millennium: the efficiency of enzymatic catalysis. Acc Chem Res 35:139–148

    CAS  Google Scholar 

  6. Ibba M, Sever S, Praetorius-Ibba M, Soll D (1999) Transfer RNA identity contributes to transition state stabilization during aminoacyl-tRNA synthesis. Nucleic Acids Res 27:3631–3637

    CAS  Google Scholar 

  7. Ebel JP, Giege R, Bonnet J, Kern D, Befort N, Bollack C, Fasiolo F, Gangloff J, Dirheimer G (1973) Factors determining the specificity of the tRNA aminoacylation reaction. Non-absolute specificity of tRNA-aminoacyl-tRNA synthetase recognition and particular importance of the maximal velocity. Biochimie 55:547–557

    CAS  Google Scholar 

  8. Fersht AR (1977) Editing mechanisms in protein synthesis. Rejection of valine by the isoleucyl-tRNA synthetase. Biochemistry 16:1025–1030

    CAS  Google Scholar 

  9. Baldwin AN, Berg P (1966) Transfer ribonucleic acid-induced hydrolysis of valyladenylate bound to isoleucyl ribonucleic acid synthetase. J Biol Chem 241:839–845

    CAS  Google Scholar 

  10. Fersht AR, Kaethner MM (1976) Enzyme hyperspecificity. Rejection of threonine by the valyl-tRNA synthetase by misacylation and hydrolytic editing. Biochemistry 15:3342–3346

    CAS  Google Scholar 

  11. Jakubowski H (1978) Valyl-tRNA synthetase from yellow lupin seeds. Instability of enzyme-bound noncognate adenylates versus cognate adenylate. FEBS Lett 95:235–238

    CAS  Google Scholar 

  12. Jakubowski H, Fersht AR (1981) Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases. Nucleic Acids Res 9:3105–3117

    CAS  Google Scholar 

  13. Fersht AR, Dingwall C (1979) An editing mechanism for the methionyl-tRNA synthetase in the selection of amino acids in protein synthesis. Biochemistry 18:1250–1256

    CAS  Google Scholar 

  14. Tsui WC, Fersht AR (1981) Probing the principles of amino acid selection using the alanyl-tRNA synthetase from Escherichia coli. Nucleic Acids Res 9:4627–4637

    CAS  Google Scholar 

  15. Ibba M, Kast P, Hennecke H (1994) Substrate specificity is determined by amino acid binding pocket size in Escherichia coli phenylalanyl-tRNA synthetase. Biochemistry 33:7107–7112

    CAS  Google Scholar 

  16. Palencia A, Crepin T, Vu MT, Lincecum TL Jr, Martinis SA, Cusack S (2012) Structural dynamics of the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase. Nat Struct Mol Biol 19:677–684

    CAS  Google Scholar 

  17. Gruic-Sovulj I, Landeka I, Soll D, Weygand-Durasevic I (2002) tRNA-dependent amino acid discrimination by yeast seryl-tRNA synthetase. Eur J Biochem 269:5271–5279

    CAS  Google Scholar 

  18. Ibba M, Hong KW, Sherman JM, Sever S, Soll D (1996) Interactions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme. Proc Natl Acad Sci USA 93:6953–6958

    CAS  Google Scholar 

  19. Uter NT, Gruic-Sovulj I, Perona JJ (2005) Amino acid-dependent transfer RNA affinity in a class I aminoacyl-tRNA synthetase. J Biol Chem 280:23966–23977

    CAS  Google Scholar 

  20. Bullock TL, Rodriguez-Hernandez A, Corigliano EM, Perona JJ (2008) A rationally engineered misacylating aminoacyl-tRNA synthetase. Proc Natl Acad Sci USA 105:7428–7433

    CAS  Google Scholar 

  21. Rodriguez-Hernandez A, Bhaskaran H, Hadd A, Perona JJ (2010) Synthesis of Glu-tRNA(Gln) by engineered and natural aminoacyl-tRNA synthetases. Biochemistry 49:6727–6736

    CAS  Google Scholar 

  22. de Duve C (1988) Transfer RNAs: the second genetic code. Nature 333:117–118

    Google Scholar 

  23. Park SG, Schimmel P, Kim S (2008) Aminoacyl tRNA synthetases and their connections to disease. Proc Natl Acad Sci USA 105:11043–11049

    CAS  Google Scholar 

  24. Guo M, Yang XL, Schimmel P (2010) New functions of aminoacyl-tRNA synthetases beyond translation. Nat Rev Mol Cell Biol 11:668–674

    CAS  Google Scholar 

  25. Irwin MJ, Nyborg J, Reid BR, Blow DM (1976) The crystal structure of tyrosyl-transfer RNA synthetase at 2–7 A resolution. J Mol Biol 105:577–586

    CAS  Google Scholar 

  26. Brick P, Bhat TN, Blow DM (1989) Structure of tyrosyl-tRNA synthetase refined at 2.3 A resolution. Interaction of the enzyme with the tyrosyl adenylate intermediate. J Mol Biol 208:83–98

    CAS  Google Scholar 

  27. Schmidt E, Schimmel P (1995) Residues in a class I tRNA synthetase which determine selectivity of amino acid recognition in the context of tRNA. Biochemistry 34:11204–11210

    CAS  Google Scholar 

  28. Rould MA, Perona JJ, Soll D, Steitz TA (1989) Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution. Science 246:1135–1142

    CAS  Google Scholar 

  29. Yaremchuk A, Kriklivyi I, Tukalo M, Cusack S (2002) Class I tyrosyl-tRNA synthetase has a class II mode of cognate tRNA recognition. EMBO J 21:3829–3840

    CAS  Google Scholar 

  30. Ruff M, Krishnaswamy S, Boeglin M, Poterszman A, Mitschler A, Podjarny A, Rees B, Thierry JC, Moras D (1991) Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA(Asp). Science 252:1682–1689

    CAS  Google Scholar 

  31. Cusack S, Berthet-Colominas C, Hartlein M, Nassar N, Leberman R (1990) A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 A. Nature 347:249–255

    CAS  Google Scholar 

  32. First EA (2005) Catalysis of the tRNA aminoacylation reaction. In: Michael Ibba CFaSC (ed) The aminoacyl-tRNA synthetases. Georgetown: Landes Bioscience/Eurekah.com, pp 328–352

    Google Scholar 

  33. Ibba M, Soll D (2000) Aminoacyl-tRNA synthesis. Annu Rev Biochem 69:617–650

    CAS  Google Scholar 

  34. Arnez JG, Moras D (1997) Structural and functional considerations of the aminoacylation reaction. Trends Biochem Sci 22:211–216

    CAS  Google Scholar 

  35. Cusack S (1995) Eleven down and nine to go. Nat Struct Biol 2:824–831

    CAS  Google Scholar 

  36. Cusack S (1997) Aminoacyl-tRNA synthetases. Curr Opin Struct Biol 7:881–889

    CAS  Google Scholar 

  37. Guo M, Schimmel P (2012) Structural analyses clarify the complex control of mistranslation by tRNA synthetases. Curr Opin Struct Biol 22:119–126

    CAS  Google Scholar 

  38. Tang SN, Huang JF (2005) Evolution of different oligomeric glycyl-tRNA synthetases. FEBS Lett 579:1441–1445

    CAS  Google Scholar 

  39. Dock-Bregeon A, Sankaranarayanan R, Romby P, Caillet J, Springer M, Rees B, Francklyn CS, Ehresmann C, Moras D (2000) Transfer RNA-mediated editing in threonyl-tRNA synthetase. The class II solution to the double discrimination problem. Cell 103:877–884

