Skip to main content

Rhodium-Catalyzed Hydroformylation in Fused Azapolycycles Synthesis

  • Chapter
  • First Online:
Hydroformylation for Organic Synthesis

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 342))

Abstract

N-Heterocycles, including fused ones, have proven to be an important class of compounds since they possess biological and pharmacological activities themselves and serve as valuable intermediates for synthetic drug discovery. My interest in the synthesis of these compounds stems from studies dealing with the hydroformylation (oxo) of olefins. The dihydroindolizines and benzofused ones are easily generated via rhodium-catalyzed hydroformylation of N-allylpyrroles and indoles: the butanal intermediate undergoes an intramolecular cyclodehydration giving the final polycyclic compound. This chapter reports my results in the area of the conversions of oxo aldehydes with additional C,C-bond-forming reactions together with relevant work from other laboratories on additional C,N-bond-forming reactions, encountered in the field of Azapolycycles synthesis over the last 5 years or so. The intramolecular sequences for polycylization will be especially emphasized using rhodium complexes to effect these transformations, under both conventional and microwave heating.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kouznetsov V, Palma A, Ewert C (2001) Synthesis and applicability of partially reduced 2-benzazepines. Curr Org Chem 5:519–551

    CAS  Google Scholar 

  2. Yea CM, Allan CE, Ashworth DM, Barnett J, Baxter AJ, Broadbridge JD, Franklin RJ, Hampton SL, Hudson P, Horton JA, Jenkins PD, Penson AM, Pitt GRW, Rivière P, Robson PA, Rooker DP, Semple G, Sheppard A, Haigh RM, Roe MB (2008) New benzylureas as a novel series of potent, nonpeptidic vasopressin V2 receptor agonists. J Med Chem 51:8124–8134

    CAS  Google Scholar 

  3. Katritzky A, Rees CW, Scriven EF (eds) (1996) Comprehensive heterocyclic chemistry. Elsevier, Oxford

    Google Scholar 

  4. Gilchrist TL (1997) Heterocyclic chemistry, 3rd edn. Addison Wesley, Essex, p 414

    Google Scholar 

  5. Nakamura I, Yamamoto Y (2004) Transition-metal-catalyzed reactions in heterocyclic synthesis. Chem Rev 104:2127–2198

    CAS  Google Scholar 

  6. Cacchi S, Fabrizi G (2005) Synthesis and functionalization of indoles through palladium-catalyzed reactions. Chem Rev 105:2873–2920

    CAS  Google Scholar 

  7. Zeni G, Larock RC (2006) Synthesis of heterocycles via palladium-catalyzed oxidative addition. Chem Rev 106:4644–4680

    CAS  Google Scholar 

  8. Conreaux D, Bouyssi D, Monteiro N, Balme G (2006) Palladium-catalyzed bicyclization processes in the one step construction of heteropolycyclic ring systems. Curr Org Chem 10:1325–1340

    CAS  Google Scholar 

  9. Varchi G, Ojima I (2006) Synthesis of heterocycles through hydrosilylation, silylformylation, silylcarbocyclization and cyclohydrocarbonylation react. Curr Org Chem 10:1341–1362

    CAS  Google Scholar 

  10. Negishi E-I (ed) (2002) Handbook of organopalladium chemistry for organic synthesis. Wiley, Weinheim

    Google Scholar 

  11. Balme G, Bossharth E, Monteiro N (2003) Pd-assisted multicomponent synthesis of heterocycles. Eur J Org Chem 21:4101–4111

    Google Scholar 

  12. Balme G (2004) Pyrrolsynthese durch Mehrkomponenten–Kupplungen. Angew Chem 116:6396–6399

    Google Scholar 

  13. Balme G (2004) Pyrrole syntheses by multicomponent coupling reactions. Angew Chem Int Ed 43:6238–6241

    CAS  Google Scholar 

  14. Eilbracht P, Schmidt AM (2002) New synthetic applications of tandem reactions under hydroformylation conditions. In: Beller M, Bolm C (eds) Transition metals for organic synthesis. Wiley, Weinheim, pp 57–85

    Google Scholar 

  15. Breit B (2003) Synthetic aspects of stereoselective hydroformylation. Acc Chem Res 36:264–275

    CAS  Google Scholar 

  16. Eilbracht P, Schmidt AM (2006) Synthetic applications of tandem reaction sequences involving hydroformylation. Top Organomet Chem 18:65–95

    CAS  Google Scholar 

  17. Frohning CD, Kohlpainter CW(1996) In: Cornils B, Herrmann WA (eds) Applied homogeneous catalysis with organometallic compounds, vol 1.Wiley, Weinheim, p 29

    Google Scholar 

  18. Kalck P, Peres Y, Jenck J (1991) Hydroformylation catalyzed by ruthenium complexes. Adv Organomet Chem 32:121–146

    CAS  Google Scholar 

  19. van Leeuwen PWNM, Claver C (eds) (2000) Catalysis by metal complexes. Rhodium catalyzed hydroformylation, vol 22. Kluwer, Dordrecht

    Google Scholar 

  20. Evans D, Osborn JA, Wilkinson G (1968) Hydroformylation of alkenes by use of rhodium complex catalysts. J Chem Soc A 3133–3142

