Skip to main content

Differentiation of Enantiomers by Capillary Electrophoresis

  • Chapter
  • First Online:
Differentiation of Enantiomers I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 340))

Abstract

Capillary electrophoresis (CE) has matured to one of the major liquid phase enantiodifferentiation techniques since the first report in 1985. This can be primarily attributed to the flexibility as well as the various modes available including electrokinetic chromatography (EKC), micellar electrokinetic chromatography (MEKC), and microemulsion electrokinetic chromatography (MEEKC). In contrast to chromatographic techniques, the chiral selector is mobile in the background electrolyte. Furthermore, a large variety of chiral selectors are available that can be easily combined in the same separation system. In addition, the migration order of the enantiomers can be adjusted by a number of approaches. In CE enantiodifferentiations the separation principle is comparable to chromatography while the principle of the movement of the analytes in the capillary is based on electrophoretic phenomena. The present chapter will focus on mechanistic aspects of CE enantioseparations including enantiomer migration order and the current understanding of selector–selectand structures. Selected examples of the basic enantioseparation modes EKC, MEKC, and MEEKC will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CD:

Cyclodextrin

Dns:

Dansyl

EKC:

Electrokinetic chromatography

EOF:

Electroosmotic flow

id:

Inner diameter

MEKC:

Micellar electrokinetic chromatography

MEEKC:

Microemulsion electrokinetic chromatography

(+)-18C6H4:

(+)-(18-Crown-6)-2,3,11,12-tetracarboxylic acid

References

  1. Kant I (1783) Prolegomena zu einer jeden künftigen Metaphysik die als Wissenschaft wird auftreten können. English translation: Hatfield G (1997) Prolegomena to any future metaphysics that will be able to come forward as science. Cambridge University Press, New York

    Google Scholar 

  2. Jorgenson JW, Lukacs KA (1981) Free zone capillary electrophoresis in open-tubular glass capillaries. Anal Chem 53:1298–1302

    CAS  Google Scholar 

  3. Gassmann E, Kuo JE, Zare R (1985) Electrokinetic separation of chiral compounds. Science 230:813–814

    CAS  Google Scholar 

  4. Cohen AS, Paulus A, Karger BL (1987) High-performance capillary electrophoresis using open tubes and gels. Chromatographia 24:15–24

    CAS  Google Scholar 

  5. Snopek J, Jelinek I, Smolkova-Keulemansova E (1988) Use of cyclodextrins in isotachophoresis: IV. The influence of cyclodextrins on the chiral resolution of ephedrine alkaloid enantiomers. J Chromatogr 438:211–218

    CAS  Google Scholar 

  6. Snopek J, Jelinek I, Smolkova-Keulemansova E (1988) Use of cyclodextrins in isotachophoresis: V. The separation of ketotifen and its polar intermediate enantiomers. J Chromatogr 439:386–392

    Google Scholar 

  7. Jelinek I, Dohnal J, Snopek J, Smolkova-Keulemansova E (1989) Use of cyclodextrins in isotachophoresis: VII. Resolution of structurally related and chiral phenothiazines. J Chromatogr 464:139–147

    CAS  Google Scholar 

  8. Guttman A, Paulus A, Cohen AS, Grinberg N, Karger BL (1988) Use of complexing agents for selective separation in high-performance capillary electrophoresis: chiral resolution via cyclodextrins incorporated within polyacrylamide gel columns. J Chromatogr 448:41–53

    CAS  Google Scholar 

  9. Fanali S (1989) Separation of optical isomers by capillary zone electrophoresis based on host-guest complexation with cyclodextrins. J Chromatogr 474:441–446

    CAS  Google Scholar 

  10. Terabe S (1989) Electrokinetic chromatography: an interface between electrophoresis and chromatography. Trends Anal Chem 8:129–134

    CAS  Google Scholar 

  11. Terabe S, Shibata M, Miyashita Y (1989) Chiral separation by electrokinetic chromatography with bile salt micelles. J Chromatogr 480:403–411

    CAS  Google Scholar 

  12. Dobashi A, Ono T, Hara S (1989) Optical resolution of enantiomers with chiral mixed micelles by electrokinetic chromatography. Anal Chem 61:1984–1986

    CAS  Google Scholar 

  13. Dobashi A, Ono T, Hara S, Yamaguchi J (1989) Enantioselective hydrophobic entanglement of enantiomeric solutes with chiral functionalized micelles by electrokinetic chromatography. J Chromatogr 480:413–420

    CAS  Google Scholar 

  14. Van Eeckhaut A, Michotte Y (2006) Chiral separations by capillary electrophoresis: recent developments and applications. Electrophoresis 27:2880–2895

    Google Scholar 

  15. Chankvetadze B (2007) Enantioseparations by using capillary electrophoretic technique. J Chromatogr A 1168:45–70

    CAS  Google Scholar 

  16. Gübitz G, Schmid MG (2008) Chiral separation by capillary electromigration techniques. J Chromatogr A 1204:140–156

    Google Scholar 

  17. Mikus P, Marakova K (2009) Advanced CE for chiral analysis of drugs, metabolites and biomarkers in biological samples. Electrophoresis 30:2773–2802

    CAS  Google Scholar 

  18. Preinstorfer B, Lämmerhofer M, Lindner W (2009) Advances in enantioselective separations using electromigration capillary techniques. Electrophoresis 30:100–132

    Google Scholar 

  19. Caslavska J, Thormann W (2011) Stereoselective determination of drugs and metabolites in body fluids, tissues and microsomal preparations by capillary electrophoresis (2000–2010). J Chromatogr A 1218:588–601

    CAS  Google Scholar 

  20. Scriba GKE (2011) Fundamental aspects of chiral electromigration techniques and application in pharmaceutical and biomedical analysis. J Pharm Biomed Anal 55:688–701

    CAS  Google Scholar 

  21. Scriba GKE (2011) Chiral electromigration techniques in pharmaceutical and biomedical analysis. Bioanal Rev 3:95–114

    Google Scholar 

  22. Lu H, Chen G (2011) Recent advances of enantioseparations in capillary electrophoresis and capillary electrochromatography. Anal Methods 3:488–508

    CAS  Google Scholar 

  23. Chankvetadze B (1997) Capillary electrophoresis in chiral analysis. Wiley, Chichester

    Google Scholar 

  24. Van Eeckhaut A, Michotte Y (eds) (2010) Chiral separations by capillary electrophoresis. CRC, Boca Raton

    Google Scholar 

  25. Chankvetadze B (1997) Separation selectivity in chiral capillary electrophoresis with charged selectors. J Chromatogr A 792:269–295

    CAS  Google Scholar 

  26. Sänger-van de Griend CE, Gröningsson K, Arvidsson T (1997) Enantiomeric separation of a tetrapeptide with cyclodextrin extension of the model for chiral capillary electrophoresis by complex formation of one enantiomer molecule with more than one chiral selector molecules. J Chromatogr A 782:271–279

    Google Scholar 

  27. Bowser MT, Kranack AR, Chen DDY (1998) Properties of multivariate binding isotherms in capillary electrophoresis. Anal Chem 70:1076–1084

    CAS  Google Scholar 

  28. Bowser MT, Chen DDY (1998) Higher order equilibria and their effect on analyte migration behavior in capillary electrophoresis. Anal Chem 70:3261–3270

    CAS  Google Scholar 

  29. Scriba GKE (2002) Selected fundamental aspects of chiral electromigration techniques and their application to pharmaceutical and biomedical analysis. J Pharm Biomed Anal 27:373–399

    CAS  Google Scholar 

  30. Rizzi A (2001) Fundamental aspects of chiral separations by capillary electrophoresis. Electrophoresis 22:3079–3106

    CAS  Google Scholar 

  31. Wren SAC, Rowe RC (1992) Theoretical aspects of chiral separation in capillary electrophoresis. I. Initial evaluation of a model. J Chromatogr A 603:235–241

    CAS  Google Scholar 

  32. Stepanova ND, Stepanov AV (1969) Influence of temperature on the effectiveness of the electromigration separation of calcium and strontium in citric acid solutions. Zh Prikl Khimii (Russ J Appl Chem Engl Ed) 42:1670–1673

    CAS  Google Scholar 

  33. Chankvetadze B, Lindner W, Scriba GKE (2004) Enantiomer separations in capillary electrophoresis in the case of equal binding constants of the enantiomer with a chiral selector: commentary on the feasibility of the concept. Anal Chem 76:4256–4260