    CAS  Google Scholar 

  40. Cusack S, Yaremchuk A, Krikliviy I, Tukalo M (1998) tRNA(Pro) anticodon recognition by Thermus thermophilus prolyl-tRNA synthetase. Structure 6:101–108

    CAS  Google Scholar 

  41. Wong FC, Beuning PJ, Nagan M, Shiba K, Musier-Forsyth K (2002) Functional role of the prokaryotic proline-tRNA synthetase insertion domain in amino acid editing. Biochemistry 41:7108–7115

    CAS  Google Scholar 

  42. Goldgur Y, Mosyak L, Reshetnikova L, Ankilova V, Lavrik O, Khodyreva S, Safro M (1997) The crystal structure of phenylalanyl-tRNA synthetase from Thermus thermophilus complexed with cognate tRNAPhe. Structure 5:59–68

    CAS  Google Scholar 

  43. Crepin T, Yaremchuk A, Tukalo M, Cusack S (2006) Structures of two bacterial prolyl-tRNA synthetases with and without a cis-editing domain. Structure 14:1511–1525

    CAS  Google Scholar 

  44. Naganuma M, Sekine S, Fukunaga R, Yokoyama S (2009) Unique protein architecture of alanyl-tRNA synthetase for aminoacylation, editing, and dimerization. Proc Natl Acad Sci USA 106:8489–8494

    CAS  Google Scholar 

  45. Sokabe M, Ose T, Nakamura A, Tokunaga K, Nureki O, Yao M, Tanaka I (2009) The structure of alanyl-tRNA synthetase with editing domain. Proc Natl Acad Sci USA 106:11028–11033

    CAS  Google Scholar 

  46. Zhang CM, Perona JJ, Ryu K, Francklyn C, Hou YM (2006) Distinct kinetic mechanisms of the two classes of aminoacyl-tRNA synthetases. J Mol Biol 361:300–311

    CAS  Google Scholar 

  47. Dulic M, Cvetesic N, Perona JJ, Gruic-Sovulj I (2010) Partitioning of tRNA-dependent editing between pre- and post-transfer pathways in class I aminoacyl-tRNA synthetases. J Biol Chem 285:23799–23809

    CAS  Google Scholar 

  48. Bhaskaran H, Perona JJ (2011) Two-step aminoacylation of tRNA without channeling in archaea. J Mol Biol 411:854–869

    CAS  Google Scholar 

  49. Fersht AR, Kaethner MM (1976) Mechanism of aminoacylation of tRNA. Proof of the aminoacyl adenylate pathway for the isoleucyl- and tyrosyl-tRNA synthetases from Escherichia coli K12. Biochemistry 15:818–823

    CAS  Google Scholar 

  50. Guth E, Connolly SH, Bovee M, Francklyn CS (2005) A substrate-assisted concerted mechanism for aminoacylation by a class II aminoacyl-tRNA synthetase. Biochemistry 44:3785–3794

    CAS  Google Scholar 

  51. Banik SD, Nandi N (2012) Mechanism of the activation step of the aminoacylation reaction: a significant difference between class I and class II synthetases. J Biomol Struct Dyn 30:701–715

    Google Scholar 

  52. Ibba M, Losey HC, Kawarabayasi Y, Kikuchi H, Bunjun S, Soll D (1999) Substrate recognition by class I lysyl-tRNA synthetases: a molecular basis for gene displacement. Proc Natl Acad Sci USA 96:418–423

    CAS  Google Scholar 

  53. Kern D, Lapointe J (1979) Glutamyl transfer ribonucleic acid synthetase of Escherichia coli. Study of the interactions with its substrates. Biochemistry 18:5809–5818

    CAS  Google Scholar 

  54. Mehler AH, Mitra SK (1967) The activation of arginyl transfer ribonucleic acid synthetase by transfer ribonucleic acid. J Biol Chem 242:5495–5499

    CAS  Google Scholar 

  55. Ravel JM, Wang SF, Heinemeyer C, Shive W (1965) Glutamyl and glutaminyl ribonucleic acid synthetases of Escherichia coli W. Separation, properties, and stimulation of adenosine triphosphate-pyrophosphate exchange by acceptor ribonucleic acid. J Biol Chem 240:432–438

    CAS  Google Scholar 

  56. Sekine S, Nureki O, Dubois DY, Bernier S, Chenevert R, Lapointe J, Vassylyev DG, Yokoyama S (2003) ATP binding by glutamyl-tRNA synthetase is switched to the productive mode by tRNA binding. EMBO J 22:676–688

    CAS  Google Scholar 

  57. Gruic-Sovulj I, Uter N, Bullock T, Perona JJ (2005) tRNA-dependent aminoacyl-adenylate hydrolysis by a nonediting class I aminoacyl-tRNA synthetase. J Biol Chem 280:23978–23986

    CAS  Google Scholar 

  58. Perona JJ, Rould MA, Steitz TA (1993) Structural basis for transfer RNA aminoacylation by Escherichia coli glutaminyl-tRNA synthetase. Biochemistry 32:8758–8771

    CAS  Google Scholar 

  59. Desogus G, Todone F, Brick P, Onesti S (2000) Active site of lysyl-tRNA synthetase: structural studies of the adenylation reaction. Biochemistry 39:8418–8425

    CAS  Google Scholar 

  60. Avis JM, Fersht AR (1993) Use of binding energy in catalysis: optimization of rate in a multistep reaction. Biochemistry 32:5321–5326

    CAS  Google Scholar 

  61. Avis JM, Day AG, Garcia GA, Fersht AR (1993) Reaction of modified and unmodified tRNA(Tyr) substrates with tyrosyl-tRNA synthetase (Bacillus stearothermophilus). Biochemistry 32:5312–5320

    CAS  Google Scholar 

  62. Xin Y, Li W, Dwyer DS, First EA (2000) Correlating amino acid conservation with function in tyrosyl-tRNA synthetase. J Mol Biol 303:287–298

    CAS  Google Scholar 

  63. Minajigi A, Francklyn CS (2008) RNA-assisted catalysis in a protein enzyme: the 2′-hydroxyl of tRNA(Thr) A76 promotes aminoacylation by threonyl-tRNA synthetase. Proc Natl Acad Sci USA 105:17748–17753

    CAS  Google Scholar 

  64. Li L, Weinreb V, Francklyn C, Carter CW Jr (2011) Histidyl-tRNA synthetase urzymes: class I and II aminoacyl tRNA synthetase urzymes have comparable catalytic activities for cognate amino acid activation. J Biol Chem 286:10387–10395

    CAS  Google Scholar 

  65. Pham Y, Kuhlman B, Butterfoss GL, Hu H, Weinreb V, Carter CW Jr (2010) Tryptophanyl-tRNA synthetase urzyme: a model to recapitulate molecular evolution and investigate intramolecular complementation. J Biol Chem 285:38590–38601

    CAS  Google Scholar 

  66. Pham Y, Li L, Kim A, Erdogan O, Weinreb V, Butterfoss GL, Kuhlman B, Carter CW Jr (2007) A minimal TrpRS catalytic domain supports sense/antisense ancestry of class I and II aminoacyl-tRNA synthetases. Mol Cell 25:851–862

    CAS  Google Scholar 

  67. Sekine S, Shichiri M, Bernier S, Chenevert R, Lapointe J, Yokoyama S (2006) Structural bases of transfer RNA-dependent amino acid recognition and activation by glutamyl-tRNA synthetase. Structure 14:1791–1799