    Google Scholar 

  21. Ungvary F (2003) Application of transition metals in hydroformylation annual survey covering the year 2002. Coord Chem Rev 241:295–312

    CAS  Google Scholar 

  22. Grushin VV (2004) Mixed phosphine−phosphine oxide ligands. Chem Rev 104:1629–1662

    CAS  Google Scholar 

  23. Cuny GD, Buchwald SL (1993) Practical, high-yield, regioselective, rhodium-catalyzed hydroformylation of functionalized alpha-olefins. J Am Chem Soc 115:2066–2068

    CAS  Google Scholar 

  24. Bronger RPJ, Kamer PCJ, van Leeuwen PWNM (2003) Influence of the bite angle on the hydroformylation of internal olefins to linear aldehydes. Organometallics 22:5358–5369

    CAS  Google Scholar 

  25. Selent D, Wiese KD, Röttger D, Börner A (2000) Novel oxyfunctionalized phosphonite ligands for the hydroformylation of isomeric n-olefins. Angew Chem Int Ed 39:1639–1641

    CAS  Google Scholar 

  26. Gual A, Godard C, Castillón S, Claver C (2010) Highlights of the Rh-catalysed asymmetric hydroformylation of alkenes using phosphorus donor ligands. Tetrahedron Asymmetry 21:1135–1146

    CAS  Google Scholar 

  27. Aubry DA, Bridges NN, Ezell K, Stanley GG (2003) Polar phase hydroformylation: the dramatic effect of water on mono- and dirhodium catalysts. J Am Chem Soc 125:11180–11181

    CAS  Google Scholar 

  28. Li C, Widjaja E, Garland M (2003) The Rh4(CO)12-catalyzed hydroformylation of 3,3-dimethylbut-1-ene promoted with HMn(CO)5. Bimetallic catalytic binuclear elimination as an origin for synergism in homogeneous catalysis. J Am Chem Soc 125:5540–5548

    CAS  Google Scholar 

  29. Kim JJ, Alper H (2005) Ionic diamine rhodium(I) complexes-highly active catalysts for the hydroformylation of olefins. Chem Commun 3059–3061

    Google Scholar 

  30. Amer I, Alper H (1990) Zwitterionic rhodium complexes as catalysts for the hydroformylation of olefins. J Am Chem Soc 112:3674–3676

    CAS  Google Scholar 

  31. Lazzaroni R, Settambolo R, Caiazzo A (2000) Hydroformylation with unmodified rhodium catalysts. In: van Leeuwen PVNM, Claver C (eds) Catalysis by metal complexes. Rhodium catalyzed hydroformylation, vol 22. Kluwer, Dordrecht, pp 15–33

    Google Scholar 

  32. Thatchenko I (1982) In: Wilkinson G, Stone FGA, Abel EW (eds) Comprehensive organometallic chemistry. Pergamon, Oxford, p 101

    Google Scholar 

  33. Beller M, Bolm C (eds) (1999) Transition metals for organic synthesis. Wiley, Weinheim

    Google Scholar 

  34. Garland M, Pino P (1991) Kinetics of the formation and hydrogenolysis of acylrhodium tetracarbonyl. Organometallics 10:1693–1704

    CAS  Google Scholar 

  35. Garland M (1993) Heterometallic clusters as catalyst precursors. Synergism arising from the facile generation of a reactive fragment. Organometallics 12:535–543

    CAS  Google Scholar 

  36. Fyhr C, Garland M (1993) Phenomenological aspects of homogeneous catalysis. The case of equilibrium-controlled precursor conversion. Organometallics 12:1753–1764

    CAS  Google Scholar 

  37. Feng J, Garland M (1999) Unmodified homogeneous rhodium-catalyzed hydroformylation of styrene. The detailed kinetics of the regioselective synthesis. Organometallics 18:417–427

    CAS  Google Scholar 

  38. Liu G, Volken R, Garland M (1999) Unmodified rhodium-catalyzed hydroformylation of alkenes using tetrarhodium dodecacarbonyl. The infrared characterization of 15 acyl rhodium tetracarbonyl intermediates. Organometallics 18:3429–3436

    CAS  Google Scholar 

  39. Lazzaroni R, Raffaelli A, Settambolo R, Bertozzi S, Vitulli G (1989) Regioselectivity in the rhodium-catalyzed hydroformylation of styrene as a function of reaction temperature and gas pressure. J Mol Catal 50:1–9

    CAS  Google Scholar 

  40. Kalck P, Serein-Spiran F (1989) Easy synthesis of phenyl- and furylpropanals by low pressure hydroformylation of styrene and 2-vinylfuran. New J Chem 13:515–518

    CAS  Google Scholar 

  41. Browning AF, Bacon AD, White C, Milner DJ (1993) The beneficial effects of introducing sulfur substituents into hydroformylation substrates. J Mol Catal 83:L11–L14

    CAS  Google Scholar 

  42. Caiazzo A, Settambolo R, Uccello-Barretta G, Lazzaroni R (1997) Influence of the reaction temperature on the regioselectivity in the rhodium-catalyzed hydroformylation of vinylpyrroles. J Organomet Chem 548:279–284

    CAS  Google Scholar 

  43. Lazzaroni R, Settambolo R, Mariani M, Caiazzo A (1999) Stepwise hydroformylation of C,N-divinylpyrroles with Rh4(CO)12 under mild conditions: an original synthesis of N-vinylpyrrolylmonoaldehydes and of pyrrolyldialdehydes. J Organomet Chem 592:69–73

