Rhodium-Catalyzed Hydroformylation in Fused Azapolycycles Synthesis

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 342)


N-Heterocycles, including fused ones, have proven to be an important class of compounds since they possess biological and pharmacological activities themselves and serve as valuable intermediates for synthetic drug discovery. My interest in the synthesis of these compounds stems from studies dealing with the hydroformylation (oxo) of olefins. The dihydroindolizines and benzofused ones are easily generated via rhodium-catalyzed hydroformylation of N-allylpyrroles and indoles: the butanal intermediate undergoes an intramolecular cyclodehydration giving the final polycyclic compound. This chapter reports my results in the area of the conversions of oxo aldehydes with additional C,C-bond-forming reactions together with relevant work from other laboratories on additional C,N-bond-forming reactions, encountered in the field of Azapolycycles synthesis over the last 5 years or so. The intramolecular sequences for polycylization will be especially emphasized using rhodium complexes to effect these transformations, under both conventional and microwave heating.

Graphical Abstract


Aza Cyclodehydration Heterocycles Hydroformylation Polycycles Rhodium catalyst Synthesis 


  1. 1.
    Kouznetsov V, Palma A, Ewert C (2001) Synthesis and applicability of partially reduced 2-benzazepines. Curr Org Chem 5:519–551Google Scholar
  2. 2.
    Yea CM, Allan CE, Ashworth DM, Barnett J, Baxter AJ, Broadbridge JD, Franklin RJ, Hampton SL, Hudson P, Horton JA, Jenkins PD, Penson AM, Pitt GRW, Rivière P, Robson PA, Rooker DP, Semple G, Sheppard A, Haigh RM, Roe MB (2008) New benzylureas as a novel series of potent, nonpeptidic vasopressin V2 receptor agonists. J Med Chem 51:8124–8134Google Scholar
  3. 3.
    Katritzky A, Rees CW, Scriven EF (eds) (1996) Comprehensive heterocyclic chemistry. Elsevier, OxfordGoogle Scholar
  4. 4.
    Gilchrist TL (1997) Heterocyclic chemistry, 3rd edn. Addison Wesley, Essex, p 414Google Scholar
  5. 5.
    Nakamura I, Yamamoto Y (2004) Transition-metal-catalyzed reactions in heterocyclic synthesis. Chem Rev 104:2127–2198Google Scholar
  6. 6.
    Cacchi S, Fabrizi G (2005) Synthesis and functionalization of indoles through palladium-catalyzed reactions. Chem Rev 105:2873–2920Google Scholar
  7. 7.
    Zeni G, Larock RC (2006) Synthesis of heterocycles via palladium-catalyzed oxidative addition. Chem Rev 106:4644–4680Google Scholar
  8. 8.
    Conreaux D, Bouyssi D, Monteiro N, Balme G (2006) Palladium-catalyzed bicyclization processes in the one step construction of heteropolycyclic ring systems. Curr Org Chem 10:1325–1340Google Scholar
  9. 9.
    Varchi G, Ojima I (2006) Synthesis of heterocycles through hydrosilylation, silylformylation, silylcarbocyclization and cyclohydrocarbonylation react. Curr Org Chem 10:1341–1362Google Scholar
  10. 10.
    Negishi E-I (ed) (2002) Handbook of organopalladium chemistry for organic synthesis. Wiley, WeinheimGoogle Scholar
  11. 11.
    Balme G, Bossharth E, Monteiro N (2003) Pd-assisted multicomponent synthesis of heterocycles. Eur J Org Chem 21:4101–4111Google Scholar
  12. 12.
    Balme G (2004) Pyrrolsynthese durch Mehrkomponenten–Kupplungen. Angew Chem 116:6396–6399Google Scholar
  13. 13.
    Balme G (2004) Pyrrole syntheses by multicomponent coupling reactions. Angew Chem Int Ed 43:6238–6241Google Scholar
  14. 14.
    Eilbracht P, Schmidt AM (2002) New synthetic applications of tandem reactions under hydroformylation conditions. In: Beller M, Bolm C (eds) Transition metals for organic synthesis. Wiley, Weinheim, pp 57–85Google Scholar
  15. 15.
    Breit B (2003) Synthetic aspects of stereoselective hydroformylation. Acc Chem Res 36:264–275Google Scholar
  16. 16.
    Eilbracht P, Schmidt AM (2006) Synthetic applications of tandem reaction sequences involving hydroformylation. Top Organomet Chem 18:65–95Google Scholar
  17. 17.
    Frohning CD, Kohlpainter CW(1996) In: Cornils B, Herrmann WA (eds) Applied homogeneous catalysis with organometallic compounds, vol 1.Wiley, Weinheim, p 29Google Scholar
  18. 18.
    Kalck P, Peres Y, Jenck J (1991) Hydroformylation catalyzed by ruthenium complexes. Adv Organomet Chem 32:121–146Google Scholar
  19. 19.
    van Leeuwen PWNM, Claver C (eds) (2000) Catalysis by metal complexes. Rhodium catalyzed hydroformylation, vol 22. Kluwer, DordrechtGoogle Scholar
  20. 20.
    Evans D, Osborn JA, Wilkinson G (1968) Hydroformylation of alkenes by use of rhodium complex catalysts. J Chem Soc A 3133–3142Google Scholar
  21. 21.