    CAS  Google Scholar 

  34. Lomsadze K, Martinez-Giron AB, Castro-Puyana M, Chankvetadze L, Crego AL, Salgado A, Marina ML, Chankvetadze B (2009) About the role of enantioselective selector-selectand interactions and the mobilities of diastereomeric associates in enantiomer separations using CE. Electrophoresis 30:2803–2811

    CAS  Google Scholar 

  35. Süß F, Sänger-van de Griend CE, Scriba GKE (2003) Migration order of dipeptides and tripeptide enantiomers in the presence of single isomer and randomly sulfated cyclodextrins as a function of pH. Electrophoresis 24:1069–1076

    Google Scholar 

  36. Rizzi AM, Kremser L (1999) pKa shift-associated effects in enantioseparations by cyclodextrin-mediated capillary zone electrophoresis. Electrophoresis 20:2715–2722

    CAS  Google Scholar 

  37. Rawjee YY, Staerk DU, Vigh G (1993) Capillary electrophoretic chiral separations with cyclodextrin additives: I. acids: chiral selectivity as a function of pH and the concentration of β-cyclodextrin for fenoprofen and ibuprofen. J Chromatogr 635:291–306

    CAS  Google Scholar 

  38. Rawjee YY, Williams RL, Vigh G (1993) Capillary electrophoretic chiral separations using β-cyclodextrin as resolving agent II. Bases: chiral selectivity as a function of pH and the concentration of β-cyclodextrin. J Chromatogr A 652:233–245

    CAS  Google Scholar 

  39. Rawjee YY, Williams RL, Vigh G (1994) Capillary electrophoretic chiral separations using cyclodextrin additives: III. Peak resolution surfaces for ibuprofen and homatropine as a function of the pH and the concentration of β-cyclodextrin. J Chromatogr 680:599–607

    CAS  Google Scholar 

  40. Williams BA, Vigh G (1977) A dry look at CHARM (charged resolving agent migration) model of enantiomer separations by capillary electrophoresis. J Chromatogr A 777:295–309

    Google Scholar 

  41. Zhu W, Vigh G (2000) Experimental verification of a predicted, hitherto unseen separations electivity pattern in the nonaqueous capillary electrophoretic separation of weak base enantiomers by oktakis (2,3-diacetyl-6-sulfato)-γ-cyclodextrin. Electrophoresis 21:2016–2024

    CAS  Google Scholar 

  42. Dubsky P, Svobodova J, Gas B (2008) Model of CE enantioseparation systems with a mixture of chiral selectors. Part I. Theory of migration and interconversion. J Chromatogr B 875:30–34

    CAS  Google Scholar 

  43. Dubsky P, Svobodova J, Tesarova E, Gas B (2010) Enhanced selectivity in CZE multi chiral selector enantioseparation systems: proposed separation mechanism. Electrophoresis 31:1435–1441

    CAS  Google Scholar 

  44. Chankvetadze B, Schulte G, Blaschke G (1997) Nature and design of enantiomer migration order in chiral capillary electrophoresis. Enantiomer 2:157–179

    CAS  Google Scholar 

  45. Chankvetadze B (2002) Enantiomer migration order in chiral capillary electrophoresis. Electrophoresis 23:4022–4035

    CAS  Google Scholar 

  46. Wang J, Warner IM (1994) Chiral separations using micellar electrokinetic capillary chromatography and a polymerized chiral micelle. Anal Chem 66:3773–3776

    CAS  Google Scholar 

  47. Zheng Z, Lin J, Qu F, Hobo T (2003) Chiral separation with ligand-exchange micellar electrokinetic chromatography using a D-penicillamine-copper(II) ternary complex as chiral selector. Electrophoresis 24:4221–4226

    CAS  Google Scholar 

  48. Tano C, Son SH, Furukawa J, Furuike T, Sakairi N (2008) Dodecyl thioglycopyranoside sulfates: novel sugar-based surfactants for enantiomeric separations by micellar electrokinetic capillary chromatography. Electrophoresis 29:2869–2875

    CAS  Google Scholar 

  49. Lee W, La S, Choi Y, Kim KR (2003) Chiral discrimination of aromatic amino acids by capillary electrophoresis in (+)- and (−)-(18-crown-6)-2,3,11,12-tetracarboxylic acid selector modes. Bull Korean Chem Soc 24:1232–1234

    CAS  Google Scholar 

  50. Vaccher MP, Lipka E, Bonte JP, Foulon C, Groossens JF, Vaccher C (2005) Enantiomeric analysis of baclofen by capillary zone electrophoresis, using highly sulfated cyclodextrins: inclusion ionization constant pKa determination. Electrophoresis 26:2974–2983

    CAS  Google Scholar 

  51. Lipka E, Charton J, Vaccher MP, Folly-Klan M, Bonte JP, Vaccher C (2009) Enantioseparation of chiral benzimidazole derivatives by electrokinetic chromatography using sulfated cyclodextrins. J Sep Sci 32:1907–1915

    CAS  Google Scholar 

  52. Dominguez Vega E, Lomsadze K, Chankvetadze L, Salgado A, Scriba GKE, Calvo E, López JA, Crego AL, Marina ML, Chankvetadze B (2011) Separation of enantiomers of ephedrine by capillary electrophoresis using cyclodextrins as chiral selectors: comparative CE, NMR and high resolution MS studies. Electrophoresis 32:2640–2647

    Google Scholar 

  53. Lomsadze K, Domínguez Vega E, Salgado A, Crego AL, Scriba GKE, Marina ML, Chankvetadze B (2012) Separation of enantiomers of norephedrine by capillary electrophoresis using cyclodextrins as chiral selectors: comparative CE and NMR studies. Electrophoresis 33:1637–1647

    CAS  Google Scholar 

  54. Samakashvili S, Salgado A, Scriba GKE, Chankvetadze B (2013) Comparative enantioseparation of ketoprofen with trimethylated α-, β- and γ-cyclodextrin in capillary electrophoresis and study of related selector-selectand interactions using nuclear magnetic resonance spectroscopy. Chirality 25:79–88

    CAS  Google Scholar 

  55. Chankvetadze B, Burjanadze N, Breitkreutz J, Bergander K, Bergenthal D, Kataeva O, Fröhlich R, Luftmann H, Blaschke G (2002) Mechanistic study of the opposite migration order of the enantiomers of ketamine with α- and β-cyclodextrin in capillary electrophoresis. J Sep Sci 25:1155–1166

    CAS  Google Scholar 

  56. Chankvetadze L, Servais AC, Fillet M, Salgado A, Crommen J, Chankvetadze B (2012) Comparative enantioseparation of talinolol in aqueous and non-aqueous capillary electrophoresis and study of related selector-selectand interactions by nuclear magnetic resonance spectroscopy. J Chromatogr A 1267:206–216

    CAS  Google Scholar 

  57. Süß F, Poppitz W, Sänger-van de Griend CE, Scriba GKE (2001) Influence of the amino acid sequence and nature of the cyclodextrin on the separation of small peptide enantiomers by capillary electrophoresis using randomly substituted and single isomer sulfated and sulfonated cyclodextrins. Electrophoresis 22:2416–2423

    Google Scholar 

  58. Fillet M, Chankvetadze B, Crommen J, Blaschke G (1999) Designed combination of chiral selectors for adjustment of enantioseparation selectivity in capillary electrophoresis. Electrophoresis 20:2691–2697

    CAS  Google Scholar 

  59. Scriba GKE (2003) Recent advances in enantioseparations of peptides by capillary electrophoresis. Electrophoresis 24:4063–4077

    CAS  Google Scholar 

  60. Li J, Waldron KC (1999) Estimation of the pH-independent binding constants of alanylphenylalanine and leucylphenylalanine stereoisomers with β-cyclodextrin in the presence of urea. Electrophoresis 20:171–179

    CAS  Google Scholar 

  61. Sabbah S, Süß F, Scriba GKE (2001) pH-dependence of complexation constants and complex mobility in capillary electrophoresis separations of dipeptide enantiomers. Electrophoresis 22:3163–3170

    CAS  Google Scholar 

  62. Servais AC, Rousseau A, Fillet M, Lomsadze K, Salgado A, Crommen J, Chankvetadze B (2010) Separation of propranolol enantiomers by CE using sulfated β-CD derivatives in aqueous and non-aqueous electrolytes; comparative CE and NMR study. Electrophoresis 31:1467–1474