    CAS  Google Scholar 

  68. Retailleau P, Huang X, Yin Y, Hu M, Weinreb V, Vachette P, Vonrhein C, Bricogne G, Roversi P, Ilyin V, Carter CW Jr (2003) Interconversion of ATP binding and conformational free energies by tryptophanyl-tRNA synthetase: structures of ATP bound to open and closed, pre-transition-state conformations. J Mol Biol 325:39–63

    CAS  Google Scholar 

  69. Shen N, Zhou M, Yang B, Yu Y, Dong X, Ding J (2008) Catalytic mechanism of the tryptophan activation reaction revealed by crystal structures of human tryptophanyl-tRNA synthetase in different enzymatic states. Nucleic Acids Res 36:1288–1299

    CAS  Google Scholar 

  70. Terada T, Nureki O, Ishitani R, Ambrogelly A, Ibba M, Soll D, Yokoyama S (2002) Functional convergence of two lysyl-tRNA synthetases with unrelated topologies. Nat Struct Biol 9:257–262

    CAS  Google Scholar 

  71. Schmitt E, Tanrikulu IC, Yoo TH, Panvert M, Tirrell DA, Mechulam Y (2009) Switching from an induced-fit to a lock-and-key mechanism in an aminoacyl-tRNA synthetase with modified specificity. J Mol Biol 394:843–851

    CAS  Google Scholar 

  72. Rath VL, Silvian LF, Beijer B, Sproat BS, Steitz TA (1998) How glutaminyl-tRNA synthetase selects glutamine. Structure 6:439–449

    CAS  Google Scholar 

  73. Bullock TL, Uter N, Nissan TA, Perona JJ (2003) Amino acid discrimination by a class I aminoacyl-tRNA synthetase specified by negative determinants. J Mol Biol 328:395–408

    CAS  Google Scholar 

  74. Corigliano EM, Perona JJ (2009) Architectural underpinnings of the genetic code for glutamine. Biochemistry 48:676–687

    CAS  Google Scholar 

  75. Konno M, Sumida T, Uchikawa E, Mori Y, Yanagisawa T, Sekine S, Yokoyama S (2009) Modeling of tRNA-assisted mechanism of Arg activation based on a structure of Arg-tRNA synthetase, tRNA, and an ATP analog (ANP). FEBS J 276:4763–4779

    CAS  Google Scholar 

  76. Fersht AR (1987) Dissection of the structure and activity of the tyrosyl-tRNA synthetase by site-directed mutagenesis. Biochemistry 26:8031–8037

    CAS  Google Scholar 

  77. First EA, Fersht AR (1993) Mutational and kinetic analysis of a mobile loop in tyrosyl-tRNA synthetase. Biochemistry 32:13658–13663

    CAS  Google Scholar 

  78. Cusack S, Yaremchuk A, Tukalo M (2000) The 2 A crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue. EMBO J 19:2351–2361

    CAS  Google Scholar 

  79. Kobayashi T, Takimura T, Sekine R, Kelly VP, Kamata K, Sakamoto K, Nishimura S, Yokoyama S (2005) Structural snapshots of the KMSKS loop rearrangement for amino acid activation by bacterial tyrosyl-tRNA synthetase. J Mol Biol 346:105–117

    CAS  Google Scholar 

  80. Sharma G, First EA (2009) Thermodynamic analysis reveals a temperature-dependent change in the catalytic mechanism of bacillus stearothermophilus tyrosyl-tRNA synthetase. J Biol Chem 284:4179–4190

    CAS  Google Scholar 

  81. Kapustina M, Carter CW Jr (2006) Computational studies of tryptophanyl-tRNA synthetase: activation of ATP by induced-fit. J Mol Biol 362:1159–1180

    CAS  Google Scholar 

  82. Retailleau P, Weinreb V, Hu M, Carter CW Jr (2007) Crystal structure of tryptophanyl-tRNA synthetase complexed with adenosine-5′ tetraphosphate: evidence for distributed use of catalytic binding energy in amino acid activation by class I aminoacyl-tRNA synthetases. J Mol Biol 369:108–128

    CAS  Google Scholar 

  83. Laowanapiban P, Kapustina M, Vonrhein C, Delarue M, Koehl P, Carter CW Jr (2009) Independent saturation of three TrpRS subsites generates a partially assembled state similar to those observed in molecular simulations. Proc Natl Acad Sci USA 106:1790–1795

    CAS  Google Scholar 

  84. Leatherbarrow RJ, Fersht AR, Winter G (1985) Transition-state stabilization in the mechanism of tyrosyl-tRNA synthetase revealed by protein engineering. Proc Natl Acad Sci USA 82:7840–7844

    CAS  Google Scholar 

  85. Weinreb V, Carter CW Jr (2008) Mg2+-free Bacillus stearothermophilus tryptophanyl-tRNA synthetase retains a major fraction of the overall rate enhancement for tryptophan activation. J Am Chem Soc 130:1488–1494

    CAS  Google Scholar 

  86. Weinreb V, Li L, Carter CW Jr (2012) A master switch couples Mg(2)(+)-assisted catalysis to domain motion in B. stearothermophilus tryptophanyl-tRNA Synthetase. Structure 20:128–138

    CAS  Google Scholar 

  87. Weinreb V, Li L, Campbell CL, Kaguni LS, Carter CW Jr (2009) Mg2+-assisted catalysis by B. stearothermophilus TrpRS is promoted by allosteric effects. Structure 17:952–964

    CAS  Google Scholar 

  88. Cammer S, Carter CW Jr (2010) Six Rossmannoid folds, including the class I aminoacyl-tRNA synthetases, share a partial core with the anti-codon-binding domain of a class II aminoacyl-tRNA synthetase. Bioinformatics 26:709–714

    CAS  Google Scholar 

  89. Uter NT, Perona JJ (2006) Active-site assembly in glutaminyl-tRNA synthetase by tRNA-mediated induced fit. Biochemistry 45:6858–6865

    CAS  Google Scholar 

  90. Xin Y, Li W, First EA (2000) Stabilization of the transition state for the transfer of tyrosine to tRNA(Tyr) by tyrosyl-tRNA synthetase. J Mol Biol 303:299–310

    CAS  Google Scholar 

  91. Lassila JK, Zalatan JG, Herschlag D (2011) Biological phosphoryl-transfer reactions: understanding mechanism and catalysis. Annu Rev Biochem 80:669–702

    CAS  Google Scholar 

  92. Black Pyrkosz A, Eargle J, Sethi A, Luthey-Schulten Z (2010) Exit strategies for charged tRNA from GluRS. J Mol Biol 397:1350–1371

    CAS  Google Scholar 

  93. Uter NT, Perona JJ (2004) Long-range intramolecular signaling in a tRNA synthetase complex revealed by pre-steady-state kinetics. Proc Natl Acad Sci USA 101:14396–14401

    CAS  Google Scholar 

  94. Fersht AR, Gangloff J, Dirheimer G (1978) Reaction pathway and rate-determining step in the aminoacylation of tRNAArg catalyzed by the arginyl-tRNA synthetase from yeast. Biochemistry 17:3740–3746

    CAS  Google Scholar 

  95. Liu C, Sanders JM, Pascal JM, Hou YM (2012) Adaptation to tRNA acceptor stem structure by flexible adjustment in the catalytic domain of class I tRNA synthetases. RNA 18:213–221

    CAS  Google Scholar 

  96. Mulvey RS, Fersht AR (1978) Mechanism of aminoacylation of transfer RNA. A pre-steady-state analysis of the reaction pathway catalyzed by the methionyl-tRNA synthetase of Bacillus stearothermophilus. Biochemistry 17:5591–5597

    CAS  Google Scholar 

  97. Cvetesic N, Perona JJ, Gruic-Sovulj I (2012) Kinetic partitioning between synthetic and editing pathways in class I aminoacyl-tRNA synthetases occurs at both pre-transfer and post-transfer hydrolytic steps. J Biol Chem 287:25381–25394