    Ungvary F (2003) Application of transition metals in hydroformylation annual survey covering the year 2002. Coord Chem Rev 241:295–312Google Scholar
  22. 22.
    Grushin VV (2004) Mixed phosphine−phosphine oxide ligands. Chem Rev 104:1629–1662Google Scholar
  23. 23.
    Cuny GD, Buchwald SL (1993) Practical, high-yield, regioselective, rhodium-catalyzed hydroformylation of functionalized alpha-olefins. J Am Chem Soc 115:2066–2068Google Scholar
  24. 24.
    Bronger RPJ, Kamer PCJ, van Leeuwen PWNM (2003) Influence of the bite angle on the hydroformylation of internal olefins to linear aldehydes. Organometallics 22:5358–5369Google Scholar
  25. 25.
    Selent D, Wiese KD, Röttger D, Börner A (2000) Novel oxyfunctionalized phosphonite ligands for the hydroformylation of isomeric n-olefins. Angew Chem Int Ed 39:1639–1641Google Scholar
  26. 26.
    Gual A, Godard C, Castillón S, Claver C (2010) Highlights of the Rh-catalysed asymmetric hydroformylation of alkenes using phosphorus donor ligands. Tetrahedron Asymmetry 21:1135–1146Google Scholar
  27. 27.
    Aubry DA, Bridges NN, Ezell K, Stanley GG (2003) Polar phase hydroformylation: the dramatic effect of water on mono- and dirhodium catalysts. J Am Chem Soc 125:11180–11181Google Scholar
  28. 28.
    Li C, Widjaja E, Garland M (2003) The Rh4(CO)12-catalyzed hydroformylation of 3,3-dimethylbut-1-ene promoted with HMn(CO)5. Bimetallic catalytic binuclear elimination as an origin for synergism in homogeneous catalysis. J Am Chem Soc 125:5540–5548Google Scholar
  29. 29.
    Kim JJ, Alper H (2005) Ionic diamine rhodium(I) complexes-highly active catalysts for the hydroformylation of olefins. Chem Commun 3059–3061Google Scholar
  30. 30.
    Amer I, Alper H (1990) Zwitterionic rhodium complexes as catalysts for the hydroformylation of olefins. J Am Chem Soc 112:3674–3676Google Scholar
  31. 31.
    Lazzaroni R, Settambolo R, Caiazzo A (2000) Hydroformylation with unmodified rhodium catalysts. In: van Leeuwen PVNM, Claver C (eds) Catalysis by metal complexes. Rhodium catalyzed hydroformylation, vol 22. Kluwer, Dordrecht, pp 15–33Google Scholar
  32. 32.
    Thatchenko I (1982) In: Wilkinson G, Stone FGA, Abel EW (eds) Comprehensive organometallic chemistry. Pergamon, Oxford, p 101Google Scholar
  33. 33.
    Beller M, Bolm C (eds) (1999) Transition metals for organic synthesis. Wiley, WeinheimGoogle Scholar
  34. 34.
    Garland M, Pino P (1991) Kinetics of the formation and hydrogenolysis of acylrhodium tetracarbonyl. Organometallics 10:1693–1704Google Scholar
  35. 35.
    Garland M (1993) Heterometallic clusters as catalyst precursors. Synergism arising from the facile generation of a reactive fragment. Organometallics 12:535–543Google Scholar
  36. 36.
    Fyhr C, Garland M (1993) Phenomenological aspects of homogeneous catalysis. The case of equilibrium-controlled precursor conversion. Organometallics 12:1753–1764Google Scholar
  37. 37.
    Feng J, Garland M (1999) Unmodified homogeneous rhodium-catalyzed hydroformylation of styrene. The detailed kinetics of the regioselective synthesis. Organometallics 18:417–427Google Scholar
  38. 38.
    Liu G, Volken R, Garland M (1999) Unmodified rhodium-catalyzed hydroformylation of alkenes using tetrarhodium dodecacarbonyl. The infrared characterization of 15 acyl rhodium tetracarbonyl intermediates. Organometallics 18:3429–3436Google Scholar
  39. 39.
    Lazzaroni R, Raffaelli A, Settambolo R, Bertozzi S, Vitulli G (1989) Regioselectivity in the rhodium-catalyzed hydroformylation of styrene as a function of reaction temperature and gas pressure. J Mol Catal 50:1–9Google Scholar
  40. 40.
    Kalck P, Serein-Spiran F (1989) Easy synthesis of phenyl- and furylpropanals by low pressure hydroformylation of styrene and 2-vinylfuran. New J Chem 13:515–518Google Scholar
  41. 41.
    Browning AF, Bacon AD, White C, Milner DJ (1993) The beneficial effects of introducing sulfur substituents into hydroformylation substrates. J Mol Catal 83:L11–L14Google Scholar
  42. 42.
    Caiazzo A, Settambolo R, Uccello-Barretta G, Lazzaroni R (1997) Influence of the reaction temperature on the regioselectivity in the rhodium-catalyzed hydroformylation of vinylpyrroles. J Organomet Chem 548:279–284Google Scholar
  43. 43.