    CAS  Google Scholar 

  63. Lomsadze K, Salgado A, Calvo E, Antonio Lopez J, Chankvetadze B (2011) Comparative NMR and MS studies on the mechanism of enantioseparation of propranolol with hepatakis(2,3-diacetyl-6-sulfo)-β-cyclodextrin in capillary electrophoresis with aqueous and non-aqueous electrolytes. Electrophoresis 32:1156–1163

    CAS  Google Scholar 

  64. Servais AC, Rousseau A, Dive G, Frederich M, Crommen J, Fillet M (2012) Combination of capillary electrophoresis, molecular modelling and nuclear magnetic resonance to study the interaction mechanisms between single-isomer anionic cyclodextrin derivatives and basic drug enantiomers in a methanolic background electrolyte. J Chromatogr A 1232:59–64

    CAS  Google Scholar 

  65. Qi L, Yang G (2009) Enantioseparation of dansyl amino acids by ligand-exchange capillary electrophoresis with zinc(II)-L-phenylalaninamide complex. J Sep Sci 32:3209–3214

    CAS  Google Scholar 

  66. Chen Z, Niitsuma M, Nakagama T, Uchiyama K, Hobo T (2002) Enantioseparations of dansyl amino acids by capillary electrophoresis using Cu(II) complexes with L-amino acylamides as chiral selectors in electrolytes. J Sep Sci 25:1197–1201

    CAS  Google Scholar 

  67. Chankvetadze B, Schulte G, Blaschke G (1996) Reversal of enantiomer elution order in capillary electrophoresis using charged and neutral cyclodextrins. J Chromatogr A 732:183–187

    CAS  Google Scholar 

  68. Schmitt T, Engelhardt H (1995) Optimization of enantiomeric separations in capillary electrophoresis by reversal of the migration order and using different derivatized cyclodextrins. J Chromatogr A 697:561–570

    CAS  Google Scholar 

  69. Chankvetadze B, Schulte G, Blaschke G (1997) Selected applications of capillaries with dynamic or permanent anodal electroosmotic flow in chiral separations by capillary electrophoresis. J Pharm Biomed Anal 15:1577–1584

    CAS  Google Scholar 

  70. Knob R, Maier V, Ranc V, Znaleziona J, Sevcik J (2010) Dopa and tyrosine enantiomers migration order reversal using uncoated and polypyrrole-coated capillaries. Glob J Anal Chem 1:228–232

    CAS  Google Scholar 

  71. Werner A, Nassauer T, Kiechle P, Erni F (1994) Chiral separation by capillary zone electrophoresis of an optically active drug and amino acids by host-guest complexation with cyclodextrins. J Chromatogr A 666:375–379

    CAS  Google Scholar 

  72. Baumy P, Morin P, Dreux M, Viaud MC, Boye S, Gullmant G (1995) Determination of β-cyclodextrin inclusion complex constants for 3,4-dihydro-2H-1-benzopyran enantiomers by capillary electrophoresis. J Chromatogr A 707:311–325

    CAS  Google Scholar 

  73. Sabah S, Scriba GKE (1998) Electrophoretic stereoisomer separation of aspartyl dipeptides and tripeptides in untreated fused-silica and polyacrylamide-coated capillaries using charged cyclodextrins. J Chromatogr A 822:137–145

    CAS  Google Scholar 

  74. Liu L, Nussbaum MA (1995) Control of enantiomer migration order in capillary electrophoresis separations using sulfobutyl ether beta-cyclodextrin. J Pharm Biomed Anal 14:65–72

    CAS  Google Scholar 

  75. Tamisier-Karolak SL, Stenber MA, Bommart A (1999) Enantioseparation of β-blockers with two chiral centers by capillary electrophoresis using sulfated β-cyclodextrins. Electrophoresis 20:2656–2663

    CAS  Google Scholar 

  76. Lin CE, Cheng HT, Fang IJ, Liu YD, Kuo CM, Lin WY, Lin CH (2006) Strategies for enantioseparations of catecholamines and structurally related compounds by capillary zone electrophoresis using sulfated β-cyclodextrins as chiral selectors. Electrophoresis 27:3443–3451

    CAS  Google Scholar 

  77. Rudaz S, Geiser L, Sourverain S, Prat J, Veuthey JL (2005) Rapid stereoselective separations of amphetamine derivatives with highly sulphated γ-cyclodextrin. Electrophoresis 26:3910–3920

    CAS  Google Scholar 

  78. Ha PTT, Van Schepdael A, Hauta-Aho T, Roets E, Hoogmartens J (2002) Simultaneous determination of DOPA and carbidopa enantiomers by capillary zone electrophoresis. Electrophoresis 23:3404–3409

    CAS  Google Scholar 

  79. Schulte G, Chankvetadze B, Blaschke G (1997) Enantioseparation in capillary electrophoresis using 2-hydroxypropyltrimethylammonium salt of β-cyclodextrin as chiral selector. J Chromatogr A 771:259–266

    CAS  Google Scholar 

  80. Süß F, Poppitz W, Scriba GKE (2002) Separation of dipeptide and tripeptide enantiomers in capillary electrophoresis by the cationic cyclodextrin derivative 2-hydroxypropyltrimethylammonium-β-cyclodextrin and by neutral β-cyclodextrin derivatives at alkaline pH. J Sep Sci 25:1147–1154

    Google Scholar 

  81. Schmitt T, Engelhardt H (1993) Charged and uncharged cyclodextrins as chiral selectors in capillary electrophoresis. Chromatographia 37:475–481

    CAS  Google Scholar 

  82. Sabbah S, Scriba GKE (2001) Separation of dipeptide and tripeptide enantiomers in capillary electrophoresis using carboxymethyl-β-cyclodextrin and succinyl-β-cyclodextrin: influence of the amino acid sequence, nature of the cyclodextrin and pH. Electrophoresis 22:1385–1393

    CAS  Google Scholar 

  83. Zhu X, Ding Y, Lin B, Jakob A, Koppenhöfer B (2000) Transient state of chiral recognition in a binary mixture of cyclodextrins in capillary electrophoresis. J Chromatogr A 888:241–250

    CAS  Google Scholar 

  84. Calvet C, Cuberes R, Perez-Maseda C, Frigola J (2002) Enantioseparation of novel COX-2 anti-inflammatory drugs by capillary electrophoresis using single and dual cyclodextrin systems. Electrophoresis 23:1702–1708

    CAS  Google Scholar 

  85. Lin CE, Lin SL, Liao WS, Liu YC (2004) Enantioseparation of benzoins and enantiomer migration reversal of hydrobenzoin in capillary zone electrophoresis with dual cyclodextrin systems and borate complexation. J Chromatogr A 1032:227–235

    CAS  Google Scholar 

  86. Lin CE, Liao WS, Cheng HT, Kuo CM, Liu YC (2005) Enantioseparation of phenothiazines in cyclodextrin-modified capillary zone electrophoresis using sulfated cyclodextrins as chiral selectors. Electrophoresis 26:3869–3877

    CAS  Google Scholar 

  87. Liao WS, Lin CH, Chen CY, Kuo CM, Liu YC, Wu JC, Lin CE (2007) Enantioseparation of phenothiazines in CD-modified CZE using single isomer sulfated CD as a chiral selector. Electrophoresis 28:3922–3929

    CAS  Google Scholar 

  88. Valle BC, Billot FH, Shamsi SA, Zhu Y, Powe AM, Warner IM (2004) Combination of cyclodextrins and polymeric surfactants for chiral separations. Electrophoresis 25:743–752

    CAS  Google Scholar 

  89. Lin JM, Hobo T (2001) Inspection of the reversal of enantiomer migration order in ligand exchange micellar electrokinetic capillary chromatography. Biomed Chromatogr 15:207–211

    CAS  Google Scholar 

  90. Rundlett KL, Armstrong DW (1995) Effect of micelles and mixed micelles on efficiency and selectivity of antibiotic-based capillary electrophoretic enantioseparations. Anal Chem 67:2088–2095

    CAS  Google Scholar 

  91. Wan H, Engstrom A, Blomberg E (1996) Direct chiral separation of amino acids derivatized with 2-(9-anthryl)ethyl chloroformate by capillary electrophoresis using cyclodextrins as chiral selectors. Effect of organic modifiers on resolution and enantiomeric elution order. J Chromatogr A 731:283–292