    CAS  Google Scholar 

  44. Basoli C, Botteghi C, Cabras MA, Chelucci G, Marchetti M (1995) Hydroformylation of some functionalized olefins catalyzed by rhodium(I) complexes with pydiphos and its P-oxide. J Organomet Chem 488:C20–C22

    CAS  Google Scholar 

  45. Settambolo R, Scamuzzi S, Caiazzo A, Lazzaroni R (1998) Opposite chemoselectivity (hydrogenation versus carbonylation) shown by 4-vinylpyridine with respect to 3-vinylpyridine under hydroformylation conditions with Rh4(CO)12. Organometallics 17:2127–2130

    CAS  Google Scholar 

  46. Caiazzo A, Settambolo R, Pontorno L, Lazzaroni R (2000) Chemoselectivity in the rhodium-catalyzed hydroformylation of 4-vinylpyridine: crucial role of phosphine ligand in promoting carbonylation instead of hydrogenation. J Organomet Chem 599:298–303

    CAS  Google Scholar 

  47. Hanson BE, Davis NE (1987) Hydroformylation of 1-hexene utilizing homogeneous rhodium catalysts regioselectivity as a function of conversion. J Chem Educ 64:928–930

    CAS  Google Scholar 

  48. Lazzaroni R, Pertici P, Bertozzi S, Fabrizi G (1990) 1-Hexene rhodium-catalyzed hydroformylation at partial substrate conversion: influence of reaction parameters on the chemoselectivity and regioselectivity. J Mol Catal 58:75–85

    CAS  Google Scholar 

  49. Wender I, Pino P (eds) (1977) Organic syntheses via metal carbonyls, vol 2. Wiley, New York

    Google Scholar 

  50. Lazzaroni R, Settambolo R, Uccello-Barretta G, Caiazzo A, Scamuzzi S (1999) Rhodium-catalyzed hydroformylation of vinylidenic olefins: the different behaviors of the isomeric alkyl-metal intermediates as the origin of the β-regioselectivity. J Mol Catal A Chem 143:123–130

    CAS  Google Scholar 

  51. Botteghi C, Cazzolato L, Marchetti M, Paganelli S (1995) New synthetic route to pharmacologically active 1-(N, N-dialkylamino)-3,3-diarylpropanes via rhodium-catalyzed hydroformylation of 1,1-diarylethenes. J Org Chem 60:6612–6615

    CAS  Google Scholar 

  52. Lazzaroni R, Settambolo R, Caiazzo A (2000) Hydroformylation with unmodified rhodium catalysts. In: van Leeuwen PVNM, Claver C (eds) Catalysis by metal complexes. Rhodium catalyzed hydroformylation. Kluwer, Dortrecht, pp 15–33

    Google Scholar 

  53. Garst ME, Lukton D (1981) Hydroformylation of bisolefinic amine derivatives catalyzed by cobalt and rhodium. J Org Chem 46:4433–4438

    CAS  Google Scholar 

  54. dos Santos EN, Pittman CU Jr, Toghiani H (1993) Hydroformylation of α- and β-pinene catalysed by rhodium and cobalt carbonyls. J Mol Catal 83:51–65

    Google Scholar 

  55. Banach D, Evans GO II, Mcintyre DG, Predmore T, Richmond MG, Supple HJ, Stewart RP Jr (1985) Rhodium-catalyzed hydroformylations of unsaturated nitrogen heterocycles: regio- and stereoselectivity in the synthesis of tropane and pdperidine carboxaldehydes. J Mol Catal 31:15–37

    CAS  Google Scholar 

  56. Botteghi C, Paganelli S, Perosa A, Lazzaroni R, Uccello-Barretta G (1993) Hydroformylation of norbornene and 2,5-norbornadiene catalysed by platinum(0)-alkene complexes in the presence of methanesulfonic acid: determination of the stereochemistry of the reaction. J Organomet Chem 447:153–157

    CAS  Google Scholar 

  57. Becker Y, Eisenstadt A, Stille JK (1980) Asymmetric hydroformylation and hydrocarboxylation of enamides. Synthesis of alanine and proline. J Org Chem 45:2145–2151

    CAS  Google Scholar 

  58. Cavinato G, Toniolo L, Botteghi C, Gladiali S (1982) Hydrocarboalkoxylation of N-vinylphthalimide catalyzed by palladium complexes. J Organomet Chem 229:93–100

    CAS  Google Scholar 

  59. Delogu G, Fredda G, Gladiali S (1984) Hydrocarbonylation of unsaturated nitrogen compounds. Synthesis of N-protected amino acid derivatives from N-substituted phthalimides. J Organomet Chem 268:167–174

    CAS  Google Scholar 

  60. Parriniello G, Stille JK (1987) Asymmetric hydroformylation catalyzed by homogeneous and polymer-supported platinum complexes containing chiral phosphine ligands. J Am Chem Soc 109:7122–7127

    Google Scholar 

  61. Botteghi C, Paganelli S, Schiodato A, Marchetti M (1991) The asymmetric hydroformylation in the synthesis of pharmaceuticals. Chirality 3:355–369