    Lazzaroni R, Settambolo R, Mariani M, Caiazzo A (1999) Stepwise hydroformylation of C,N-divinylpyrroles with Rh4(CO)12 under mild conditions: an original synthesis of N-vinylpyrrolylmonoaldehydes and of pyrrolyldialdehydes. J Organomet Chem 592:69–73Google Scholar
  44. 44.
    Basoli C, Botteghi C, Cabras MA, Chelucci G, Marchetti M (1995) Hydroformylation of some functionalized olefins catalyzed by rhodium(I) complexes with pydiphos and its P-oxide. J Organomet Chem 488:C20–C22Google Scholar
  45. 45.
    Settambolo R, Scamuzzi S, Caiazzo A, Lazzaroni R (1998) Opposite chemoselectivity (hydrogenation versus carbonylation) shown by 4-vinylpyridine with respect to 3-vinylpyridine under hydroformylation conditions with Rh4(CO)12. Organometallics 17:2127–2130Google Scholar
  46. 46.
    Caiazzo A, Settambolo R, Pontorno L, Lazzaroni R (2000) Chemoselectivity in the rhodium-catalyzed hydroformylation of 4-vinylpyridine: crucial role of phosphine ligand in promoting carbonylation instead of hydrogenation. J Organomet Chem 599:298–303Google Scholar
  47. 47.
    Hanson BE, Davis NE (1987) Hydroformylation of 1-hexene utilizing homogeneous rhodium catalysts regioselectivity as a function of conversion. J Chem Educ 64:928–930Google Scholar
  48. 48.
    Lazzaroni R, Pertici P, Bertozzi S, Fabrizi G (1990) 1-Hexene rhodium-catalyzed hydroformylation at partial substrate conversion: influence of reaction parameters on the chemoselectivity and regioselectivity. J Mol Catal 58:75–85Google Scholar
  49. 49.
    Wender I, Pino P (eds) (1977) Organic syntheses via metal carbonyls, vol 2. Wiley, New YorkGoogle Scholar
  50. 50.
    Lazzaroni R, Settambolo R, Uccello-Barretta G, Caiazzo A, Scamuzzi S (1999) Rhodium-catalyzed hydroformylation of vinylidenic olefins: the different behaviors of the isomeric alkyl-metal intermediates as the origin of the β-regioselectivity. J Mol Catal A Chem 143:123–130Google Scholar
  51. 51.
    Botteghi C, Cazzolato L, Marchetti M, Paganelli S (1995) New synthetic route to pharmacologically active 1-(N, N-dialkylamino)-3,3-diarylpropanes via rhodium-catalyzed hydroformylation of 1,1-diarylethenes. J Org Chem 60:6612–6615Google Scholar
  52. 52.
    Lazzaroni R, Settambolo R, Caiazzo A (2000) Hydroformylation with unmodified rhodium catalysts. In: van Leeuwen PVNM, Claver C (eds) Catalysis by metal complexes. Rhodium catalyzed hydroformylation. Kluwer, Dortrecht, pp 15–33Google Scholar
  53. 53.
    Garst ME, Lukton D (1981) Hydroformylation of bisolefinic amine derivatives catalyzed by cobalt and rhodium. J Org Chem 46:4433–4438Google Scholar
  54. 54.
    dos Santos EN, Pittman CU Jr, Toghiani H (1993) Hydroformylation of α- and β-pinene catalysed by rhodium and cobalt carbonyls. J Mol Catal 83:51–65Google Scholar
  55. 55.
    Banach D, Evans GO II, Mcintyre DG, Predmore T, Richmond MG, Supple HJ, Stewart RP Jr (1985) Rhodium-catalyzed hydroformylations of unsaturated nitrogen heterocycles: regio- and stereoselectivity in the synthesis of tropane and pdperidine carboxaldehydes. J Mol Catal 31:15–37Google Scholar
  56. 56.
    Botteghi C, Paganelli S, Perosa A, Lazzaroni R, Uccello-Barretta G (1993) Hydroformylation of norbornene and 2,5-norbornadiene catalysed by platinum(0)-alkene complexes in the presence of methanesulfonic acid: determination of the stereochemistry of the reaction. J Organomet Chem 447:153–157Google Scholar
  57. 57.
    Becker Y, Eisenstadt A, Stille JK (1980) Asymmetric hydroformylation and hydrocarboxylation of enamides. Synthesis of alanine and proline. J Org Chem 45:2145–2151Google Scholar
  58. 58.
    Cavinato G, Toniolo L, Botteghi C, Gladiali S (1982) Hydrocarboalkoxylation of N-vinylphthalimide catalyzed by palladium complexes. J Organomet Chem 229:93–100Google Scholar
  59. 59.
    Delogu G, Fredda G, Gladiali S (1984) Hydrocarbonylation of unsaturated nitrogen compounds. Synthesis of N-protected amino acid derivatives from N-substituted phthalimides. J Organomet Chem 268:167–174Google Scholar
  60. 60.
    Parriniello G, Stille JK (1987) Asymmetric hydroformylation catalyzed by homogeneous and polymer-supported platinum complexes containing chiral phosphine ligands. J Am Chem Soc 109:7122–7127Google Scholar
  61. 61.
    Botteghi C, Paganelli S, Schiodato A, Marchetti M (1991) The asymmetric hydroformylation in the synthesis of pharmaceuticals. Chirality 3:355–369Google Scholar
  62. 62.