    CAS  Google Scholar 

  92. Schmitt T, Engelhardt H (1993) Derivatized cyclodextrins for the separation of enantiomers in capillary electrophoresis. J High Resolut Chromatogr 16:525–529

    CAS  Google Scholar 

  93. Lin CE, Liao WS, Chen KH (2003) Enantioseparation of phenothiazines in cyclodextrin-modified capillary zone electrophoresis: reversal of migration order. Electrophoresis 24:3139–3146

    CAS  Google Scholar 

  94. Zhu H, Wu E, Chen J, Yang YS, Kang W, Choi JK, Lee W, Kang JS (2011) Reverse migration order of sibutramine enantiomers as a function of cyclodextrin concentration in capillary electrophoresis. J Pharm Biomed Anal 54:1007–1012

    CAS  Google Scholar 

  95. Krajian H, Mofaddel N, Villemin D, Desbene PL (2009) A new example of reversal of the order of migration of enantiomers, as a function of cyclodextrin concentration and pH, by cyclodextrin-modified capillary zone electrophoresis: enantioseparation of 6,6′-dibromo-1,1′-binaphthyl-2,2′-diol. Anal Bioanal Chem 394:2193–2201

    CAS  Google Scholar 

  96. Castro-Puyana M, Crego AL, Marina ML, Garcia-Ruiz C (2007) Enantioselective separation of azole compounds by EKC. Reversal of migration order of enantiomers with CD concentration. Electrophoresis 28:2667–2674

    CAS  Google Scholar 

  97. Mofaddel N, Krajian H, Villemin D, Desbene PL (2009) Enantioseparation of binaphthol and its monoderivatives by cyclodextrin-modified capillary zone electrophoresis: a mathematical approach. Talanta 78:631–637

    CAS  Google Scholar 

  98. Wren SAC (1997) Mobility measurements on dansylated amino acids. J Chromatogr A 768:153–159

    CAS  Google Scholar 

  99. Sabbah S, Scriba GKE (1999) pH-dependent reversal of the chiral recognition of an aspartyl tripeptide by carboxymethyl-β-cyclodextrin. J Chromatogr A 833:261–266

    Google Scholar 

  100. Sabbah S, Scriba GKE (2000) Influence of the structure of cyclodextrins and amino acid sequence of dipeptides and tripeptides on the pH-dependent reversal of the migration order in capillary electrophoresis. J Chromatogr A 894:267–272

    CAS  Google Scholar 

  101. Sungthong B, Ivanyi R, Bunz SC, Neusüß C, Scriba GKE (2010) CE-MS characterization of negatively charged α-, β- and γ-CD derivatives and their application to the separation of dipeptide and tripeptide enantiomers by CE. Electrophoresis 31:1498–1505

    CAS  Google Scholar 

  102. Terekhova IV, Hammitzsch-Wiedemann M, Shi J, Sungthong B, Scriba GKE (2010) Investigation of the pH-dependent complex formation between β-cyclodextrin and dipeptides enantiomers by capillary electrophoresis and calorimetry. J Sep Sci 33:2499–2505

    CAS  Google Scholar 

  103. Kodama S, Aizawa S, Taga A, Yamashita T, Kemmei T, Suzuki KHY, Yamamoto A (2010) Metal(II)-ligand molar ratio dependence of enantioseparation of tartaric acid by ligand exchange CE with Cu(II) and Ni(II)-D-quinic acid systems. Electrophoresis 31:1051–1054

    CAS  Google Scholar 

  104. Aizawa S, Kodama S (2012) Mechanism of change in enantiomer migration order of enantioseparation of tartaric acid by ligand exchange capillary electrophoresis with Cu(II) and Ni(II)-D-quinic acid systems. Electrophoresis 33:523–527

    CAS  Google Scholar 

  105. Hammitzsch-Wiedemann M, Scriba GKE (2009) Mathematical approach by a selectivity model for rationalization of pH- and selector concentration-dependent reversal of the enantiomer migration order in capillary electrophoresis. Anal Chem 81:8765–8773

    CAS  Google Scholar 

  106. Hammitzsch-Wiedemann M, Scriba GKE (2010) Mathematical approach by a selectivity model for rationalization of pH- and selector concentration-dependent reversal of the enantiomer migration order in capillary electrophoresis – correction. Anal Chem 82:6744

    CAS  Google Scholar 

  107. Hruska V, Benes M, Svobodova J, Zuskova I, Gas B (2012) Simulation of the effects of complex-formation equilibria in capillary electrophoresis: I. Mathematical model. Electrophoresis 33:938–947

    CAS  Google Scholar 

  108. Svobodova J, Benes M, Hruska V, Uselova K, Gas B (2012) Simulation of the effects of complex-formation equilibria in capillary electrophoresis: II. Experimental verification. Electrophoresis 33:948–957

    CAS  Google Scholar 

  109. Svobodova J, Benes M, Dubsky P, Vigh G, Gas B (2012) Simulation of the effects of complex-formation equilibria in electrophoresis: III. Simultaneous effects of chiral selector concentration and background electrolyte pH. Electrophoresis 33:3012–3020

    CAS  Google Scholar 

  110. Tsioupi DA, Stefan-van Staden RI, Kapnissi-Christodoulou CP (2013) Chiral selectors in CE: recent developments and applications. Electrophoresis 34:178–204

    CAS  Google Scholar 

  111. Lämmerhofer M (2010) Chiral recognition by enantioselective chromatography: mechanisms and modern chiral stationary phases. J Chromatogr A 1217:814–856

    Google Scholar 

  112. Scriba GKE (2011) Chiral recognition mechanisms in analytical separation sciences. Chromatographia 75:815–838

    Google Scholar 

  113. Scriba GKE (2013) Chiral recognition in separation science: an overview. In: Scriba GKE (ed) Chiral separations, methods and protocols, vol 970, 2nd edn, Methods in molecular biology. Humana, New York, pp 1–27

    Google Scholar 

  114. Berthod A (ed) (2010) Chiral recognition in separation methods. Springer, Heidelberg

    Google Scholar 

  115. Schneider HJ, Hacket F, Rüdiger V (1998) NMR studies of cyclodextrins and cyclodextrin complexes. Chem Rev 98:1755–1785

    CAS  Google Scholar 

  116. Dodziuk H, Kozinski W, Ejchart A (2004) NMR studies of chiral recognition by cyclodextrins. Chirality 16:90–105

    CAS  Google Scholar 

  117. Chankvetadze B (2004) Combined approach using capillary electrophoresis and NMR spectroscopy for an understanding of enantioselective recognition mechanisms by cyclodextrins. Chem Soc Rev 33:337–347

    CAS  Google Scholar 

  118. Morris KF, Froberg AL, Becker BA, Almeida VK, Tarus J, Larive CK (2005) Using NMR to develop insights into electrokinetic chromatography. Anal Chem 77:254A–263A

    CAS  Google Scholar 

  119. Uccello-Barretta G, Vanni L, Balzano F (2010) Nuclear magnetic resonance approaches to the rationalization of chromatographic enantiorecognition processes. J Chromatogr A 1217:928–940

    CAS  Google Scholar 

  120. Lipkowitz KB (2001) Atomistic modeling of enantioselection in chromatography. J Chromatogr A 906:417–442

    CAS  Google Scholar 

  121. Del Rio A (2009) Exploring enantioselective molecular recognition mechanisms with chemoinformatic techniques. J Sep Sci 32:1566–1584

    Google Scholar 

  122. Fanali S (2000) Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors. J Chromatogr A 875:89–122

    CAS  Google Scholar 

  123. Fanali S (2009) Chiral separations by CE employing CDs. Electrophoresis 30:S203–S210

    Google Scholar 

  124. Chankvetadze B (2009) Separation of enantiomers with charged chiral selectors in CE. Electrophoresis 30:S211–S221

    Google Scholar 

  125. Scriba GKE (2008) Cyclodextrins in capillary electrophoresis – recent developments and applications. J Sep Sci 31:1991–2001

    CAS  Google Scholar 

  126. Scriba GKE, Altria K (2009) Using cyclodextrins to achieve chiral and non-chiral separations in capillary electrophoresis. LC GC Eur 22:420–430

    CAS  Google Scholar 

  127. Juvancz Z, Kendrovics RB, Ivanyi R (2008) The role of cyclodextrins in chiral capillary electrophoresis. Electrophoresis 29:1701–1712