    CAS  Google Scholar 

  62. Gladiali S, Bayòn JC, Claver C (1995) Recent advances in enantioselective hydroformylation. Tetrahedron Asymmetry 6:1453–1474

    CAS  Google Scholar 

  63. Dolphin D (1997) The porphirins. Academic, New York

    Google Scholar 

  64. Lazzaroni R, Settambolo R, Caiazzo A, Pontorno L (2000) Rhodium-catalyzed hydroformylation of 1-allylpyrrole as an unexpected way to 5,6-dihydroindolizine synthesis. J Organomet Chem 601:320–323

    CAS  Google Scholar 

  65. Guazzelli G, Settambolo R (2007) 4-Indolylbutanals from rhodium-catalyzed hydroformylation of allylindoles as precursors of benzofused indolizine. Tetrahedron Lett 48:6034–6038

    CAS  Google Scholar 

  66. Michael JP (2005) Indolizidine and quinolizidine alkaloids. Nat Prod Rep 22:603–626

    Google Scholar 

  67. Daly JW (2003) Ernest Guenther award in chemistry of natural products. amphibian skin: a remarkable source of biologically active arthropod alkaloids. J Med Chem 46:445–452

    CAS  Google Scholar 

  68. Baxter EW, Reitz AB (1994) Expeditious synthesis of aza sugars by the double reductive amination of dicarbonyl sugars. J Org Chem 59:3175–3185

    CAS  Google Scholar 

  69. Sinnot LM (1990) Catalytic mechanism of enzymic glycosyl transfer. Chem Rev 90:1171–1202

    Google Scholar 

  70. Shao J, Yang J-S (2012) A diastereoselective cyclic imine cycloaddition strategy to access polyhydroxylated indolizidine skeleton: concise syntheses of (+)-/(−)-lentiginosines and (−)-2-epi-steviamine. J Org Chem 77:7891–7900

    CAS  Google Scholar 

  71. Sultane PR, Mohite AR, Bhat RG (2012) Total synthesis of 1-deoxy-7,8a-di-epi-castanospermine and formal synthesis of pumiliotoxin-251D. Tetrahedron Lett 53:5856–5858

    CAS  Google Scholar 

  72. Elbein AD, Molyneux RJ (1987) In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives, vol 5. Wiley, New York, pp 1–54

    Google Scholar 

  73. Leclercq S, Braekman JC, Daloze D, Pasteels JM (2000) The defensive chemistry of ants. Prog Chem Org Nat Prod 79:115–229

    CAS  Google Scholar 

  74. Angle SR, Kim M (2007) A general approach to 3-n-butyl-5-alkylindolizidines: total synthesis of (−)-indolizidine 195B. J Org Chem 72:8791–8796

    CAS  Google Scholar 

  75. Bergauer M, Huebner H, Gmeiner P (2004) Practical ex-chiral-pool methodology for the synthesis of dopaminergic tetrahydroindoles. Tetrahedron 60:1197–1204

    CAS  Google Scholar 

  76. Lehmann T, Huebner H, Gmeiner P (2001) Dopaminergic 7-aminotetrahydroindolizines: ex-chiral pool synthesis and preferential D3 receptor binding. Bioorg Med Chem Lett 11:2863–2866

    CAS  Google Scholar 

  77. Lehmann T, Gmeiner P (2000) Synthesis of enantiopure 8-aminomethylindolizines from glutamine by stereoelectronically controlled cationic cyclization. Heterocycles 53:1371–1378

    CAS  Google Scholar 

  78. Gracia S, Cazorla C, Métay E, Pellet-Rostaing S, Lemaire M (2009) Synthesis of 3-aryl-8-oxo-5,6,7,8-tetrahydroindolizines via a palladium-catalyzed arylation and heteroarylation. J Org Chem 74:3160–3163

    CAS  Google Scholar 

  79. Gmeiner P, Mierau J, Hoefner G (1992) Enantiomerically pure aminoindolizines: bicyclic ergoline analogs with dopamine autoreceptor activity. Arch Pharm 325:57–60

    CAS  Google Scholar 

  80. Carry JC, Mignani S (1997) Eur Pat Appl EP 118 321; EP 147 317; EP 124 384

    Google Scholar 

  81. Carry JC, Mignani S (1997) French Appl 2(539):417

    Google Scholar 

  82. Remers WA (1979) The chemistry of antitumor antibiotics. Wiley, New York

    Google Scholar 

  83. Pelletier SW (1983) Alkaloids: chemistry and biological perspectives. Wiley, New York

    Google Scholar 

  84. Basavaiah D, Devendar B, Lenin DV, Satyanarayana T (2009) The Baylis–Hillman bromides as versatile synthons: a facile one-pot synthesis of indolizine and benzofused indolizine frameworks. Synlett 3:411–416

    Google Scholar 

  85. Utsunomiya I, Fuji M, Sato T, Natsume M (1993) Preparation of alkyl-substituted indoles in the benzene portion. Part 9. Synthesis of (1aS, 8bS)-1-tert-butyloxycarbonyl-8-formyl-1, 1a, 2, 8b-tetrahydroazirino[2′, 3′:3, 4]pyrrolo[1, 2-α]indole. Model study for the enantiospecific synthesis of aziridinomitosenes. Chem Pharm Bull 41:854–860