    CAS  Google Scholar 

  98. Ward WH, Fersht AR (1988) Tyrosyl-tRNA synthetase acts as an asymmetric dimer in charging tRNA. A rationale for half-of-the-sites activity. Biochemistry 27:5525–5530

    CAS  Google Scholar 

  99. Doublie S, Bricogne G, Gilmore C, Carter CW Jr (1995) Tryptophanyl-tRNA synthetase crystal structure reveals an unexpected homology to tyrosyl-tRNA synthetase. Structure 3:17–31

    CAS  Google Scholar 

  100. Eriani G, Delarue M, Poch O, Gangloff J, Moras D (1990) Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347:203–206

    CAS  Google Scholar 

  101. Cavarelli J, Eriani G, Rees B, Ruff M, Boeglin M, Mitschler A, Martin F, Gangloff J, Thierry JC, Moras D (1994) The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction. EMBO J 13:327–337

    CAS  Google Scholar 

  102. Dignam JD, Guo J, Griffith WP, Garbett NC, Holloway A, Mueser T (2011) Allosteric interaction of nucleotides and tRNA(ala) with E. coli alanyl-tRNA synthetase. Biochemistry 50:9886–9900

    CAS  Google Scholar 

  103. Cusack S (1993) Sequence, structure and evolutionary relationships between class 2 aminoacyl-tRNA synthetases: an update. Biochimie 75:1077–1081

    CAS  Google Scholar 

  104. Cavarelli J, Rees B, Ruff M, Thierry JC, Moras D (1993) Yeast tRNA(Asp) recognition by its cognate class II aminoacyl-tRNA synthetase. Nature 362:181–184

    CAS  Google Scholar 

  105. Belrhali H, Yaremchuk A, Tukalo M, Berthet-Colominas C, Rasmussen B, Bosecke P, Diat O, Cusack S (1995) The structural basis for seryl-adenylate and Ap4A synthesis by seryl-tRNA synthetase. Structure 3:341–352

    CAS  Google Scholar 

  106. Berthet-Colominas C, Seignovert L, Hartlein M, Grotli M, Cusack S, Leberman R (1998) The crystal structure of asparaginyl-tRNA synthetase from Thermus thermophilus and its complexes with ATP and asparaginyl-adenylate: the mechanism of discrimination between asparagine and aspartic acid. EMBO J 17:2947–2960

    CAS  Google Scholar 

  107. Schmitt E, Moulinier L, Fujiwara S, Imanaka T, Thierry JC, Moras D (1998) Crystal structure of aspartyl-tRNA synthetase from Pyrococcus kodakaraensis KOD: archaeon specificity and catalytic mechanism of adenylate formation. EMBO J 17:5227–5237

    CAS  Google Scholar 

  108. Arnez JG, Dock-Bregeon AC, Moras D (1999) Glycyl-tRNA synthetase uses a negatively charged pit for specific recognition and activation of glycine. J Mol Biol 286:1449–1459

    CAS  Google Scholar 

  109. Swairjo MA, Schimmel PR (2005) Breaking sieve for steric exclusion of a noncognate amino acid from active site of a tRNA synthetase. Proc Natl Acad Sci USA 102:988–993

    CAS  Google Scholar 

  110. Bilokapic S, Maier T, Ahel D, Gruic-Sovulj I, Soll D, Weygand-Durasevic I, Ban N (2006) Structure of the unusual seryl-tRNA synthetase reveals a distinct zinc-dependent mode of substrate recognition. EMBO J 25:2498–2509

    CAS  Google Scholar 

  111. Arnez JG, Sankaranarayanan R, Dock-Bregeon AC, Francklyn CS, Moras D (2000) Aminoacylation at the atomic level in class IIa aminoacyl-tRNA synthetases. J Biomol Struct Dyn 17:23–27

    Google Scholar 

  112. Sankaranarayanan R, Dock-Bregeon AC, Rees B, Bovee M, Caillet J, Romby P, Francklyn CS, Moras D (2000) Zinc ion mediated amino acid discrimination by threonyl-tRNA synthetase. Nat Struct Biol 7:461–465

    CAS  Google Scholar 

  113. Fishman R, Ankilova V, Moor N, Safro M (2001) Structure at 2.6 A resolution of phenylalanyl-tRNA synthetase complexed with phenylalanyl-adenylate in the presence of manganese. Acta Crystallogr D Biol Crystallogr 57:1534–1544

    CAS  Google Scholar 

  114. Guo M, Chong YE, Shapiro R, Beebe K, Yang XL, Schimmel P (2009) Paradox of mistranslation of serine for alanine caused by AlaRS recognition dilemma. Nature 462:808–812

    CAS  Google Scholar 

  115. Eiler S, Dock-Bregeon A, Moulinier L, Thierry JC, Moras D (1999) Synthesis of aspartyl-tRNA(Asp) in Escherichia coli – a snapshot of the second step. EMBO J 18:6532–6541

    CAS  Google Scholar 

  116. Arnez JG, Augustine JG, Moras D, Francklyn CS (1997) The first step of aminoacylation at the atomic level in histidyl-tRNA synthetase. Proc Natl Acad Sci USA 94:7144–7149

    CAS  Google Scholar 

  117. Guth EC, Francklyn CS (2007) Kinetic discrimination of tRNA identity by the conserved motif 2 loop of a class II aminoacyl-tRNA synthetase. Mol Cell 25:531–542

    CAS  Google Scholar 

  118. Dulic M, Pozar J, Bilokapic S, Weygand-Durasevic I, Gruic-Sovulj I (2011) An idiosyncratic serine ordering loop in methanogen seryl-tRNA synthetases guides substrates through seryl-tRNASer formation. Biochimie 93:1761–1769

    CAS  Google Scholar 

  119. Arnez JG, Harris DC, Mitschler A, Rees B, Francklyn CS, Moras D (1995) Crystal structure of histidyl-tRNA synthetase from Escherichia coli complexed with histidyl-adenylate. EMBO J 14:4143–4155

    CAS  Google Scholar 

  120. Banik SD, Nandi N (2010) Aminoacylation reaction in the histidyl-tRNA synthetase: fidelity mechanism of the activation step. J Phys Chem B 114:2301–2311

    CAS  Google Scholar 

  121. Ng JD, Sauter C, Lorber B, Kirkland N, Arnez J, Giege R (2002) Comparative analysis of space-grown and earth-grown crystals of an aminoacyl-tRNA synthetase: space-grown crystals are more useful for structural determination. Acta Crystallogr D Biol Crystallogr 58:645–652

    Google Scholar 

  122. Reshetnikova L, Moor N, Lavrik O, Vassylyev DG (1999) Crystal structures of phenylalanyl-tRNA synthetase complexed with phenylalanine and a phenylalanyl-adenylate analogue. J Mol Biol 287:555–568

    CAS  Google Scholar 

  123. Torres-Larios A, Sankaranarayanan R, Rees B, Dock-Bregeon AC, Moras D (2003) Conformational movements and cooperativity upon amino acid, ATP and tRNA binding in threonyl-tRNA synthetase. J Mol Biol 331:201–211

    CAS  Google Scholar 

  124. Yaremchuk A, Tukalo M, Grotli M, Cusack S (2001) A succession of substrate induced conformational changes ensures the amino acid specificity of Thermus thermophilus prolyl-tRNA synthetase: comparison with histidyl-tRNA synthetase. J Mol Biol 309:989–1002