    CAS  Google Scholar 

  128. Schmitt U, Branch SK, Holzgrabe U (2002) Chiral separations by cyclodextrin-modified capillary electrophoresis – determination of the enantiomeric excess. J Sep Sci 25:959–974

    CAS  Google Scholar 

  129. Gübitz G, Schmid MG (2010) Cyclodextrin-mediated chiral separations. In: Van Eeckhaut A, Michotte Y (eds) Chiral separations by capillary electrophoresis, vol 100, Chromatogr science series. CRC, Boca Raton, pp 47–85

    Google Scholar 

  130. Rekharsky MV, Inoue Y (1998) Complexation thermodynamics of cyclodextrins. Chem Rev 98:1875–1917

    CAS  Google Scholar 

  131. Servais AC, Rousseau A, Fillet M, Lomsadze K, Salgado A, Crommen J, Chankvetadze B (2010) Capillary electrophoretic and nuclear magnetic resonance studies on the opposite affinity pattern of propranolol enantiomers towards various cyclodextrins. J Sep Sci 33:1617–1624

    CAS  Google Scholar 

  132. Chankvetadze B, Lomsadze K, Burjanadze N, Breitkreutz J, Pintore G, Chessa M, Bergander K, Blaschke K (2003) Comparative enantioseparations with native β-cyclodextrin, randomly acetylated β-cyclodextrin and heptakis-(2,3-di-O-acetyl)-β-cyclodextrin in capillary electrophoresis. Electrophoresis 24:1083–1091

    CAS  Google Scholar 

  133. Waibel B, Schreiber J, Meier C, Hammitzsch M, Baumann K, Scriba GKE, Holzgrabe U (2007) Comparison of cyclodextrin-dipeptide inclusion complexes in the absence and presence of urea by means of capillary electrophoresis, nuclear magnetic resonance and molecular modeling. Eur J Org Chem 2921–2930

    Google Scholar 

  134. Kahle C, Deubner R, Schollmayer C, Schreiber J, Baumann K, Holzgrabe U (2005) NMR spectroscopic and molecular modeling studies on cyclodextrin-dipeptide inclusion complexes. Eur J Org Chem 1578–1589

    Google Scholar 

  135. Wei Y, Wang S, Chao J, Wang S, Cong C, Shuang S, Paau MC, Choi MMF (2011) An evidence for the chiral discrimination of naproxen enantiomers: a combined experimental and theoretical study. J Phys Chem C 115:4033–4040

    CAS  Google Scholar 

  136. Berthod A (2009) Chiral recognition mechanisms with macrocyclic glycopeptides selectors. Chirality 21:167–175

    CAS  Google Scholar 

  137. Loll PJ, Kaplan J, Selinsky BS, Axelson PH (1999) Vancomycin binding to low-affinity ligands: delineating a minimum set of interactions necessary for high-affinity binding. J Med Chem 42:4714–4719

    CAS  Google Scholar 

  138. Loll PJ, Derhovanessian A, Shapovalov MV, Kaplan J, Yang L, Axelson PH (2009) Vancomycin forms ligand-mediated supramolecular complexes. J Mol Biol 385:200–211

    CAS  Google Scholar 

  139. Lehmann C, Bunkoczi G, Vertesy L, Sheldrick GM (2002) Structures of glycopeptide antibiotics with peptides that model bacterial cell-wall precursors. J Mol Biol 318:723–732

    CAS  Google Scholar 

  140. Fernandes C, Tiritan ME, Cass Q, Kairys V, Fernandes MX, Pinto M (2012) Enantioseparation and chiral recognition mechanism of new chiral derivatives of xanthones on macrocyclic antibiotic stationary phases. J Chromatogr A 1241:60–68

    CAS  Google Scholar 

  141. Desiderio C, Fanali S (1998) Chiral analysis by capillary electrophoresis using antibiotics as chiral selectors. J Chromatogr A 807:37–56

    CAS  Google Scholar 

  142. Prokhorova A, Shapovalova EN, Shpigun OA (2010) Chiral analysis of pharmaceuticals by capillary electrophoresis using antibiotics as chiral selectors. J Pharm Biomed Anal 53:1170–1179

    CAS  Google Scholar 

  143. Kuhn R (1999) Enantiomeric separations by capillary electrophoresis using a crown ether as chiral selector. Electrophoresis 20:2605–2613

    CAS  Google Scholar 

  144. Elbashir AA, Aboul-Enein HY (2010) Application of crown ethers as buffer additives in capillary electrophoresis. Curr Pharm Anal 6:101–113

    CAS  Google Scholar 

  145. Nagata H, Nishi H, Kamagauchi M, Ishida T (2008) Guest-dependent conformation of 18-crown-6 tetracarboxylic acid: relation to chiral separation of racemic amino acids. Chirality 20:820–827

    CAS  Google Scholar 

  146. Bang E, Jung JW, Lee W, Lee DW, Lee W (2001) Chiral recognition of (18-crown-6)-tetracarboxylic acid as a chiral selector determined by NMR spectroscopy. J Chem Soc Perkin Trans 2:1685–1692

    Google Scholar 

  147. Gerbaux P, De Winter J, Cornil D, Ravicini K, Pesesse G, Cornil J, Flammang R (2008) Noncovalent interactions between ([18]crown-6)tetracarboxylic acid and amino acids. Chem Eur J 14:11039–11049

    CAS  Google Scholar 

  148. Nagata H, Nishi H, Kamagauchi M, Ishida T (2004) Structural scaffold of 18-crown-6 tetracarboxylic acid for optical resolution of chiral amino acid: X-ray crystal analyses and energy calculations of complexes of D- and L-isomers of tyrosine, isoleucine, methionine and phenylglycine. Org Biomol Chem 2:3470–3475

    CAS  Google Scholar 

  149. Nagata H, Nishi H, Kamagauchi M, Ishida T (2006) Structural scaffold of 18-crown-6 tetracarboxylic acid for optical resolution of chiral amino acid: X-ray crystal analyses of complexes of D- and L-isomers of serine and glutamic acid. Chem Pharm Bull 54:452–457

    CAS  Google Scholar 

  150. Nagata H, Machida Y, Nishi H, Kamagauchi M, Minoura K, Ishida T (2009) Structural requirement for chiral recognition of amino acid by (18-crown-6)-tetracarboxylic acid: binding analysis in solution and solid states. Bull Chem Soc Jpn 82:219–229

    CAS  Google Scholar 

  151. Schmid MG, Gübitz G (2011) Enantioseparation by chromatographic and electromigration techniques using ligand-exchange as chiral separation principle. Anal Bioanal Chem 400:2305–2316

    CAS  Google Scholar 

  152. Aizawa S, Yamamoto A, Kodama S (2006) Mechanism of enantioseparation of DL-pantothenic acid in ligand exchange capillary electrophoresis using a diol-borate system. Electrophoresis 27:880–886

    CAS  Google Scholar 

  153. Schmid MG (2012) Chiral metal-ion complexes for enantioseparation by capillary electrophoresis and capillary electrochromatography: a selective review. J Chromatogr A 1267:10–16

    CAS  Google Scholar 

  154. Zhang H, Qi L, Mao L, Chen Y (2012) Chiral separation using capillary electromigration techniques based on ligand exchange principle. J Sep Sci 35:1236–1248

    CAS  Google Scholar 

  155. Chen Z, Uchiyama K, Hobo T (2000) Estimation of formation constants of ternary Cu(II) complexes with mixed amino acid enantiomers based on ligand exchange by capillary electrophoresis. Anal Sci 16:837–841

    CAS  Google Scholar 

  156. Maccarrone G, Contino A, Cucinotta V (2012) The study of solution equilibria in chiral capillary electrophoresis by the ligand-exchange mechanism. Trends Anal Chem 32:133–153

    CAS  Google Scholar 

  157. Cucinotta V, Giuffrida A, Maccarrone G, Messina M, Puglisi A, Rizzarelli E, Vecchio G (2005) Coordination properties of 3-functionalized β-cyclodextrins. Thermodynamic stereoselectivity of copper(II) complexes on the A,B-diamino derivative and its exploitation in LECE. Dalton Trans 2731–2736

    Google Scholar 

  158. Shtyrlin VG, Zyavkina YI, Gilyazetdinov EM, Burkharov MS, Krutikov AA, Garipov RR, Mukhtarov AS, Zakharov AV (2012) Complex formation, chemical exchange, species structure, and stereoselective effects in the copper(II)-L/DL-histidine systems. Dalton Trans 41:1216–1228