    Gladiali S, Bayòn JC, Claver C (1995) Recent advances in enantioselective hydroformylation. Tetrahedron Asymmetry 6:1453–1474Google Scholar
  63. 63.
    Dolphin D (1997) The porphirins. Academic, New YorkGoogle Scholar
  64. 64.
    Lazzaroni R, Settambolo R, Caiazzo A, Pontorno L (2000) Rhodium-catalyzed hydroformylation of 1-allylpyrrole as an unexpected way to 5,6-dihydroindolizine synthesis. J Organomet Chem 601:320–323Google Scholar
  65. 65.
    Guazzelli G, Settambolo R (2007) 4-Indolylbutanals from rhodium-catalyzed hydroformylation of allylindoles as precursors of benzofused indolizine. Tetrahedron Lett 48:6034–6038Google Scholar
  66. 66.
    Michael JP (2005) Indolizidine and quinolizidine alkaloids. Nat Prod Rep 22:603–626Google Scholar
  67. 67.
    Daly JW (2003) Ernest Guenther award in chemistry of natural products. amphibian skin: a remarkable source of biologically active arthropod alkaloids. J Med Chem 46:445–452Google Scholar
  68. 68.
    Baxter EW, Reitz AB (1994) Expeditious synthesis of aza sugars by the double reductive amination of dicarbonyl sugars. J Org Chem 59:3175–3185Google Scholar
  69. 69.
    Sinnot LM (1990) Catalytic mechanism of enzymic glycosyl transfer. Chem Rev 90:1171–1202Google Scholar
  70. 70.
    Shao J, Yang J-S (2012) A diastereoselective cyclic imine cycloaddition strategy to access polyhydroxylated indolizidine skeleton: concise syntheses of (+)-/(−)-lentiginosines and (−)-2-epi-steviamine. J Org Chem 77:7891–7900Google Scholar
  71. 71.
    Sultane PR, Mohite AR, Bhat RG (2012) Total synthesis of 1-deoxy-7,8a-di-epi-castanospermine and formal synthesis of pumiliotoxin-251D. Tetrahedron Lett 53:5856–5858Google Scholar
  72. 72.
    Elbein AD, Molyneux RJ (1987) In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives, vol 5. Wiley, New York, pp 1–54Google Scholar
  73. 73.
    Leclercq S, Braekman JC, Daloze D, Pasteels JM (2000) The defensive chemistry of ants. Prog Chem Org Nat Prod 79:115–229Google Scholar
  74. 74.
    Angle SR, Kim M (2007) A general approach to 3-n-butyl-5-alkylindolizidines: total synthesis of (−)-indolizidine 195B. J Org Chem 72:8791–8796Google Scholar
  75. 75.
    Bergauer M, Huebner H, Gmeiner P (2004) Practical ex-chiral-pool methodology for the synthesis of dopaminergic tetrahydroindoles. Tetrahedron 60:1197–1204Google Scholar
  76. 76.
    Lehmann T, Huebner H, Gmeiner P (2001) Dopaminergic 7-aminotetrahydroindolizines: ex-chiral pool synthesis and preferential D3 receptor binding. Bioorg Med Chem Lett 11:2863–2866Google Scholar
  77. 77.
    Lehmann T, Gmeiner P (2000) Synthesis of enantiopure 8-aminomethylindolizines from glutamine by stereoelectronically controlled cationic cyclization. Heterocycles 53:1371–1378Google Scholar
  78. 78.
    Gracia S, Cazorla C, Métay E, Pellet-Rostaing S, Lemaire M (2009) Synthesis of 3-aryl-8-oxo-5,6,7,8-tetrahydroindolizines via a palladium-catalyzed arylation and heteroarylation. J Org Chem 74:3160–3163Google Scholar
  79. 79.
    Gmeiner P, Mierau J, Hoefner G (1992) Enantiomerically pure aminoindolizines: bicyclic ergoline analogs with dopamine autoreceptor activity. Arch Pharm 325:57–60Google Scholar
  80. 80.
    Carry JC, Mignani S (1997) Eur Pat Appl EP 118 321; EP 147 317; EP 124 384Google Scholar
  81. 81.
    Carry JC, Mignani S (1997) French Appl 2(539):417Google Scholar
  82. 82.
    Remers WA (1979) The chemistry of antitumor antibiotics. Wiley, New YorkGoogle Scholar
  83. 83.
    Pelletier SW (1983) Alkaloids: chemistry and biological perspectives. Wiley, New YorkGoogle Scholar
  84. 84.
    Basavaiah D, Devendar B, Lenin DV, Satyanarayana T (2009) The Baylis–Hillman bromides as versatile synthons: a facile one-pot synthesis of indolizine and benzofused indolizine frameworks. Synlett 3:411–416Google Scholar
  85. 85.
    Utsunomiya I, Fuji M, Sato T, Natsume M (1993) Preparation of alkyl-substituted indoles in the benzene portion. Part 9. Synthesis of (1aS, 8bS)-1-tert-butyloxycarbonyl-8-formyl-1, 1a, 2, 8b-tetrahydroazirino[2′, 3′:3, 4]pyrrolo[1, 2-α]indole. Model study for the enantiospecific synthesis of aziridinomitosenes. Chem Pharm Bull 41:854–860Google Scholar
  86. 86.