    CAS  Google Scholar 

  125. Yanagisawa T, Ishii R, Fukunaga R, Kobayashi T, Sakamoto K, Yokoyama S (2008) Crystallographic studies on multiple conformational states of active-site loops in pyrrolysyl-tRNA synthetase. J Mol Biol 378:634–652

    CAS  Google Scholar 

  126. Bovee ML, Pierce MA, Francklyn CS (2003) Induced fit and kinetic mechanism of adenylation catalyzed by Escherichia coli threonyl-tRNA synthetase. Biochemistry 42:15102–15113

    CAS  Google Scholar 

  127. Cusack S, Yaremchuk A, Tukalo M (1996) The crystal structure of the ternary complex of T. thermophilus seryl-tRNA synthetase with tRNA(Ser) and a seryl-adenylate analogue reveals a conformational switch in the active site. EMBO J 15:2834–2842

    CAS  Google Scholar 

  128. Qiu X, Janson CA, Blackburn MN, Chhohan IK, Hibbs M, Abdel-Meguid SS (1999) Cooperative structural dynamics and a novel fidelity mechanism in histidyl-tRNA synthetase. Biochemistry 38:12296–12304

    CAS  Google Scholar 

  129. Moulinier L, Eiler S, Eriani G, Gangloff J, Thierry JC, Gabriel K, McClain WH, Moras D (2001) The structure of an AspRS-tRNA(Asp) complex reveals a tRNA-dependent control mechanism. EMBO J 20:5290–5301

    CAS  Google Scholar 

  130. Onesti S, Desogus G, Brevet A, Chen J, Plateau P, Blanquet S, Brick P (2000) Structural studies of lysyl-tRNA synthetase: conformational changes induced by substrate binding. Biochemistry 39:12853–12861

    CAS  Google Scholar 

  131. Moor N, Kotik-Kogan O, Tworowski D, Sukhanova M, Safro M (2006) The crystal structure of the ternary complex of phenylalanyl-tRNA synthetase with tRNAPhe and a phenylalanyl-adenylate analogue reveals a conformational switch of the CCA end. Biochemistry 45:10572–10583

    CAS  Google Scholar 

  132. Dibbelt L, Pachmann U, Zachau HG (1980) Serine activation is the rate limiting step of tRNASer aminoacylation by yeast seryl tRNA synthetase. Nucleic Acids Res 8:4021–4039

    CAS  Google Scholar 

  133. Dibbelt L, Zachau HG (1981) On the rate limiting step of yeast tRNAPhe aminoacylation. FEBS Lett 129:173–176

    CAS  Google Scholar 

  134. Sankaranarayanan R, Dock-Bregeon AC, Romby P, Caillet J, Springer M, Rees B, Ehresmann C, Ehresmann B, Moras D (1999) The structure of threonyl-tRNA synthetase-tRNA(Thr) complex enlightens its repressor activity and reveals an essential zinc ion in the active site. Cell 97:371–381

    CAS  Google Scholar 

  135. Nozawa K, O'Donoghue P, Gundllapalli S, Araiso Y, Ishitani R, Umehara T, Soll D, Nureki O (2009) Pyrrolysyl-tRNA synthetase-tRNA(Pyl) structure reveals the molecular basis of orthogonality. Nature 457:1163–1167

    CAS  Google Scholar 

  136. Biou V, Yaremchuk A, Tukalo M, Cusack S (1994) The 2.9 A crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNA(Ser). Science 263:1404–1410

    CAS  Google Scholar 

  137. Borel F, Vincent C, Leberman R, Hartlein M (1994) Seryl-tRNA synthetase from Escherichia coli: implication of its N-terminal domain in aminoacylation activity and specificity. Nucleic Acids Res 22:2963–2969

    CAS  Google Scholar 

  138. Eriani G, Cavarelli J, Martin F, Dirheimer G, Moras D, Gangloff J (1993) Role of dimerization in yeast aspartyl-tRNA synthetase and importance of the class II invariant proline. Proc Natl Acad Sci USA 90:10816–10820

    CAS  Google Scholar 

  139. Yaremchuk A, Cusack S, Tukalo M (2000) Crystal structure of a eukaryote/archaeon-like protyl-tRNA synthetase and its complex with tRNAPro(CGG). EMBO J 19:4745–4758

    CAS  Google Scholar 

  140. Yang XL, Otero FJ, Ewalt KL, Liu J, Swairjo MA, Kohrer C, RajBhandary UL, Skene RJ, McRee DE, Schimmel P (2006) Two conformations of a crystalline human tRNA synthetase-tRNA complex: implications for protein synthesis. EMBO J 25:2919–2929

    CAS  Google Scholar 

  141. Hauenstein SI, Hou YM, Perona JJ (2008) The homotetrameric phosphoseryl-tRNA synthetase from Methanosarcina mazei exhibits half-of-the-sites activity. J Biol Chem 283:21997–22006

    CAS  Google Scholar 

  142. Ambrogelly A, Kamtekar S, Stathopoulos C, Kennedy D, Soll D (2005) Asymmetric behavior of archaeal prolyl-tRNA synthetase. FEBS Lett 579:6017–6022

    CAS  Google Scholar 

  143. Coleman DE, Carter CW Jr (1984) Crystals of Bacillus stearothermophilus tryptophanyl-tRNA synthetase containing enzymatically formed acyl transfer product tryptophanyl-ATP, an active site maker for the 3′ CCA terminus of tryptophanyl-tRNATrp. Biochemistry 23:381–385

    CAS  Google Scholar 

  144. Liu H, Gauld JW (2008) Substrate-assisted catalysis in the aminoacyl transfer mechanism of histidyl-tRNA synthetase: a density functional theory study. J Phys Chem B 112:16874–16882

    CAS  Google Scholar 

  145. Huang W, Bushnell EA, Francklyn CS, Gauld JW (2011) The alpha-amino group of the threonine substrate as the general base during tRNA aminoacylation: a new version of substrate-assisted catalysis predicted by hybrid DFT. J Phys Chem A 115:13050–13060

    CAS  Google Scholar 

  146. Lee JW, Beebe K, Nangle LA, Jang J, Longo-Guess CM, Cook SA, Davisson MT, Sundberg JP, Schimmel P, Ackerman SL (2006) Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 443:50–55

    CAS  Google Scholar 

  147. Ruan B, Palioura S, Sabina J, Marvin-Guy L, Kochhar S, Larossa RA, Soll D (2008) Quality control despite mistranslation caused by an ambiguous genetic code. Proc Natl Acad Sci USA 105:16502–16507

    CAS  Google Scholar 

  148. Reynolds NM, Ling J, Roy H, Banerjee R, Repasky SE, Hamel P, Ibba M (2010) Cell-specific differences in the requirements for translation quality control. Proc Natl Acad Sci USA 107:4063–4068

    CAS  Google Scholar 

  149. Roy H, Ling J, Alfonzo J, Ibba M (2005) Loss of editing activity during the evolution of mitochondrial phenylalanyl-tRNA synthetase. J Biol Chem 280:38186–38192

    CAS  Google Scholar 

  150. Lue SW, Kelley SO (2005) An aminoacyl-tRNA synthetase with a defunct editing site. Biochemistry 44:3010–3016

    CAS  Google Scholar 

  151. Netzer N, Goodenbour JM, David A, Dittmar KA, Jones RB, Schneider JR, Boone D, Eves EM, Rosner MR, Gibbs JS, Embry A, Dolan B, Das S, Hickman HD, Berglund P, Bennink JR, Yewdell JW, Pan T (2009) Innate immune and chemically triggered oxidative stress modifies translational fidelity. Nature 462:522–526