    CAS  Google Scholar 

  159. Mofaddel N, Adoubel AA, Morin CJ, Desbene PL, Dupas G (2010) Molecular modeling of complexes between two amino acids and copper(II): correlation with ligand exchange capillary electrophoresis. J Mol Struct 975:220–226

    CAS  Google Scholar 

  160. Dobashi A, Hamada M, Dobashi Y, Yamaguchi J (1995) Enantiomeric separation with sodium dodecanoyl-L-amino acidate micelles and poly(sodium (10-undecenoyl)-l-valinate) by electrokinetic chromatography. Anal Chem 67:3011–3017

    CAS  Google Scholar 

  161. Dey J, Ghosh A (2010) Chiral separations by micellar electrokinetic chromatography. In: Van Eeckhaut A, Michotte Y (eds) Chiral separations by capillary electrophoresis. CRC, Boca Raton, pp 195–234

    Google Scholar 

  162. Yarabe HH, Billot E, Warner IM (2000) Enantiomeric separations by use of polymeric surfactant electrokinetic chromatography. J Chromatogr A 875:179–206

    CAS  Google Scholar 

  163. Hebling CM, Thompson LE, Eckenroad KW, Manley GA, Fry RA, Mueller KT, Strein TG, Rovnyak D (2008) Sodium cholate aggregation and chiral recognition of the probe molecule (R,S)-1,1´-binaphthyl-2.2´-dihydrogenphosphate (BNDHP) observed by 1H and 31P NMR spectroscopy. Langmuir 24:13866–13874

    CAS  Google Scholar 

  164. Rugutt JK, Billot E, Warner IM (2000) NMR study of the interaction of monomeric and polymeric chiral surfactants with (R)- and (S)-1,1′-binaphthyl-2-2′-diyl hydrogen phosphate. Langmuir 16:3022–3029

    CAS  Google Scholar 

  165. Kingsbury SA, Ducommun CJ, Zahakaylo BM, Dickinson EH, Morris KF (2010) NMR characterization of (S)-1,1′-binaphthyl-2-2′-diyl hydrogen phosphate binding to chiral molecular micelles. Magn Reson Chem 48:184–191

    CAS  Google Scholar 

  166. Morris KF, Becker BA, Valle BC, Warner IM, Larive CK (2006) Use of NMR binding interaction mapping techniques to examine interactions of chiral molecules with molecular micelles. J Phys Chem B 110:17359–17369

    CAS  Google Scholar 

  167. Valle BC, Morris KF, Fletcher KA, Fernand V, Sword DM, Eldridge S, Larive CK, Warner IM (2007) Understanding chiral molecular micelle separations using steady-state fluorescence anisotropy, capillary electrophoresis, and NMR. Langmuir 23:425–435

    CAS  Google Scholar 

  168. Yarabe HH, Rugutt JK, McCarroll ME, Warner IM (2000) Capillary electrophoretic separation of binaphthyl enantiomers with two polymeric chiral surfactants: 1H-nuclear magnetic resonance and fluorescence spectroscopy study. Electrophoresis 21:2025–2032

    CAS  Google Scholar 

  169. Kano K, Minami K, Horiguchi K, Ishimura T, Kodera M (1995) Ability of non-cyclic oligosaccharides to form molecular complexes and its use for chiral separation by capillary zone electrophoresis. J Chromatogr A 694:307–313

    CAS  Google Scholar 

  170. Nishi M, Izumoto S, Nakamura K, Nakai H, Sato T (1996) Dextran and dextrin as chiral selectors in capillary zone electrophoresis. Chromatographia 42:617–630

    CAS  Google Scholar 

  171. Chen J, Du Y, Zhu F, Chen B (2010) Glycogen: a novel branched polysaccharide chiral selector in CE. Electrophoresis 31:1044–1050

    CAS  Google Scholar 

  172. Chankvetadze B, Saito M, Yashima E, Okamoto Y (1998) Enantioseparation of atropisomeric 1,1′-binaphthyl-2,2′-diyl hydrogen phosphate in capillary electrophoresis by using di- and oligosaccharides as chiral selectors: di- and oligosaccharide chiral selectors in capillary electrophoresis. Chirality 10:134–139

    CAS  Google Scholar 

  173. Du X, Taga A, Suzuki S, Liu W, Honda S (2002) Effect of structure modification of chondroitin sulfate C on its enantioselectivity to basic drugs in capillary electrophoresis. J Chromatogr A 947:287–299

    CAS  Google Scholar 

  174. Nojavon S, Fakhar AR (2011) Chiral separation and quantitation of cetirizine and hydroxzine by maltodextrin-mediated CE in human plasma: effect of zwitterionic property of cetirizine on enantioseparation. Electrophoresis 32:764–771

    Google Scholar 

  175. Wei W, Guo B, Lin JM (2009) Helical- and ahelical-dependent chiral recognition mechanism is capillary electrophoresis using amylose as the selector. Electrophoresis 30:1380–1387

    CAS  Google Scholar 

  176. Sawada M, Tanaka T, Takai Y, Hanafusa T, Taniguchi T, Kawamura M, Uchiyama T (1991) The crystal structure of cycloinulohexaose produced from inulin by cycloinulo-oligosacchride fructanotransferase. Carbohydr Res 217:7–17

    CAS  Google Scholar 

  177. Immel S, Schmitt GE, Lichtenthaler FW (1998) Cyclofructans with six to ten β-(1→2)-linked fructofuranose units: geometries, electrostatic profiles, lipophilicity patterns, and potential for inclusion complexation. Carbohydr Res 313:91–105

    CAS  Google Scholar 

  178. Jiang C, Tong M, Breitbach ZS, Armstrong DW (2009) Synthesis and examination of sulfated cyclofructans as a novel class of chiral selectors in CE. Electrophoresis 30:3897–3909

    CAS  Google Scholar 

  179. Haginaka J (2010) Chiral separations using proteins and peptides as chiral selectors. In: Van Eeckhaut A, Michotte Y (eds) Chiral separations by capillary electrophoresis. CRC, Boca Raton, pp 139–161

    Google Scholar 

  180. Haginaka J (2011) Mechanistic aspects of chiral recognition on protein-based stationary phases. In: Grushka E (ed) Advances in chromatography, vol 49. CRC, Boca Raton, pp 37–69

    Google Scholar 

  181. Bica K, Gaertner P (2008) Applications of chiral ionic liquids. Eur J Org Chem 3235–3250

    Google Scholar 

  182. Francois Y, Varenne A, Juillerat E, Villemin D, Gareil P (2007) Evaluation of chiral ionic liquids as additive to cyclodextrins for enantiomeric separations by capillary electrophoresis. J Chromatogr A 1155:134–141

    CAS  Google Scholar 

  183. Tran CD, Mejac I (2008) Chiral ionic liquids for enantioseparations of pharmaceutical products by capillary electrophoresis. J Chromatogr A 1204:204–209

    CAS  Google Scholar 

  184. Rizvi SAA, Shamsi SA (2006) Synthesis, characterization, and application of chiral ionic liquids and their polymers in micellar electrokinetic chromatography. Anal Chem 78:7061–7069

    CAS  Google Scholar 

  185. Liu Q, Wu K, Tang F, Yao L, Yang F, Nie Z, Yao S (2009) Amino acid ionic liquids as chiral ligands in ligand-exchange chiral separations. Chem Eur J 15:9889–9896

    CAS  Google Scholar 

  186. Bi W, Tian M, Row KH (2011) Chiral separation and determination of ofloxacin enantiomers by ionic liquid-assisted ligand-exchange chromatography. Analyst 136:379–387

    CAS  Google Scholar 

  187. De Rooy A, Li M, Bwambok DK, El-Zahab B, Challa S, Warner IM (2011) Ephedrinium-based protic chiral ionic liquids for enantiomeric recognition. Chirality 23:54–62

    Google Scholar 

  188. Kroupa DM, Brown CJ, Heckman LM, Hopkins TA (2012) Chiroptical study of chiral discrimination by amino acid based ionic liquids. J Phys Chem B 116:4952–4958

    CAS  Google Scholar 

  189. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    CAS  Google Scholar 

  190. Patel DJ, Suri AK, Jiang F, Jiang L, Fan P, Kumar RA, Nonin S (1997) Structure, recognition and adaptive binding in RNA aptamer complexes. J Mol Biol 272:645–664