    CAS  Google Scholar 

  86. Settambolo R, Caiazzo A, Lazzaroni R (2001) An original approach to 5,6-dihydroindolizines from 1-allylpyrroles by a tandem hydroformylation/cyclization/dehydration sequence. Tetrahedron Lett 42:4045–4048

    CAS  Google Scholar 

  87. Settambolo R, Guazzelli G, Mandoli A, Lazzaroni R (2004) (5R)-5-Alkyl-5,6-dihydroindolizines via stereospecific domino hydroformylation/cyclodehydration of (3R)-3-(pyrrol-1-yl)alk-1-enes. Tetrahedron Asymmetry 15:1821–1823

    CAS  Google Scholar 

  88. McCleverty JA, Wilkinson G (1966) Dichlorotetracarbonyldirhodium. Inorg Synth 8:211–214

    CAS  Google Scholar 

  89. Cattermole PE, Osborne AG (1977) Dodecacarbonyltetrarhodium. Inorg Synth 17:115–117

    CAS  Google Scholar 

  90. Beller M, Cornils B, Frohning D, Kohlpaintner CW (1995) Progress in hydroformylation and carbonylation. J Mol Catal A Chem 104:17–85

    CAS  Google Scholar 

  91. Settambolo R, Rocchiccioli S, Uccello-Barretta G, Lazzaroni R (2007) Chiral N-allylpyrroles as versatile substrates under rhodium-catalyzed hydroformylation: good regio- and diastereo-selectivity at room temperature and high pressure. Lett Org Chem 4:388–392

    CAS  Google Scholar 

  92. Kollár L, Farkas E, Bâtiu J (1997) Synthesis of aryl-butanal isomers by hydroformylation of substituted allylbenzene and propenylbenzene. J Mol Catal A 115:283–288

    Google Scholar 

  93. Abu-Gnim C, Amer I (1996) Phosphine oxides as ligands in the hydroformylation reaction. J Organomet Chem 516:235–243

    CAS  Google Scholar 

  94. Raffaelli A, Pucci S, Settambolo R, Uccello-Barretta G, Lazzaroni R (1991) Inter- and intramolecular protium-deuterium exchange in the rhodium-catalyzed deuterioformylation of styrene. Organometallics 10:3892–3898

    CAS  Google Scholar 

  95. Uccello-Barretta G, Lazzaroni R, Settambolo R, Salvadori P (1991) The use of 2H NMR in the elucidation of the catalytic pathway of the hydroformylation reaction. J Organomet Chem 417:111–119

    CAS  Google Scholar 

  96. Lazzaroni R, Settambolo R, Caiazzo A, Bennett MA (2002) Rhodium-catalyzed hydroformylation of 4-vinylpyridine: 4-ethylpyridine formation via an unusual cleavage of the Rh−C bond by the enolic form of the oxo product. Organometallics 21:2454–2459

    CAS  Google Scholar 

  97. Lazzaroni R, Settambolo R, Prota G, Botteghi C, Paganelli S, Marchetti M (2004) Rhodium-catalyzed hydro(deuterio)formylation of vinylidenic olefins containing a phenyl and a pyridyl group: crucial role of the β-hydride elimination in determining regio- and chemoselectivity. Inorg Chim Acta 357:3079–3083

    CAS  Google Scholar 

  98. Lazzaroni R, Settambolo R, Marchetti M, Paganelli S, Alagona G, Ghio C (2009) Rhodium-catalyzed deuterioformylation of the ketal-masked β-isophorone: evidence for a tertiary alkyl rhodium intermediate as a precursor of the main reaction product acetaldehyde derivative. Inorg Chim Acta 362:1641–1644

    CAS  Google Scholar 

  99. Polniaszek RP, Belmont SE (1990) Enantioselective total syntheses of indolizidine alkaloids 167B and 209D. J Org Chem 55:4688–4693

    CAS  Google Scholar 

  100. Daly JW, Myers CW, Whittaker N (1987) Further classification of skin alkaloids from neotropical poison frogs (dendrobatidae), with a general survey of toxic/noxious substances in the amphibian. Toxicon 25:1023–1095

    CAS  Google Scholar 

  101. Daly JW, Garraffo HM, Spande TF(1999) Alkaloids from amphibian skins. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives. Pergamon, Amsterdam, pp 1–161

    Google Scholar 

  102. Chang M-Y, Wu T-C, Ko Y-J (2007) Synthesis of Indolizidine 167B. Heterocycles 71:933–940

    CAS  Google Scholar 

  103. Ganapati Reddy P, Baskaran S (2004) Epoxide-initiated cationic cyclization of azides: a novel method for the stereoselective construction of 5-hydroxymethyl azabicyclic compounds and application in the stereo- and enantioselective total synthesis of (+)- and (−)-indolizidine 167B and 209D. J Org Chem 69:3093–3101

    Google Scholar 

  104. Michael JP (2007) Indolizidine and quinolizidine alkaloids. Nat Prod Rep 24:191–222

    CAS  Google Scholar 

  105. Lapointe G, Kapat A, Weidner K, Renaud P (2012) Radical azidation reactions and their application in the synthesis of alkaloids. Pure Appl Chem 84:1633–1641

    CAS  Google Scholar 

  106. By P, Vagner D, Burtoloso ACB (2012) Total synthesis of (−)-indolizidine 167B via an unusual Wolff rearrangement from an α, β-unsaturated diazaketone. Tetrahedron Lett 53:876–878