    Settambolo R, Caiazzo A, Lazzaroni R (2001) An original approach to 5,6-dihydroindolizines from 1-allylpyrroles by a tandem hydroformylation/cyclization/dehydration sequence. Tetrahedron Lett 42:4045–4048Google Scholar
  87. 87.
    Settambolo R, Guazzelli G, Mandoli A, Lazzaroni R (2004) (5R)-5-Alkyl-5,6-dihydroindolizines via stereospecific domino hydroformylation/cyclodehydration of (3R)-3-(pyrrol-1-yl)alk-1-enes. Tetrahedron Asymmetry 15:1821–1823Google Scholar
  88. 88.
    McCleverty JA, Wilkinson G (1966) Dichlorotetracarbonyldirhodium. Inorg Synth 8:211–214Google Scholar
  89. 89.
    Cattermole PE, Osborne AG (1977) Dodecacarbonyltetrarhodium. Inorg Synth 17:115–117Google Scholar
  90. 90.
    Beller M, Cornils B, Frohning D, Kohlpaintner CW (1995) Progress in hydroformylation and carbonylation. J Mol Catal A Chem 104:17–85Google Scholar
  91. 91.
    Settambolo R, Rocchiccioli S, Uccello-Barretta G, Lazzaroni R (2007) Chiral N-allylpyrroles as versatile substrates under rhodium-catalyzed hydroformylation: good regio- and diastereo-selectivity at room temperature and high pressure. Lett Org Chem 4:388–392Google Scholar
  92. 92.
    Kollár L, Farkas E, Bâtiu J (1997) Synthesis of aryl-butanal isomers by hydroformylation of substituted allylbenzene and propenylbenzene. J Mol Catal A 115:283–288Google Scholar
  93. 93.
    Abu-Gnim C, Amer I (1996) Phosphine oxides as ligands in the hydroformylation reaction. J Organomet Chem 516:235–243Google Scholar
  94. 94.
    Raffaelli A, Pucci S, Settambolo R, Uccello-Barretta G, Lazzaroni R (1991) Inter- and intramolecular protium-deuterium exchange in the rhodium-catalyzed deuterioformylation of styrene. Organometallics 10:3892–3898Google Scholar
  95. 95.
    Uccello-Barretta G, Lazzaroni R, Settambolo R, Salvadori P (1991) The use of 2H NMR in the elucidation of the catalytic pathway of the hydroformylation reaction. J Organomet Chem 417:111–119Google Scholar
  96. 96.
    Lazzaroni R, Settambolo R, Caiazzo A, Bennett MA (2002) Rhodium-catalyzed hydroformylation of 4-vinylpyridine: 4-ethylpyridine formation via an unusual cleavage of the Rh−C bond by the enolic form of the oxo product. Organometallics 21:2454–2459Google Scholar
  97. 97.
    Lazzaroni R, Settambolo R, Prota G, Botteghi C, Paganelli S, Marchetti M (2004) Rhodium-catalyzed hydro(deuterio)formylation of vinylidenic olefins containing a phenyl and a pyridyl group: crucial role of the β-hydride elimination in determining regio- and chemoselectivity. Inorg Chim Acta 357:3079–3083Google Scholar
  98. 98.
    Lazzaroni R, Settambolo R, Marchetti M, Paganelli S, Alagona G, Ghio C (2009) Rhodium-catalyzed deuterioformylation of the ketal-masked β-isophorone: evidence for a tertiary alkyl rhodium intermediate as a precursor of the main reaction product acetaldehyde derivative. Inorg Chim Acta 362:1641–1644Google Scholar
  99. 99.
    Polniaszek RP, Belmont SE (1990) Enantioselective total syntheses of indolizidine alkaloids 167B and 209D. J Org Chem 55:4688–4693Google Scholar
  100. 100.
    Daly JW, Myers CW, Whittaker N (1987) Further classification of skin alkaloids from neotropical poison frogs (dendrobatidae), with a general survey of toxic/noxious substances in the amphibian. Toxicon 25:1023–1095Google Scholar
  101. 101.
    Daly JW, Garraffo HM, Spande TF(1999) Alkaloids from amphibian skins. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives. Pergamon, Amsterdam, pp 1–161Google Scholar
  102. 102.
    Chang M-Y, Wu T-C, Ko Y-J (2007) Synthesis of Indolizidine 167B. Heterocycles 71:933–940Google Scholar
  103. 103.
    Ganapati Reddy P, Baskaran S (2004) Epoxide-initiated cationic cyclization of azides: a novel method for the stereoselective construction of 5-hydroxymethyl azabicyclic compounds and application in the stereo- and enantioselective total synthesis of (+)- and (−)-indolizidine 167B and 209D. J Org Chem 69:3093–3101Google Scholar
  104. 104.
    Michael JP (2007) Indolizidine and quinolizidine alkaloids. Nat Prod Rep 24:191–222Google Scholar
  105. 105.
    Lapointe G, Kapat A, Weidner K, Renaud P (2012) Radical azidation reactions and their application in the synthesis of alkaloids. Pure Appl Chem 84:1633–1641Google Scholar
  106. 106.