    CAS  Google Scholar 

  191. Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287:820–825

    CAS  Google Scholar 

  192. Yang X, Bing T, Mei H, Fang C, Cao Z, Shangguan D (2011) Characterization and application of a DNA aptamer binding to L-tryptophan. Analyst 36:577–585

    Google Scholar 

  193. Bishop GR, Ren J, Polander BC, Jeanfreau BD, Trent JO, Chaires JB (2007) Energetic basis of molecular recognition in a DNA aptamer. Biophys Chem 126:165–175

    CAS  Google Scholar 

  194. Peyrin E (2009) Nucleic acid aptamer molecular recognition principles and application in liquid chromatography and capillary electrophoresis. J Sep Sci 32:1531–1536

    CAS  Google Scholar 

  195. Jung G, Hofstetter H, Feiertag S, Stoll D, Hofstetter O, Wiesmüller KH, Schurig V (1996) Cyclopeptide libraries as new chiral selectors in capillary electrophoresis. Angew Chem Int Ed Engl 35:2148–2150

    CAS  Google Scholar 

  196. Chiari M, Desperati V, Manera E, Longhi R (1998) Combinatorial synthesis of highly selective cyclohexapeptides for separation of amino acid enantiomers by capillary electrophoresis. Anal Chem 70:4967–4973

    CAS  Google Scholar 

  197. Ravelet C, Peyrin E (2006) Recent developments in the HPLC enantiomeric separation using chiral selectors identified by a combinatorial strategy. J Sep Sci 29:1322–1331

    CAS  Google Scholar 

  198. Evans CE, Stalcup AM (2003) Comprehensive strategy for chiral separations using sulfated cyclodextrins in capillary electrophoresis. Chirality 15:709–723

    CAS  Google Scholar 

  199. Jimidar IM, van Ael W, van Nyen P, Peeters M, Redlich D, de Smet M (2004) A screening strategy for the development of enantiomeric separation method in capillary electrophoresis. Electrophoresis 25:2772–2785

    CAS  Google Scholar 

  200. Ates H, Mangelings D, Vander Heyen Y (2008) Fast generic chiral separation strategies using electrophoretic and liquid chromatographic techniques. J Pharm Biomed Anal 48:288–294

    CAS  Google Scholar 

  201. Nhujak T, Sastravaha C, Palanuvej C, Petsom A (2005) Chiral separation in capillary electrophoresis using dual neutral cyclodextrins: theoretical models of electrophoretic mobility difference and separation selectivity. Electrophoresis 26:3814–3823

    CAS  Google Scholar 

  202. Matthijs N, Van Hemelryck S, Maftouh M, Luc Massart D, Vander Heyden Y (2004) Electrophoretic separation strategy for chiral pharmaceuticals using highly sulfated and neutral cyclodextrins based dual selector systems. Anal Chim Acta 525:247–263

    CAS  Google Scholar 

  203. Fillet M, Hubert P, Crommen J (2000) Enantiomeric separations of drugs using mixtures of charged and neutral cyclodextrins. J Chromatogr A 875:123–135

    CAS  Google Scholar 

  204. Jakubetz H, Juza M, Schurig V (1998) Dual chiral recognitions system involving cyclodextrin derivatives in capillary electrophoresis. Part 2. Enhancement of enantioselectivity. Electrophoresis 19:738–744

    CAS  Google Scholar 

  205. Mayer S, Schleimer M, Schurig V (1994) Dual chiral recognition system involving cyclodextrin derivatives in capillary electrophoresis. J Microcolumn Sep 6:42–48

    CAS  Google Scholar 

  206. Skanchy DJ, Xie GH, Tait RJ, Luna E, Demarest C, Stobaugh JF (1999) Application of sulfobutylether-β-cyclodextrin with specific degrees of substitution for the enantioseparation of pharmaceutical mixtures by capillary electrophoresis. Electrophoresis 20:2638–2649

    CAS  Google Scholar 

  207. Sänger-van de Griend CE, Gröningsson K (1996) Validation of a capillary electrophoresis method for the enantiomeric purity testing of ropivacaine, a new local anaesthetic compound. J Pharm Biomed Anal 14:295–304

    Google Scholar 

  208. Wongwan S, Hammitzsch-Wiedemann M, Scriba GKE (2009) Determination of related substances of levodopa including the R-enantiomer by CE. Electrophoresis 30:3891–3896

    CAS  Google Scholar 

  209. Kenndler E (2009) Organic solvents in CE. Electrophoresis 30:S101–S111

    Google Scholar 

  210. Lämmerhofer M (2005) Chiral separations by capillary electromigration techniques in nonaqueous media. I. Enantioselective nonaqueous capillary electrophoresis. J Chromatogr A 1068:3–30

    Google Scholar 

  211. Shamsi SA (2002) Chiral capillary electrophoresis-mass spectrometry: modes and applications. Electrophoresis 23:4036–4051

    CAS  Google Scholar 

  212. Somsen GW, Mol R, de Jong GJ (2010) On-line coupling of electrokinetic chromatography and mass spectrometry. J Chromatogr A 1217:3978–3991

    CAS  Google Scholar 

  213. Simo C, Garcia-Canas V, Cifuentes A (2010) Chiral CE-MS. Electrophoresis 31:1442–1456

    CAS  Google Scholar 

  214. Sheppard RL, Tong X, Cai J, Henion JD (1995) Chiral separation and detection of terbutaline and ephedrine by capillary electrophoresis coupled with ion spray mass spectrometry. Anal Chem 67:2054–2058

    CAS  Google Scholar 

  215. Hempel G, Blaschke G (1996) Enantioselective determination of zopiclone and its metabolites in urine by capillary electrophoresis. J Chromatogr B 675:139–146

    CAS  Google Scholar 

  216. Jimidar MI, van Ael W, de Smet M (2004) Optimization of enantiomeric separations in capillary electrophoresis by applying a design of experiments approach. J Capill Electrophor Microchip Technol 9:13–21

    CAS  Google Scholar 

  217. Hanrahan G, Montes R, Gomez FA (2008) Chemometric experimental design based optimization techniques in capillary electrophoresis: a critical review of modern applications. Anal Bioanal Chem 390:169–179

    CAS  Google Scholar 

  218. Hanrahan G, Gomez FA (eds) (2010) Chemometric methods in capillary electrophoresis. Wiley, Hoboken

    Google Scholar 

  219. Dejaegher S, Mangelings E, Vander Heyden Y (2013) In: Scriba GKE (ed) Chiral separations, methods and protocols, vol 970, 2nd edn, Methods in molecular biology. Humana, New York, pp 409–427

    Google Scholar 

  220. Sänger-van de Griend CE (2008) General considerations to improve performance of CE methods. In: Ahuja S, Jimidar IM (eds) Capillary electrophoresis methods for pharmaceutical analysis. Academic, London, pp 123–144

    Google Scholar 

  221. Hammitzsch M, Rao RN, Scriba GKE (2006) Development and validation of a robust capillary electrophoresis method for impurity profiling of etomidate including the determination of the chiral purity using a dual cyclodextrin system. Electrophoresis 27:4334–4344

    CAS  Google Scholar 

  222. Dey J, Ghosch A (2008) Chiral separations by micellar electrokinetic chromatography. In: Van Eekhaut A, Michotte Y (eds) Chiral separations by capillary electrophoresis. CRC, Boca Raton, pp 195–234

    Google Scholar 

  223. Billot FH, Billot EJ, Warner IM (2001) Comparison of monomeric and polymeric amino acid based surfactants for chiral separations. J Chromatogr A 922:329–338

    Google Scholar 

  224. Thibodeaux SJ, Billot EJ, Torres E, Valle BC, Warner IM (2003) Enantiomeric separations using polymeric L-glutamate surfactant derivatives: effect of increasing steric factors. Electrophoresis 24:1077–1082

    CAS  Google Scholar 

  225. Thibodeaux SJ, Billot EJ, Warner IM (2002) Enantiomeric separation using poly(l-valine) and poly(l-leucine) surfactants: investigation of steric factors near the chiral center. J Chromatogr A 966:179–186

    CAS  Google Scholar 

  226. Lin CE, Huang HC, Chen HW (2001) A capillary electrophoresis study on the influence of β-cyclodextrin on the critical micelle concentration of sodium dodecyl sulfate. J Chromatogr A 917:297–310

    CAS  Google Scholar 

  227. Bendazzoli C, Mileo E, Lucarini M, Olmo S, Cavrini C, Gotti R (2010) Capillary electrophoretic study on the interaction between sodium dodecyl sulfate and neutral cyclodextrins. Microchim Acta 171:23–31