    Google Scholar 

  107. Reddy CR, Latha B, Rao NN (2012) Enantioselective access to (−)-indolizidines 167B, 209D, 239AB, 195B and (−)-monomorine from a common chiral synthon. Tetrahedron 68:145–151

    CAS  Google Scholar 

  108. Settambolo R, Guazzelli G, Mengali L, Mandoli A, Lazzaroni R (2003) A new class of optically active pyrrole derivatives: (3R)-3-(pyrrol-1-yl)alk-1-enes from d-α-aminoacids. Tetrahedron Asymmetry 14:2491–2493

    CAS  Google Scholar 

  109. Rocchiccioli S, Guazzelli G, Lazzaroni R, Settambolo R (2007) Synthesis of 5,6,7,8-tetrahydroindolizines via a domino-type transformation based on the rhodium catalyzed hydroformylation of N-(β-methallyl)pyrroles. J Heterocyclic Chem 44:479–482

    CAS  Google Scholar 

  110. Settambolo R, Rocchiccioli S, Lazzaroni R, Alagona G (2006) Complete 1,3-asymmetric induction into 3-methyl-4-(3-acetylpyrrol-1- yl)butanal to 1-acetyl-6-methyl-8-hydroxy-5,6,7,8-tetrahydroindolizine cyclization. Lett Org Chem 3:10–12

    CAS  Google Scholar 

  111. Rocchiccioli S, Settambolo R, Lazzaroni R (2005) Domino reaction sequences in the rhodium-catalyzed hydroformylation of 3-acetyl-1-allylpyrrole: a short route to 5,6,7,8-tetrahydroindolizines. J Organomet Chem 690:1866–1870

    CAS  Google Scholar 

  112. Alagona G, Ghio C, Rocchiccioli S (2007) Computational prediction of the regio- and diastereoselectivity in a rhodium-catalyzed hydroformylation/cyclization domino process. J Mol Model 13:823–837

    CAS  Google Scholar 

  113. Breit B, Seiche W (2001) Recent advances on chemo-, regio- and stereoselective hydroformylation. Synthesis 1:1–36

    Google Scholar 

  114. Settambolo R, Miniati S, Lazzaroni R (2003) One pot hydroformylation/intramolecular aldol condensation reactions of 1-allyl-2-carbonylpyrroles: a new entry into hydroindolizines synthesis. Synth Commun 33:2953–2961

    CAS  Google Scholar 

  115. Guazzelli G, Settambolo R, Lazzaroni R (2007) Synthesis of 4-(indol-1-yl)butanals via rhodium-catalyzed hydroformylation of 1-allylindoles. Synth Commun 37:1211–1218

    CAS  Google Scholar 

  116. Guida WC, Mathre DJ (1980) Phase-transfer alkylation of heterocycles in the presence of 18-crown-6 and potassium tert-butoxide. J Org Chem 45:3172–3176

    CAS  Google Scholar 

  117. Petrini M, Ballini R, Marcantoni E (1988) Amberlyst 15: a practical, mild and selective catalyst for methyl esterification of carboxylic acids. Synth Commun 18:847–853

    CAS  Google Scholar 

  118. Thalji RK, Ahrendt KA, Bergman RG, Ellman JA (2005) Annulation of aromatic imines via directed C−H bond activation. J Org Chem 70:6775–6781

    CAS  Google Scholar 

  119. Yi CS, Yun SY (2005) Ruthenium-catalyzed intermolecular coupling reactions of arylamines with ethylene and 1,3-dienes: mechanistic insight on hydroamination vs ortho-C−H bond activation. Org Lett 7:2181–2183

    CAS  Google Scholar 

  120. Eberle MK (1976) Chemistry of indole. 5-(1-indolyl)-2-pentanone system. J Org Chem 41:633–636

    CAS  Google Scholar 

  121. Reppe W, Vetter H (1953) Carbonylization. VI. Syntheses with hydrides of metal carbonyls. Justus Liebig Ann Chem 582:133–161

    CAS  Google Scholar 

  122. Beller M, Seayad J, Tillack A, Jiao H (2004) Catalytic Markovnikov and anti-Markovnikov functionalization of alkenes and alkynes: recent developments and trends. Angew Chem Int Ed 43:3368–3398

    CAS  Google Scholar 

  123. Eilbracht P, Bärfacker L, Buss C, Collmann C, Kitos-Rzychon BE, Kranemann CL, Rische T, Roggenbuck R, Schmidt A (1999) Tandem reaction sequences under hydroformylation conditions: new synthetic applications of transition metal catalysis. Chem Rev 99:3329–3366

    CAS  Google Scholar 

  124. Wittmann K, Wisniewski R, Mynott R, Leitner W, Kranemann CL, Rische T, Eilbracht P, Kluwer S, Ernsting JM, Elsevier CJ (2001) Supercritical carbon dioxide as solvent and temporary protecting group for rhodium-catalyzed hydroaminomethylation. Chem Eur J 7:4584–4589

    CAS  Google Scholar 

  125. da Rosa RG, de Campos RJD, Buffon R (1999) Effects of chelating diphosphines on the rhodium catalysed carbonylation of allylamines. J Mol Catal A Chem 137:297–301