    CAS  Google Scholar 

  152. Silvian LF, Wang J, Steitz TA (1999) Insights into editing from an ile-tRNA synthetase structure with tRNAile and mupirocin. Science 285:1074–1077

    CAS  Google Scholar 

  153. Fukai S, Nureki O, Sekine S, Shimada A, Tao J, Vassylyev DG, Yokoyama S (2000) Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNA(Val) and valyl-tRNA synthetase. Cell 103:793–803

    CAS  Google Scholar 

  154. Lincecum TL Jr, Tukalo M, Yaremchuk A, Mursinna RS, Williams AM, Sproat BS, Van Den Eynde W, Link A, Van Calenbergh S, Grotli M, Martinis SA, Cusack S (2003) Structural and mechanistic basis of pre- and posttransfer editing by leucyl-tRNA synthetase. Mol Cell 11:951–963

    CAS  Google Scholar 

  155. Roy H, Ling J, Irnov M, Ibba M (2004) Post-transfer editing in vitro and in vivo by the beta subunit of phenylalanyl-tRNA synthetase. EMBO J 23:4639–4648

    CAS  Google Scholar 

  156. Kotik-Kogan O, Moor N, Tworowski D, Safro M (2005) Structural basis for discrimination of L-phenylalanine from L-tyrosine by phenylalanyl-tRNA synthetase. Structure 13:1799–1807

    CAS  Google Scholar 

  157. Beebe K, Ribas De Pouplana L, Schimmel P (2003) Elucidation of tRNA-dependent editing by a class II tRNA synthetase and significance for cell viability. EMBO J 22:668–675

    CAS  Google Scholar 

  158. Francklyn CS (2008) DNA polymerases and aminoacyl-tRNA synthetases: shared mechanisms for ensuring the fidelity of gene expression. Biochemistry 47:11695–11703

    CAS  Google Scholar 

  159. Ling J, So BR, Yadavalli SS, Roy H, Shoji S, Fredrick K, Musier-Forsyth K, Ibba M (2009) Resampling and editing of mischarged tRNA prior to translation elongation. Mol Cell 33:654–660

    CAS  Google Scholar 

  160. An S, Musier-Forsyth K (2004) Trans-editing of Cys-tRNAPro by Haemophilus influenzae YbaK protein. J Biol Chem 279:42359–42362

    CAS  Google Scholar 

  161. Minajigi A, Francklyn CS (2010) Aminoacyl transfer rate dictates choice of editing pathway in threonyl-tRNA synthetase. J Biol Chem 285:23810–23817

    CAS  Google Scholar 

  162. Splan KE, Ignatov ME, Musier-Forsyth K (2008) Transfer RNA modulates the editing mechanism used by class II prolyl-tRNA synthetase. J Biol Chem 283:7128–7134

    CAS  Google Scholar 

  163. Gruic-Sovulj I, Rokov-Plavec J, Weygand-Durasevic I (2007) Hydrolysis of non-cognate aminoacyl-adenylates by a class II aminoacyl-tRNA synthetase lacking an editing domain. FEBS Lett 581:5110–5114

    CAS  Google Scholar 

  164. Ling J, Peterson KM, Simonovic I, Soll D, Simonovic M (2012) The mechanism of pre-transfer editing in yeast mitochondrial threonyl-tRNA synthetase. J Biol Chem 287:28518–28525

    CAS  Google Scholar 

  165. Rokov-Plavec J, Lesjak S, Gruic-Sovulj I, Mocibob M, Dulic M, Weygand-Durasevic I (2013) Substrate recognition and fidelity of maize seryl-tRNA synthetases. Arch Biochem Biophys 529:122–130

    CAS  Google Scholar 

  166. Gruic-Sovulj I, Dulic M, Weygand-Durasevic I (2011) Pre-transfer editing of serine hydroxamate within the active site of methanogenic-type seryl-tRNA synthetase. Croat Chim Acta 84:179–184

    CAS  Google Scholar 

  167. Gruic-Sovulj I, Dulic M, Cvetesic N, Majsec K, Weygand-Durasevic I (2010) Efficiently activated serine analog is not transferred to yeast tRNA(Ser). Croat Chim Acta 83:163–169

    CAS  Google Scholar 

  168. Jakubowski H (1980) Valyl-tRNA synthetase form yellow lupin seeds: hydrolysis of the enzyme-bound noncognate aminoacyl adenylate as a possible mechanism of increasing specificity of the aminoacyl-tRNA synthetase. Biochemistry 19:5071–5078

    CAS  Google Scholar 

  169. Zhu B, Yao P, Tan M, Eriani G, Wang ED (2009) tRNA-independent pretransfer editing by class I leucyl-tRNA synthetase. J Biol Chem 284:3418–3424

    CAS  Google Scholar 

  170. Jakubowski H (1991) Proofreading in vivo: editing of homocysteine by methionyl-tRNA synthetase in the yeast Saccharomyces cerevisiae. EMBO J 10:593–598

    CAS  Google Scholar 

  171. Serre L, Verdon G, Choinowski T, Hervouet N, Risler JL, Zelwer C (2001) How methionyl-tRNA synthetase creates its amino acid recognition pocket upon L-methionine binding. J Mol Biol 306:863–876

    CAS  Google Scholar 

  172. Jakubowski H (1999) Misacylation of tRNALys with noncognate amino acids by lysyl-tRNA synthetase. Biochemistry 38:8088–8093

    CAS  Google Scholar 

  173. Jakubowski H (1997) Aminoacyl thioester chemistry of class II aminoacyl-tRNA synthetases. Biochemistry 36:11077–11085

    CAS  Google Scholar 

  174. Levengood J, Ataide SF, Roy H, Ibba M (2004) Divergence in noncognate amino acid recognition between class I and class II lysyl-tRNA synthetases. J Biol Chem 279:17707–17714

    CAS  Google Scholar 

  175. Hopfield JJ, Yamane T, Yue V, Coutts SM (1976) Direct experimental evidence for kinetic proofreading in amino acylation of tRNAIle. Proc Natl Acad Sci USA 73:1164–1168

    CAS  Google Scholar 

  176. Boniecki MT, Vu MT, Betha AK, Martinis SA (2008) CP1-dependent partitioning of pretransfer and posttransfer editing in leucyl-tRNA synthetase. Proc Natl Acad Sci USA 105:19223–19228

    CAS  Google Scholar 

  177. Williams AM, Martinis SA (2006) Mutational unmasking of a tRNA-dependent pathway for preventing genetic code ambiguity. Proc Natl Acad Sci USA 103:3586–3591

    CAS  Google Scholar 

  178. Eldred EW, Schimmel PR (1972) Rapid deacylation by isoleucyl transfer ribonucleic acid synthetase of isoleucine-specific transfer ribonucleic acid aminoacylated with valine. J Biol Chem 247:2961–2964

    CAS  Google Scholar 

  179. Hati S, Ziervogel B, Sternjohn J, Wong FC, Nagan MC, Rosen AE, Siliciano PG, Chihade JW, Musier-Forsyth K (2006) Pre-transfer editing by class II prolyl-tRNA synthetase: role of aminoacylation active site in “selective release” of noncognate amino acids. J Biol Chem 281:27862–27872

    CAS  Google Scholar 

  180. Ling J, Peterson KM, Simonovic I, Cho C, Soll D, Simonovic M (2012) Yeast mitochondrial threonyl-tRNA synthetase recognizes tRNA isoacceptors by distinct mechanisms and promotes CUN codon reassignment. Proc Natl Acad Sci USA 109:3281–3286

    CAS  Google Scholar 

  181. Lin SX, Baltzinger M, Remy P (1984) Fast kinetic study of yeast phenylalanyl-tRNA synthetase: role of tRNAPhe in the discrimination between tyrosine and phenylalanine. Biochemistry 23:4109–4116