    CAS  Google Scholar 

  228. Melani F, Giannini I, Pasquini B, Orlandini S, Pinzauti S, Furlanetto S (2011) Evaluation of the separation mechanism of electrokinetic chromatography with a microemulsion and cyclodextrins using NMR and molecular modeling. Electrophoresis 32:3062–3069

    CAS  Google Scholar 

  229. Shamsi SA (2001) Micellar electrokinetic chromatography-mass spectrometry using a polymerized chiral surfactant. Anal Chem 73:5103–5108

    CAS  Google Scholar 

  230. Hou J, Rizvi SAA, Zheng J, Shamsi SA (2006) Application of polymeric surfactants in micellar electrokinetic chromatography-electrospray ionization mass spectrometry of benzodiazepines and benoxazocine chiral drugs. Electrophoresis 27:1263–1275

    CAS  Google Scholar 

  231. Hou J, Zheng J, Rizvi SAA, Shamsi SA (2007) Simultaneous chiral separation and determination of ephedrine alkaloids by MEKC-ESI-MS using polymeric surfactants: method development. Electrophoresis 28:1352–1363

    CAS  Google Scholar 

  232. Rizvi SAA, Zheng J, Apkarian RP, Dublin SN, Shamsi SA (2007) Polymeric amino acid surfactants: a class of versatile chiral selectors for micellar electrokinetic chromatography (MEKC) and MEKC-MS. Anal Chem 79:879–898

    CAS  Google Scholar 

  233. Wang X, Hou J, Jann M, Hon YY, Shamsi SA (2013) Development of a chiral micellar electrokinetic chromatography-tandem mass spectrometry assay for simultaneous analysis of warfarin and hydroxywarfarin metabolites: application to the analysis of patients serum samples. J Chromatogr A 1271:207–216

    CAS  Google Scholar 

  234. Watari H (1991) Microemulsion capillary electrophoresis. Chem Lett 20:391–394

    Google Scholar 

  235. Cao Y, Ni X, Sheng J (2011) Comparison of microstructures of microemulsion and swollen micelle in electrokinetic chromatography. J Chromatogr A 1218:2598–2603

    CAS  Google Scholar 

  236. Mertzman MD, Foley JP (2004) Effect of oil substitution on chiral microemulsion electrokinetic chromatography. Electrophoresis 25:723–732

    CAS  Google Scholar 

  237. Pascoe R, Foley JP (2002) Rapid separation of pharmaceutical enantiomers using electrokinetic chromatography with a novel chiral microemulsion. Analyst 127:710–714

    CAS  Google Scholar 

  238. Mertzman MD, Foley JP (2005) Temperature effects on chiral microemulsion electrokinetic chromatography employing the chiral surfactant dodecylcarbonylvaline. J Chromatogr A 1073:181–189

    CAS  Google Scholar 

  239. Zheng ZX, Lin JM, Chan WH, Lee AWM, Huie CW (2004) Separation of enantiomers in microemulsion electrokinetic chromatography using chiral alcohols as cosurfactants. Electrophoresis 25:3263–3269

    CAS  Google Scholar 

  240. Aiken JH, Huie CW (1993) Use of a microemulsion system to incorporate a lipophilic chiral selector in electrokinetic capillary chromatography. Chromatographia 35:448–450

    CAS  Google Scholar 

  241. Hu SQ, Chen YL, Zhu HD, Shi HJ, Ayn N, Chen XG (2010) Effect of molecular structure of tartrates on chiral recognition of tartrate-boric acid complex chiral selectors in chiral microemulsion electrokinetic chromatography. J Chromatogr A 1217:5529–5535

    CAS  Google Scholar 

  242. Kahle KA, Foley JP (2006) Chiral microemulsion electrokinetic chromatography with two chiral components: improved separations via synergies between a chiral surfactant and a chiral cosurfactant. Electrophoresis 27:896–904

    CAS  Google Scholar 

  243. Kahle KA, Foley JP (2007) Two-chiral-component microemulsion electrokinetic chromatography – chiral surfactant and chiral oil: part 1. Dibutyl tartrate. Electrophoresis 28:1723–1734

    CAS  Google Scholar 

  244. Kahle KA, Foley JP (2007) Two-chiral-component microemulsion electrokinetic chromatography—chiral surfactant and chiral oil: part 2. Diethyl tartrate. Electrophoresis 28:2644–2657

    CAS  Google Scholar 

  245. Kahle KA, Foley JP (2007) Influence of microemulsion chirality on chromatographic figures of merit in EKC: results with novel three-chiral component microemulsions and comparison with one- and two-chiral-component microemulsions. Electrophoresis 28:3024–3040

    CAS  Google Scholar 

  246. Hu SQ, Lü WJ, Ma YH, Dong LJ, Chen XG (2013) Chiral separation of β-blockers by MEEKC using neutral microemulsion: analysis of separation mechanism and further elucidation of resolution equation. Electrophoresis 34:260–268

    CAS  Google Scholar 

  247. Chu BL, Guo BY, Wang Z, Lin JM (2008) Enantioseparation of esbiothrin by cyclodextrin-modified microemulsion and micellar electrokinetic chromatography. J Sep Sci 31:3911–3920

    CAS  Google Scholar 

  248. Bitar Y, Holzgrabe U (2007) Enantioseparation of chiral tropa alkaloids by means of cyclodextrin-modified microemulsion electrokinetic chromatography. Electrophoresis 28:2693–2700

    CAS  Google Scholar 

  249. Borst C, Holzgrabe U (2008) Enantioseparation of dopa and related compounds by cyclodextrin-modified microemulsion electrokinetic chromatography. J Chromatogr A 1204:191–196

    CAS  Google Scholar 

  250. Borst C, Holzgrabe U (2010) Comparison of chiral electrophoretic separation methods for phenylethylamines and application on impurity analysis. J Pharm Biomed Anal 53:1201–1209

    CAS  Google Scholar 

  251. Wongwan S, Scriba GKE (2010) Impurity profiling of dexamphetamine sulfate by cyclodextrin-modified microemulsion electrokinetic chromatography. Electrophoresis 31:3006–3011

    CAS  Google Scholar 

  252. Yu L, Chu K, Ye H, Liu X, Yu L, Xu X, Chen G (2012) Recent advances in microemulsion electrokinetic chromatography. Trends Anal Chem 34:140–151

    CAS  Google Scholar 

  253. Ryan R, Altria K, McEvoy E, Donegan S, Power J (2013) A review of developments in the methodology and application of microemulsion electrokinetic chromatography. Electrophoresis 34:159–177

    CAS  Google Scholar 

  254. Wen Y, Li J, Ma J, Chen L (2012) Recent advances in enrichment techniques for trace analysis in capillary electrophoresis. Electrophoresis 33:2933–2952

    CAS  Google Scholar 

  255. Mala Z, Gebauer P, Bocek P (2011) Contemporary sample stacking in analytical electrophoresis. Electrophoresis 32:116–126

    CAS  Google Scholar 

  256. Mikus P, Marakova K (2010) Chiral capillary electrophoresis with on-line sample preparation. Curr Pharm Anal 6:76–100

    CAS  Google Scholar 

  257. Garcia-Ruiz C, Marina ML (2006) Sensitive chiral analysis by capillary electrophoresis. Electrophoresis 27:195–212

    CAS  Google Scholar 

  258. Guidance for Industry, Analytical Procedures and Methods Validation, Chemistry Manufacturing and Controls Documentation, Draft Guidance, FDA (2000) http://www.fda.gov/downloads/Drugs/…/Guidances/ucm122858.pdf

  259. Muijselaar PG (2008) Overview of current regulatory guidance. In: Ahuja S, Jimidar MI (eds) Capillary electrophoresis methods for pharmaceutical analysis, Separation science and technology. Academic, London, pp 145–169

    Google Scholar 

  260. Sänger-van de Griend CE (2012) Revival of capillary electrophoresis techniques in the pharmaceutical industry. LC GC N Am 30:954–971

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard K. E. Scriba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scriba, G.K.E. (2013). Differentiation of Enantiomers by Capillary Electrophoresis. In: Schurig, V. (eds) Differentiation of Enantiomers I. Topics in Current Chemistry, vol 340. Springer, Cham. https://doi.org/10.1007/128_2013_438

Download citation

Publish with us

Policies and ethics