    Google Scholar 

  126. Zhang Z, Ojima I (1993) Syntheses of nitrogen heterocycles by means of amine-directed carbonylation and hydrocarbonylation. J Organomet Chem 454:281–289

    CAS  Google Scholar 

  127. Chiou W-H, Schoenfelder A, Sun L, Mann A, Ojima I (2007) Rhodium-catalyzed cyclohydrocarbonylation approach to the syntheses of enantiopure homokainoids. J Org Chem 72:9418–9425

    CAS  Google Scholar 

  128. Vieira TO, Alper H (2007) Rhodium(I)-catalyzed hydroaminomethylation of 2-isopropenylanilines as a novel route to 1,2,3,4-tetrahydroquinolines. Chem Commun 2710–2711

    Google Scholar 

  129. Jesudason CD, Beavers LS, Cramer JW, Dill J, Finley DR, Lindsley CW, Stevens FC, Gadski RA, Oldham SW, Pickard RT, Siedem CS, Sindelar DK, Singh A, Watson BM, Hipskind PA (2006) Synthesis and SAR of novel histamine H3 receptor antagonists. Bioorg Med Chem Lett 16:3415–3418

    CAS  Google Scholar 

  130. Lombardo LJ, Camuso A, Clark J, Fager K, Gullo-Brown J, Hunt JT, Inigo I, Kan D, Koplowitz B, Lee F, McGlinchey K, Qian L, Ricca C, Rovnyak G, Traeger S, Tokarski J, Williams DK, Wu LI, Zhao Y, Manne V, Bhide RS (2005) Design, synthesis, and structure– activity relationships of tetrahydroquinoline-based farnesyltransferase inhibitors. Bioorg Med Chem Lett 15:1895

    CAS  Google Scholar 

  131. Asolkar RN, Schröder D, Heckmann R, Lang S, Wagner-Döbler I, Laatsch H (2004) Helquinoline, a new tetrahydroquinoline antibiotic from Janibacter limosus Hel 1+. J Antibiot 57:17–23

    CAS  Google Scholar 

  132. Katritzky AR, Rachwal S, Rachwal B (1996) Recent progress in the synthesis of 1,2,3,4,-tetrahydroquinolines.Tetrahedron 52:15031–15070

    Google Scholar 

  133. Lu S-M, Wang Y-Q, Han X-W, Zhou Y-G (2006) Asymmetric hydrogenation of quinolines and isoquinolines activated by chloroformates. Angew Chem Int Ed 45:2260–2263

    CAS  Google Scholar 

  134. Rueping M, Theissmann T, Antonchick AP (2006) Metal-free Brønsted acid catalyzed transfer hydrogenation – new organocatalytic reduction of quinolines. Synlett 7:1071–1074

    Google Scholar 

  135. Lam KH, Xu L, Feng L, Fan Q-H, Lam FL, Lo W-H, Chan ASC (2005) Highly enantioselective iridium-catalyzed hydrogenation of quinoline derivatives using chiral phosphinite H8-BINAPO. Adv Synth Catal 347:1755–1758

    CAS  Google Scholar 

  136. Vieira TO, Alper H (2008) An efficient three-component one-pot approach to the synthesis of 2,3,4,5-tetrahydro-1H-2-benzazepines by means of rhodium-catalyzed hydroaminomethylation. Org Lett 10:485–487

    CAS  Google Scholar 

  137. Slugovc C, Burtscher D, Stelzer F, Mereiter K (2005) Thermally switchable olefin metathesis initiators bearing chelating carbenes: influence of the chelate’s ring size. Organometallics 24:2255–2258

    CAS  Google Scholar 

  138. Banwell MG, Kokas OJ, Willis AC (2007) Chemoenzymatic approaches to the montanine alkaloids: a total synthesis of (+)-brunsvigine. Org Lett 9:3503–3506

    CAS  Google Scholar 

  139. Mach UR, Hackling AE, Perachon S, Ferry S, Wermuth CG, Schwartz J-C, Sokoloff P, Stark H (2004) Development of novel 1,2,3,4-tetrahydroisoquinoline derivatives and closely related compounds as potent and selective dopamine D3 receptor ligands. ChemBioChem 5:508–518

    CAS  Google Scholar 

  140. Johnson RE, Busacca CA (1992) Sterling drug, Inc. U.S. Patent 5,098,901; Fujisawa Pharmaceutical Co Ltd. US Appl 380,517

    Google Scholar 

  141. Okuro K, Alper H (2010) Ionic diamine rhodium complex catalyzed hydroaminomethylation of 2-allylanilines. Tetrahedron Lett 51:4959–4961

    CAS  Google Scholar 

  142. Nozaki K, Sakai N, Nanno T, Higashijima T, Mano S, Horiuchi T, Takaya H (1997) Highly enantioselective hydroformylation of olefins catalyzed by rhodium(I) complexes of new chiral phosphine−phosphite ligands. J Am Chem Soc 119:4413–4423

    CAS  Google Scholar 

  143. Airiau E, Girard N, Pizzetti M, Salvadori J, Taddei M, Mann A (2010) Hydroformylation of alkenylamines. Concise approaches toward piperidines, quinolizidines, and related alkaloids. J Org Chem 75:8670–8673