    By P, Vagner D, Burtoloso ACB (2012) Total synthesis of (−)-indolizidine 167B via an unusual Wolff rearrangement from an α, β-unsaturated diazaketone. Tetrahedron Lett 53:876–878Google Scholar
  107. 107.
    Reddy CR, Latha B, Rao NN (2012) Enantioselective access to (−)-indolizidines 167B, 209D, 239AB, 195B and (−)-monomorine from a common chiral synthon. Tetrahedron 68:145–151Google Scholar
  108. 108.
    Settambolo R, Guazzelli G, Mengali L, Mandoli A, Lazzaroni R (2003) A new class of optically active pyrrole derivatives: (3R)-3-(pyrrol-1-yl)alk-1-enes from d-α-aminoacids. Tetrahedron Asymmetry 14:2491–2493Google Scholar
  109. 109.
    Rocchiccioli S, Guazzelli G, Lazzaroni R, Settambolo R (2007) Synthesis of 5,6,7,8-tetrahydroindolizines via a domino-type transformation based on the rhodium catalyzed hydroformylation of N-(β-methallyl)pyrroles. J Heterocyclic Chem 44:479–482Google Scholar
  110. 110.
    Settambolo R, Rocchiccioli S, Lazzaroni R, Alagona G (2006) Complete 1,3-asymmetric induction into 3-methyl-4-(3-acetylpyrrol-1- yl)butanal to 1-acetyl-6-methyl-8-hydroxy-5,6,7,8-tetrahydroindolizine cyclization. Lett Org Chem 3:10–12Google Scholar
  111. 111.
    Rocchiccioli S, Settambolo R, Lazzaroni R (2005) Domino reaction sequences in the rhodium-catalyzed hydroformylation of 3-acetyl-1-allylpyrrole: a short route to 5,6,7,8-tetrahydroindolizines. J Organomet Chem 690:1866–1870Google Scholar
  112. 112.
    Alagona G, Ghio C, Rocchiccioli S (2007) Computational prediction of the regio- and diastereoselectivity in a rhodium-catalyzed hydroformylation/cyclization domino process. J Mol Model 13:823–837Google Scholar
  113. 113.
    Breit B, Seiche W (2001) Recent advances on chemo-, regio- and stereoselective hydroformylation. Synthesis 1:1–36Google Scholar
  114. 114.
    Settambolo R, Miniati S, Lazzaroni R (2003) One pot hydroformylation/intramolecular aldol condensation reactions of 1-allyl-2-carbonylpyrroles: a new entry into hydroindolizines synthesis. Synth Commun 33:2953–2961Google Scholar
  115. 115.
    Guazzelli G, Settambolo R, Lazzaroni R (2007) Synthesis of 4-(indol-1-yl)butanals via rhodium-catalyzed hydroformylation of 1-allylindoles. Synth Commun 37:1211–1218Google Scholar
  116. 116.
    Guida WC, Mathre DJ (1980) Phase-transfer alkylation of heterocycles in the presence of 18-crown-6 and potassium tert-butoxide. J Org Chem 45:3172–3176Google Scholar
  117. 117.
    Petrini M, Ballini R, Marcantoni E (1988) Amberlyst 15: a practical, mild and selective catalyst for methyl esterification of carboxylic acids. Synth Commun 18:847–853Google Scholar
  118. 118.
    Thalji RK, Ahrendt KA, Bergman RG, Ellman JA (2005) Annulation of aromatic imines via directed C−H bond activation. J Org Chem 70:6775–6781Google Scholar
  119. 119.
    Yi CS, Yun SY (2005) Ruthenium-catalyzed intermolecular coupling reactions of arylamines with ethylene and 1,3-dienes: mechanistic insight on hydroamination vs ortho-C−H bond activation. Org Lett 7:2181–2183Google Scholar
  120. 120.
    Eberle MK (1976) Chemistry of indole. 5-(1-indolyl)-2-pentanone system. J Org Chem 41:633–636Google Scholar
  121. 121.
    Reppe W, Vetter H (1953) Carbonylization. VI. Syntheses with hydrides of metal carbonyls. Justus Liebig Ann Chem 582:133–161Google Scholar
  122. 122.
    Beller M, Seayad J, Tillack A, Jiao H (2004) Catalytic Markovnikov and anti-Markovnikov functionalization of alkenes and alkynes: recent developments and trends. Angew Chem Int Ed 43:3368–3398Google Scholar
  123. 123.
    Eilbracht P, Bärfacker L, Buss C, Collmann C, Kitos-Rzychon BE, Kranemann CL, Rische T, Roggenbuck R, Schmidt A (1999) Tandem reaction sequences under hydroformylation conditions: new synthetic applications of transition metal catalysis. Chem Rev 99:3329–3366Google Scholar
  124. 124.
    Wittmann K, Wisniewski R, Mynott R, Leitner W, Kranemann CL, Rische T, Eilbracht P, Kluwer S, Ernsting JM, Elsevier CJ (2001) Supercritical carbon dioxide as solvent and temporary protecting group for rhodium-catalyzed hydroaminomethylation. Chem Eur J 7:4584–4589Google Scholar
  125. 125.
    da Rosa RG, de Campos RJD, Buffon R (1999) Effects of chelating diphosphines on the rhodium catalysed carbonylation of allylamines. J Mol Catal A Chem 137:297–301Google Scholar
  126. 126.