    CAS  Google Scholar 

  182. Nomanbhoy TK, Hendrickson TL, Schimmel P (1999) Transfer RNA-dependent translocation of misactivated amino acids to prevent errors in protein synthesis. Mol Cell 4:519–528

    CAS  Google Scholar 

  183. Farrow MA, Schimmel P (2001) Editing by a tRNA synthetase: DNA aptamer-induced translocation and hydrolysis of a misactivated amino acid. Biochemistry 40:4478–4483

    CAS  Google Scholar 

  184. Hendrickson TL, Nomanbhoy TK, de Crecy-Lagard V, Fukai S, Nureki O, Yokoyama S, Schimmel P (2002) Mutational separation of two pathways for editing by a class I tRNA synthetase. Mol Cell 9:353–362

    CAS  Google Scholar 

  185. Bishop AC, Nomanbhoy TK, Schimmel P (2002) Blocking site-to-site translocation of a misactivated amino acid by mutation of a class I tRNA synthetase. Proc Natl Acad Sci USA 99:585–590

    CAS  Google Scholar 

  186. Dock-Bregeon AC, Rees B, Torres-Larios A, Bey G, Caillet J, Moras D (2004) Achieving error-free translation; the mechanism of proofreading of threonyl-tRNA synthetase at atomic resolution. Mol Cell 16:375–386

    CAS  Google Scholar 

  187. Lin L, Hale SP, Schimmel P (1996) Aminoacylation error correction. Nature 384:33–34

    CAS  Google Scholar 

  188. Betha AK, Williams AM, Martinis SA (2007) Isolated CP1 domain of Escherichia coli leucyl-tRNA synthetase is dependent on flanking hinge motifs for amino acid editing activity. Biochemistry 46:6258–6267

    CAS  Google Scholar 

  189. Beuning PJ, Musier-Forsyth K (2001) Species-specific differences in amino acid editing by class II prolyl-tRNA synthetase. J Biol Chem 276:30779–30785

    CAS  Google Scholar 

  190. SternJohn J, Hati S, Siliciano PG, Musier-Forsyth K (2007) Restoring species-specific posttransfer editing activity to a synthetase with a defunct editing domain. Proc Natl Acad Sci USA 104:2127–2132

    Google Scholar 

  191. Guo LT, Helgadottir S, Soll D, Ling J (2012) Rational design and directed evolution of a bacterial-type glutaminyl-tRNA synthetase precursor. Nucleic Acids Res 40:7967–7974

    CAS  Google Scholar 

  192. Wong FC, Beuning PJ, Silvers C, Musier-Forsyth K (2003) An isolated class II aminoacyl-tRNA synthetase insertion domain is functional in amino acid editing. J Biol Chem 278:52857–52864

    CAS  Google Scholar 

  193. Nureki O, Vassylyev DG, Tateno M, Shimada A, Nakama T, Fukai S, Konno M, Hendrickson TL, Schimmel P, Yokoyama S (1998) Enzyme structure with two catalytic sites for double-sieve selection of substrate. Science 280:578–582

    CAS  Google Scholar 

  194. Mascarenhas AP, Martinis SA (2009) A glycine hinge for tRNA-dependent translocation of editing substrates to prevent errors by leucyl-tRNA synthetase. FEBS Lett 583:3443–3447

    CAS  Google Scholar 

  195. Rock FL, Mao W, Yaremchuk A, Tukalo M, Crepin T, Zhou H, Zhang YK, Hernandez V, Akama T, Baker SJ, Plattner JJ, Shapiro L, Martinis SA, Benkovic SJ, Cusack S, Alley MR (2007) An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site. Science 316:1759–1761

    CAS  Google Scholar 

  196. Fukunaga R, Yokoyama S (2007) Structure of the AlaX-M trans-editing enzyme from Pyrococcus horikoshii. Acta Crystallogr D Biol Crystallogr 63:390–400

    CAS  Google Scholar 

  197. Sokabe M, Okada A, Yao M, Nakashima T, Tanaka I (2005) Molecular basis of alanine discrimination in editing site. Proc Natl Acad Sci USA 102:11669–11674

    CAS  Google Scholar 

  198. Sasaki HM, Sekine S, Sengoku T, Fukunaga R, Hattori M, Utsunomiya Y, Kuroishi C, Kuramitsu S, Shirouzu M, Yokoyama S (2006) Structural and mutational studies of the amino acid-editing domain from archaeal/eukaryal phenylalanyl-tRNA synthetase. Proc Natl Acad Sci USA 103:14744–14749

    CAS  Google Scholar 

  199. Hussain T, Kruparani SP, Pal B, Dock-Bregeon AC, Dwivedi S, Shekar MR, Sureshbabu K, Sankaranarayanan R (2006) Post-transfer editing mechanism of a D-aminoacyl-tRNA deacylase-like domain in threonyl-tRNA synthetase from archaea. EMBO J 25:4152–4162

    CAS  Google Scholar 

  200. Murayama K, Kato-Murayama M, Katsura K, Uchikubo-Kamo T, Yamaguchi-Hirafuji M, Kawazoe M, Akasaka R, Hanawa-Suetsugu K, Hori-Takemoto C, Terada T, Shirouzu M, Yokoyama S (2005) Structure of a putative trans-editing enzyme for prolyl-tRNA synthetase from Aeropyrum pernix K1 at 1.7 A resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 61:26–29

    CAS  Google Scholar 

  201. Fukunaga R, Yokoyama S (2005) Structural basis for non-cognate amino acid discrimination by the valyl-tRNA synthetase editing domain. J Biol Chem 280:29937–29945

    CAS  Google Scholar 

  202. Fukunaga R, Fukai S, Ishitani R, Nureki O, Yokoyama S (2004) Crystal structures of the CP1 domain from Thermus thermophilus isoleucyl-tRNA synthetase and its complex with L-valine. J Biol Chem 279:8396–8402

    CAS  Google Scholar 

  203. Seiradake E, Mao W, Hernandez V, Baker SJ, Plattner JJ, Alley MR, Cusack S (2009) Crystal structures of the human and fungal cytosolic leucyl-tRNA synthetase editing domains: a structural basis for the rational design of antifungal benzoxaboroles. J Mol Biol 390:196–207

    CAS  Google Scholar 

  204. Fukunaga R, Yokoyama S (2006) Structural basis for substrate recognition by the editing domain of isoleucyl-tRNA synthetase. J Mol Biol 359:901–912

    CAS  Google Scholar 

  205. Liu Y, Liao J, Zhu B, Wang ED, Ding J (2006) Crystal structures of the editing domain of Escherichia coli leucyl-tRNA synthetase and its complexes with Met and Ile reveal a lock-and-key mechanism for amino acid discrimination. Biochem J 394:399–407

    CAS  Google Scholar 

  206. Mursinna RS, Lincecum TL Jr, Martinis SA (2001) A conserved threonine within Escherichia coli leucyl-tRNA synthetase prevents hydrolytic editing of leucyl-tRNALeu. Biochemistry 40:5376–5381

    CAS  Google Scholar 

  207. Hussain T, Kamarthapu V, Kruparani SP, Deshmukh MV, Sankaranarayanan R (2010) Mechanistic insights into cognate substrate discrimination during proofreading in translation. Proc Natl Acad Sci USA 107:22117–22121

    CAS  Google Scholar 

  208. Kumar S, Das M, Hadad CM, Musier-Forsyth K (2012) Substrate specificity of bacterial prolyl-tRNA synthetase editing domain is controlled by a tunable hydrophobic pocket. J Biol Chem 287:3175–3184