    CAS  Google Scholar 

  144. Caddick S, Fitzmaurice R (2009) Microwave enhanced synthesis. Tetrahedron 65:3325–3355

    CAS  Google Scholar 

  145. Jindal R, Bajaj S (2008) Recent applications of microwaves in synthesis of bioactive heterocyclic compounds. Curr Org Chem 12:836–849

    CAS  Google Scholar 

  146. Coquerel Y, Rodriguez J (2008) Microwave-assisted olefin metathesis. Eur J Org Chem 1125–1132

    Google Scholar 

  147. Solinas A, Taddei M (2007) Solid-supported reagents and catch-and-release techniques in organic synthesis. Synthesis 2409–2453

    Google Scholar 

  148. Petricci E, Mann A, Salvadori J, Taddei M (2007) Microwave assisted hydroaminomethylation of alkenes. Tetrahedron Lett 48:8501–8504

    CAS  Google Scholar 

  149. Petricci E, Mann A, Schoenfelder A, Rota A, Taddei M (2006) Microwaves make hydroformylation a rapid and easy process. Org Lett 8:3725–3727

    CAS  Google Scholar 

  150. Leadbeater NE, Torenius HM (2002) A study of the ionic liquid mediated microwave heating of organic solvents. J Org Chem 67:3145–3148

    CAS  Google Scholar 

  151. Chiou W-H, Mizutani N, Ojima I (2007) Highly efficient synthesis of Azabicyclo[x.y.0]alkane amino acids and congeners by means of Rh-catalyzed cyclohydrocarbonylation. J Org Chem 72:1871–1882

    CAS  Google Scholar 

  152. Cluzeau J, Lubell WD (2005) Design, synthesis, and application of azabicyclo[X.Y.0]alkanone amino acids as constrained dipeptide surrogates and peptide mimics. Biopolymers 80:98–150

    CAS  Google Scholar 

  153. Maison W (2005) Stereoselective synthesis of aza- and diazabicyclo[X.Y.0]alkane dipeptide mimetics. Synthesis 1031–1048

    Google Scholar 

  154. Hanessian S, Ronan B, Laoui A (1994) Design and synthesis of a prototype model antagonist of tachykinin NK-2 receptor. Bioorg Med Chem Lett 4:1397–1400

    CAS  Google Scholar 

  155. Genin MJ, Johnson RL (1992) Design, synthesis, and conformational analysis of a novel spiro-bicyclic system as a type II.beta.-turn peptidomimetic. J Am Chem Soc 114:8778–8783

    CAS  Google Scholar 

  156. Granberg D, Robinson JA (1994) Design and synthesis of a cis–gly–pro, type-VI turn, dipeptide mimetic and its use in fmoc-solid phase peptide synthesis. Tetrahedron Lett 35:861–864

    Google Scholar 

  157. Sato K, Nagai U (1986) Synthesis and antibiotic activity of a gramicidin S analogue containing bicyclic β-turn dipeptides. J Chem Soc Perkin Trans 1:1231–1234

    Google Scholar 

  158. Haubner R, Schmitt W, Hölzemann G, Goodman SL, Jonczyk A, Kessler H (1996) Cyclic RGD peptides containing β-turn mimetics. J Am Chem Soc 118:7881–7891

    CAS  Google Scholar 

  159. Chiou W-H, Lin G-H, Hsu C-C, Chaterpaul SJ, Ojima I (2009) Efficient syntheses of crispine A and harmicine by Rh-catalyzed cyclohydrocarbonylation. Org Lett 12:2659–2662

    Google Scholar 

  160. Ojima I, Tzamarioudaki M, Eguchi M (1995) New and efficient route to pipecolic acid derivatives by means of Rh-catalyzed intramolecular cyclohydrocarbonylation. J Org Chem 60:7078–7079

    CAS  Google Scholar 

  161. Ojima I, Zhang Z (1988) Novel amide-directed hydrocarbonylations and double carbonylation of N-allylamides. J Org Chem 53:4422–4425

    CAS  Google Scholar 

  162. Airiau E, Spangenber T, Girard N, Schoenfelder A, Salvadori J, Taddei M, Mann A (2008) General approach to aza-heterocycles by means of domino sequences driven by hydroformylation. Chem Eur J 14:10938–10948

    CAS  Google Scholar 

  163. Youn SW (2006) The Pictet–Spengler reaction: efficient carbon–carbon bond forming reaction in heterocyclic synthesis. Org Prep Proced Int 38:505–591

    CAS  Google Scholar 

  164. Larghi EL, Kaufman TS (2006) The Oxa–Pictet–Spengler cyclization: synthesis of isochromans and related pyran-type heterocycles. Synthesis 2:187–220

    Google Scholar 

  165. Airiau E, Chemin C, Girard N, Lonzi G, Mann A, Petricci E, Salvadori J, Taddei M (2010) Microwave-assisted domino hydroformylation/cyclization reactions: scope and limitations. Synthesis 17:2901–2914

    Google Scholar 

  166. Wakchaure PB, Easwar S, Argade NP (2009) Synthesis of the reported protoberberine gusanlung D. Synthesis 10:1667–1672

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Settambolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Settambolo, R. (2013). Rhodium-Catalyzed Hydroformylation in Fused Azapolycycles Synthesis. In: Taddei, M., Mann, A. (eds) Hydroformylation for Organic Synthesis. Topics in Current Chemistry, vol 342. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2013_432

Download citation

Publish with us

Policies and ethics