    Zhang Z, Ojima I (1993) Syntheses of nitrogen heterocycles by means of amine-directed carbonylation and hydrocarbonylation. J Organomet Chem 454:281–289Google Scholar
  127. 127.
    Chiou W-H, Schoenfelder A, Sun L, Mann A, Ojima I (2007) Rhodium-catalyzed cyclohydrocarbonylation approach to the syntheses of enantiopure homokainoids. J Org Chem 72:9418–9425Google Scholar
  128. 128.
    Vieira TO, Alper H (2007) Rhodium(I)-catalyzed hydroaminomethylation of 2-isopropenylanilines as a novel route to 1,2,3,4-tetrahydroquinolines. Chem Commun 2710–2711Google Scholar
  129. 129.
    Jesudason CD, Beavers LS, Cramer JW, Dill J, Finley DR, Lindsley CW, Stevens FC, Gadski RA, Oldham SW, Pickard RT, Siedem CS, Sindelar DK, Singh A, Watson BM, Hipskind PA (2006) Synthesis and SAR of novel histamine H3 receptor antagonists. Bioorg Med Chem Lett 16:3415–3418Google Scholar
  130. 130.
    Lombardo LJ, Camuso A, Clark J, Fager K, Gullo-Brown J, Hunt JT, Inigo I, Kan D, Koplowitz B, Lee F, McGlinchey K, Qian L, Ricca C, Rovnyak G, Traeger S, Tokarski J, Williams DK, Wu LI, Zhao Y, Manne V, Bhide RS (2005) Design, synthesis, and structure– activity relationships of tetrahydroquinoline-based farnesyltransferase inhibitors. Bioorg Med Chem Lett 15:1895Google Scholar
  131. 131.
    Asolkar RN, Schröder D, Heckmann R, Lang S, Wagner-Döbler I, Laatsch H (2004) Helquinoline, a new tetrahydroquinoline antibiotic from Janibacter limosus Hel 1+. J Antibiot 57:17–23Google Scholar
  132. 132.
    Katritzky AR, Rachwal S, Rachwal B (1996) Recent progress in the synthesis of 1,2,3,4,-tetrahydroquinolines.Tetrahedron 52:15031–15070Google Scholar
  133. 133.
    Lu S-M, Wang Y-Q, Han X-W, Zhou Y-G (2006) Asymmetric hydrogenation of quinolines and isoquinolines activated by chloroformates. Angew Chem Int Ed 45:2260–2263Google Scholar
  134. 134.
    Rueping M, Theissmann T, Antonchick AP (2006) Metal-free Brønsted acid catalyzed transfer hydrogenation – new organocatalytic reduction of quinolines. Synlett 7:1071–1074Google Scholar
  135. 135.
    Lam KH, Xu L, Feng L, Fan Q-H, Lam FL, Lo W-H, Chan ASC (2005) Highly enantioselective iridium-catalyzed hydrogenation of quinoline derivatives using chiral phosphinite H8-BINAPO. Adv Synth Catal 347:1755–1758Google Scholar
  136. 136.
    Vieira TO, Alper H (2008) An efficient three-component one-pot approach to the synthesis of 2,3,4,5-tetrahydro-1H-2-benzazepines by means of rhodium-catalyzed hydroaminomethylation. Org Lett 10:485–487Google Scholar
  137. 137.
    Slugovc C, Burtscher D, Stelzer F, Mereiter K (2005) Thermally switchable olefin metathesis initiators bearing chelating carbenes: influence of the chelate’s ring size. Organometallics 24:2255–2258Google Scholar
  138. 138.
    Banwell MG, Kokas OJ, Willis AC (2007) Chemoenzymatic approaches to the montanine alkaloids: a total synthesis of (+)-brunsvigine. Org Lett 9:3503–3506Google Scholar
  139. 139.
    Mach UR, Hackling AE, Perachon S, Ferry S, Wermuth CG, Schwartz J-C, Sokoloff P, Stark H (2004) Development of novel 1,2,3,4-tetrahydroisoquinoline derivatives and closely related compounds as potent and selective dopamine D3 receptor ligands. ChemBioChem 5:508–518Google Scholar
  140. 140.
    Johnson RE, Busacca CA (1992) Sterling drug, Inc. U.S. Patent 5,098,901; Fujisawa Pharmaceutical Co Ltd. US Appl 380,517Google Scholar
  141. 141.
    Okuro K, Alper H (2010) Ionic diamine rhodium complex catalyzed hydroaminomethylation of 2-allylanilines. Tetrahedron Lett 51:4959–4961Google Scholar
  142. 142.
    Nozaki K, Sakai N, Nanno T, Higashijima T, Mano S, Horiuchi T, Takaya H (1997) Highly enantioselective hydroformylation of olefins catalyzed by rhodium(I) complexes of new chiral phosphine−phosphite ligands. J Am Chem Soc 119:4413–4423Google Scholar
  143. 143.
    Airiau E, Girard N, Pizzetti M, Salvadori J, Taddei M, Mann A (2010) Hydroformylation of alkenylamines. Concise approaches toward piperidines, quinolizidines, and related alkaloids. J Org Chem 75:8670–8673Google Scholar
  144. 144.