    CAS  Google Scholar 

  209. Ahel I, Stathopoulos C, Ambrogelly A, Sauerwald A, Toogood H, Hartsch T, Soll D (2002) Cysteine activation is an inherent in vitro property of prolyl-tRNA synthetases. J Biol Chem 277:34743–34748

    CAS  Google Scholar 

  210. Ahel I, Korencic D, Ibba M, Soll D (2003) Trans-editing of mischarged tRNAs. Proc Natl Acad Sci USA 100:15422–15427

    CAS  Google Scholar 

  211. Pasman Z, Robey-Bond S, Mirando AC, Smith GJ, Lague A, Francklyn CS (2011) Substrate specificity and catalysis by the editing active site of alanyl-tRNA synthetase from Escherichia coli. Biochemistry 50:1474–1482

    CAS  Google Scholar 

  212. Waas WF, Schimmel P (2007) Evidence that tRNA synthetase-directed proton transfer stops mistranslation. Biochemistry 46:12062–12070

    CAS  Google Scholar 

  213. Beebe K, Merriman E, Ribas De Pouplana L, Schimmel P (2004) A domain for editing by an archaebacterial tRNA synthetase. Proc Natl Acad Sci USA 101:5958–5963

    CAS  Google Scholar 

  214. Korencic D, Ahel I, Schelert J, Sacher M, Ruan B, Stathopoulos C, Blum P, Ibba M, Soll D (2004) A freestanding proofreading domain is required for protein synthesis quality control in archaea. Proc Natl Acad Sci USA 101:10260–10265

    CAS  Google Scholar 

  215. Dwivedi S, Kruparani SP, Sankaranarayanan R (2005) A D-amino acid editing module coupled to the translational apparatus in archaea. Nat Struct Mol Biol 12:556–557

    CAS  Google Scholar 

  216. Hagiwara Y, Field MJ, Nureki O, Tateno M (2010) Editing mechanism of aminoacyl-tRNA synthetases operates by a hybrid ribozyme/protein catalyst. J Am Chem Soc 132:2751–2758

    CAS  Google Scholar 

  217. Ling J, Roy H, Ibba M (2007) Mechanism of tRNA-dependent editing in translational quality control. Proc Natl Acad Sci USA 104:72–77

    CAS  Google Scholar 

  218. Sheoran A, Sharma G, First EA (2008) Activation of D-tyrosine by Bacillus stearothermophilus tyrosyl-tRNA synthetase: 1. Pre-steady-state kinetic analysis reveals the mechanistic basis for the recognition of D-tyrosine. J Biol Chem 283:12960–12970

    CAS  Google Scholar 

  219. Sheoran A, First EA (2008) Activation of D-tyrosine by Bacillus stearothermophilus tyrosyl-tRNA synthetase: 2. Cooperative binding of ATP is limited to the initial turnover of the enzyme. J Biol Chem 283:12971–12980

    CAS  Google Scholar 

  220. Calendar R, Berg P (1967) D-Tyrosyl RNA: formation, hydrolysis and utilization for protein synthesis. J Mol Biol 26:39–54

    CAS  Google Scholar 

  221. An S, Musier-Forsyth K (2005) Cys-tRNA(Pro) editing by Haemophilus influenzae YbaK via a novel synthetase.YbaK.tRNA ternary complex. J Biol Chem 280:34465–34472

    CAS  Google Scholar 

  222. Ruan B, Soll D (2005) The bacterial YbaK protein is a Cys-tRNAPro and Cys-tRNA Cys deacylase. J Biol Chem 280:25887–25891

    CAS  Google Scholar 

  223. So BR, An S, Kumar S, Das M, Turner DA, Hadad CM, Musier-Forsyth K (2011) Substrate-mediated fidelity mechanism ensures accurate decoding of proline codons. J Biol Chem 286:31810–31820

    CAS  Google Scholar 

  224. Kumar S, Das M, Hadad CM, Musier-Forsyth K (2013) Aminoacyl-tRNA substrate and enzyme backbone atoms contribute to translational quality control by YbaK. J Phys Chem B 117:4521–4527

    CAS  Google Scholar 

  225. Sanford B, Cao B, Johnson JM, Zimmerman K, Strom AM, Mueller RM, Bhattacharyya S, Musier-Forsyth K, Hati S (2012) Role of coupled dynamics in the catalytic activity of prokaryotic-like prolyl-tRNA synthetases. Biochemistry 51:2146–2156

    CAS  Google Scholar 

  226. Beebe K, Mock M, Merriman E, Schimmel P (2008) Distinct domains of tRNA synthetase recognize the same base pair. Nature 451:90–93

    CAS  Google Scholar 

  227. Guo M, Chong YE, Beebe K, Shapiro R, Yang XL, Schimmel P (2009) The C-Ala domain brings together editing and aminoacylation functions on one tRNA. Science 325:744–747

    CAS  Google Scholar 

  228. Chong YE, Yang XL, Schimmel P (2008) Natural homolog of tRNA synthetase editing domain rescues conditional lethality caused by mistranslation. J Biol Chem 283:30073–30078

    CAS  Google Scholar 

  229. O'Donoghue P, Luthey-Schulten Z (2003) On the evolution of structure in aminoacyl-tRNA synthetases. Microbiol Mol Biol Rev 67:550–573

    Google Scholar 

  230. Ibba M, Morgan S, Curnow AW, Pridmore DR, Vothknecht UC, Gardner W, Lin W, Woese CR, Soll D (1997) A euryarchaeal lysyl-tRNA synthetase: resemblance to class I synthetases. Science 278:1119–1122

    CAS  Google Scholar 

  231. Sauerwald A, Zhu W, Major TA, Roy H, Palioura S, Jahn D, Whitman WB, Yates JR 3rd, Ibba M, Soll D (2005) RNA-dependent cysteine biosynthesis in archaea. Science 307:1969–1972

    CAS  Google Scholar 

  232. Hao B, Gong W, Ferguson TK, James CM, Krzycki JA, Chan MK (2002) A new UAG-encoded residue in the structure of a methanogen methyltransferase. Science 296:1462–1466

    CAS  Google Scholar 

  233. Srinivasan G, James CM, Krzycki JA (2002) Pyrrolysine encoded by UAG in archaea: charging of a UAG-decoding specialized tRNA. Science 296:1459–1462

    CAS  Google Scholar 

  234. Polycarpo C, Ambrogelly A, Berube A, Winbush SM, McCloskey JA, Crain PF, Wood JL, Soll D (2004) An aminoacyl-tRNA synthetase that specifically activates pyrrolysine. Proc Natl Acad Sci USA 101:12450–12454

    CAS  Google Scholar 

  235. Blight SK, Larue RC, Mahapatra A, Longstaff DG, Chang E, Zhao G, Kang PT, Green-Church KB, Chan MK, Krzycki JA (2004) Direct charging of tRNA(CUA) with pyrrolysine in vitro and in vivo. Nature 431:333–335

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Nevena Cvetesic and Andrew Hadd for assistance with figures. This work was supported by the National Institutes of Health (GM63713 and 1RO3TW008024) and by the Croatian Science Foundation (grant 09.01/293). I.G.S. thanks the Adris foundation for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Perona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Perona, J.J., Gruic-Sovulj, I. (2013). Synthetic and Editing Mechanisms of Aminoacyl-tRNA Synthetases. In: Kim, S. (eds) Aminoacyl-tRNA Synthetases in Biology and Medicine. Topics in Current Chemistry, vol 344. Springer, Dordrecht. https://doi.org/10.1007/128_2013_456

Download citation

Publish with us

Policies and ethics