    Caddick S, Fitzmaurice R (2009) Microwave enhanced synthesis. Tetrahedron 65:3325–3355Google Scholar
  145. 145.
    Jindal R, Bajaj S (2008) Recent applications of microwaves in synthesis of bioactive heterocyclic compounds. Curr Org Chem 12:836–849Google Scholar
  146. 146.
    Coquerel Y, Rodriguez J (2008) Microwave-assisted olefin metathesis. Eur J Org Chem 1125–1132Google Scholar
  147. 147.
    Solinas A, Taddei M (2007) Solid-supported reagents and catch-and-release techniques in organic synthesis. Synthesis 2409–2453Google Scholar
  148. 148.
    Petricci E, Mann A, Salvadori J, Taddei M (2007) Microwave assisted hydroaminomethylation of alkenes. Tetrahedron Lett 48:8501–8504Google Scholar
  149. 149.
    Petricci E, Mann A, Schoenfelder A, Rota A, Taddei M (2006) Microwaves make hydroformylation a rapid and easy process. Org Lett 8:3725–3727Google Scholar
  150. 150.
    Leadbeater NE, Torenius HM (2002) A study of the ionic liquid mediated microwave heating of organic solvents. J Org Chem 67:3145–3148Google Scholar
  151. 151.
    Chiou W-H, Mizutani N, Ojima I (2007) Highly efficient synthesis of Azabicyclo[x.y.0]alkane amino acids and congeners by means of Rh-catalyzed cyclohydrocarbonylation. J Org Chem 72:1871–1882Google Scholar
  152. 152.
    Cluzeau J, Lubell WD (2005) Design, synthesis, and application of azabicyclo[X.Y.0]alkanone amino acids as constrained dipeptide surrogates and peptide mimics. Biopolymers 80:98–150Google Scholar
  153. 153.
    Maison W (2005) Stereoselective synthesis of aza- and diazabicyclo[X.Y.0]alkane dipeptide mimetics. Synthesis 1031–1048Google Scholar
  154. 154.
    Hanessian S, Ronan B, Laoui A (1994) Design and synthesis of a prototype model antagonist of tachykinin NK-2 receptor. Bioorg Med Chem Lett 4:1397–1400Google Scholar
  155. 155.
    Genin MJ, Johnson RL (1992) Design, synthesis, and conformational analysis of a novel spiro-bicyclic system as a type II.beta.-turn peptidomimetic. J Am Chem Soc 114:8778–8783Google Scholar
  156. 156.
    Granberg D, Robinson JA (1994) Design and synthesis of a cis–gly–pro, type-VI turn, dipeptide mimetic and its use in fmoc-solid phase peptide synthesis. Tetrahedron Lett 35:861–864Google Scholar
  157. 157.
    Sato K, Nagai U (1986) Synthesis and antibiotic activity of a gramicidin S analogue containing bicyclic β-turn dipeptides. J Chem Soc Perkin Trans 1:1231–1234Google Scholar
  158. 158.
    Haubner R, Schmitt W, Hölzemann G, Goodman SL, Jonczyk A, Kessler H (1996) Cyclic RGD peptides containing β-turn mimetics. J Am Chem Soc 118:7881–7891Google Scholar
  159. 159.
    Chiou W-H, Lin G-H, Hsu C-C, Chaterpaul SJ, Ojima I (2009) Efficient syntheses of crispine A and harmicine by Rh-catalyzed cyclohydrocarbonylation. Org Lett 12:2659–2662Google Scholar
  160. 160.
    Ojima I, Tzamarioudaki M, Eguchi M (1995) New and efficient route to pipecolic acid derivatives by means of Rh-catalyzed intramolecular cyclohydrocarbonylation. J Org Chem 60:7078–7079Google Scholar
  161. 161.
    Ojima I, Zhang Z (1988) Novel amide-directed hydrocarbonylations and double carbonylation of N-allylamides. J Org Chem 53:4422–4425Google Scholar
  162. 162.
    Airiau E, Spangenber T, Girard N, Schoenfelder A, Salvadori J, Taddei M, Mann A (2008) General approach to aza-heterocycles by means of domino sequences driven by hydroformylation. Chem Eur J 14:10938–10948Google Scholar
  163. 163.
    Youn SW (2006) The Pictet–Spengler reaction: efficient carbon–carbon bond forming reaction in heterocyclic synthesis. Org Prep Proced Int 38:505–591Google Scholar
  164. 164.
    Larghi EL, Kaufman TS (2006) The Oxa–Pictet–Spengler cyclization: synthesis of isochromans and related pyran-type heterocycles. Synthesis 2:187–220Google Scholar
  165. 165.
    Airiau E, Chemin C, Girard N, Lonzi G, Mann A, Petricci E, Salvadori J, Taddei M (2010) Microwave-assisted domino hydroformylation/cyclization reactions: scope and limitations. Synthesis 17:2901–2914Google Scholar
  166. 166.
    Wakchaure PB, Easwar S, Argade NP (2009) Synthesis of the reported protoberberine gusanlung D. Synthesis 10:1667–1672Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.CNR-ICCOM, UOS di Pisa, Dipartimento di Chimica e Chimica IndustrialeUniversità di PisaPisaItaly

Personalised recommendations