Advertisement

Asymmetric Hydroformylation

  • Bernabé F. Perandones
  • Cyril GodardEmail author
  • Carmen Claver
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 342)

Abstract

Rhodium is currently the metal of choice to achieve high enantioselectivities in the hydroformylation of a relatively wide variety of alkene substrates. The elucidation of the different steps of the catalytic cycle and the characterization of the resting state, together with the discovery of several types of ligands that are able to provide high enantioselectivities, have made the rhodium-catalyzed hydroformylation a synthetically useful tool.

For years, ligands containing phosphite moieties such as diphosphites and phosphine–phosphites were considered the most successful ligands to achieve high enantioselectivities for classical substrates such as styrene and vinyl acetate. In fact, the phosphite–phosphine BINAPHOS (43) and its derivatives are still today the most successful ligands in terms of selectivity and scope. For more substituted substrates, general trends can be extracted. However, recent studies showed that these general trends can be sometimes reversed by the use of the appropriate catalyst and choice of reaction conditions, clearly showing that these trends are only indicative and that there are still many challenges to be tackled in this area.

Graphical Abstract

Rhodium is currently the metal of choice to achieve high enantioselectivities in the hydroformylation of a variety of alkene substrates. The elucidation of the different steps of the catalytic cycle and the characterization of the resting state, together with the discovery of several types of ligands that are able to provide high enantioselectivities, have made the rhodium-catalyzed hydroformylation a synthetically useful tool.

Keywords

Asymmetric Chiral ligands Enantioselectivity Hydroformylation Phosphine Phosphite Phosphorus Regioselectivity Rhodium 

Notes

Acknowledgements

The authors are grateful to the Spanish Ministerio de Economía y Competitividad (CTQ2010-15835, Juan de la Cierva Fellowship to B.F.P., Ramon y Cajal Fellowship to C.G.) and the Generalitat de Catalunya (2009SGR116) for financial support.

References

  1. 1.
    Roelen O (1994) Chem Abstr 38:550Google Scholar
  2. 2.
    Roelen O (1938/1952) Chemische Verwertungsgesellschaft, mBH Oberhausen. DE Patent 849-584Google Scholar
  3. 3.
    Roelen O (1943) US Patent 2,317,066Google Scholar
  4. 4.
    Wiese K-D, Obst D (2010) In: Beller M (ed) Catalytic carbonylation reactions. Springer, Heidelberg, pp 1–33Google Scholar
  5. 5.
    Weissermel K, Arpe H-J (2008) Industrial organic chemistry. Wiley-VCH Verlag GmbH, Weinheim, pp 127–144Google Scholar
  6. 6.
    Klosin J, Landis CR (2007) Acc Chem Res 40:1251–1259Google Scholar
  7. 7.
    Breit B (2007) Top Curr Chem 279:139–172Google Scholar
  8. 8.
    Ungvári F (2007) Coord Chem Rev 251:2087–2102Google Scholar
  9. 9.
    Ungvári F (2007) Coord Chem Rev 251:2072–2086Google Scholar
  10. 10.
    Wiese KD, Obst D (2006) Top Organomet Chem 18:1–33Google Scholar
  11. 11.
    Gual A, Godard C, Castillón S, Claver C (2010) Tetrahedron Asymmetry 21:1135–1146Google Scholar
  12. 12.
    van Leeuwen PWNM, Kamer PCJ, Claver C, Pàmies O, Diéguez M (2011) Chem Rev 111:2077–2118Google Scholar
  13. 13.
    Breit B (2007) Aldehydes: synthesis by hydroformylation of alkenes. In: Brückner R (ed) Science of synthesis, vol 25. Thieme, StuttgartGoogle Scholar
  14. 14.
    van Leeuwen PWNM (2004) Homogeneous catalysis: understanding the art. Chapter 8. Kluwer, DordrechtGoogle Scholar
  15. 15.
    Trost BM (1991) Science 254:1471–1477Google Scholar
  16. 16.
    Breit B (2003) Acc Chem Res 36:264–275Google Scholar
  17. 17.
    Eilbracht P, Schmidt AM (2006) Top Organomet Chem 18:65–95Google Scholar
  18. 18.
    Evans DA, Osborn JA, Wilkinson G (1968) J Chem Soc 3133–3142Google Scholar
  19. 19.
    Evans D, Yagupsky G, Wilkinson G (1968) J Chem Soc A 2660–2665Google Scholar
  20. 20.
    Young JF, Osborn JA, Jardine FH, Wilkinson G (1965) J Chem Soc Chem Commun 131–132Google Scholar
  21. 21.
    van Leeuwen PWNM, Claver C (2000) Rhodium catalysed hydroformylation. Kluwer, DordrechtGoogle Scholar
  22. 22.
    Consiglio G, Nefkens SCA, Borer A (1991) Organometallics 10:2046–2051Google Scholar
  23. 23.
    Stille JK, Su H, Brechot P, Parrinello G, Hegedus LS (1991) Organometallics 10:1183–1189Google Scholar
  24. 24.
    Janosi L, Kegl T, Kollar L (2008) J Organomet Chem 693:1127–1135Google Scholar
  25. 25.
    Agbossou F, Carpentier JF, Mortreux A (1995) Chem Rev 95:2485–2506Google Scholar
  26. 26.
    Gladiali S, Bayón JC, Claver C (1995) Tetrahedron Asymmetry 6:1453–1474Google Scholar
  27. 27.
    Keulemans AIM, Kwantes A, van Bavel T (1948) Rec Trav Chim Pays Bas 67:298–308Google Scholar
  28. 28.
    Heck RF (1969) Acc Chem Res 2:10–16Google Scholar
  29. 29.
    van der Veen LA, Boele MDK, Bregman FR, Kamer PCJ, van Leeuwen PWNM, Goubitz K, Fraanje J, Schenk H, Bo C (1998) J Am Chem Soc 120:11616–11626Google Scholar
  30. 30.
    van der Veen LA, Keeven PH, Schoemaker GC, Reek JNH, Kamer PCJ, van Leeuwen PWNM, Lutz M, Spek AL (2000) Organometallics 19:872–883Google Scholar
  31. 31.
    Deutsch PP, Eisenberg R (1990) Organometallics 9:709–718Google Scholar
  32. 32.
    Castellanos-Páez A, Castillón S, Claver C, van Leeuwen PWNM, de Lange WGJ (1998) Organometallics 17:2543–2552Google Scholar
  33. 33.
    Masdeu-Bultó AM, Orejon A, Castillón S, Claver C (1996) Tetrahedron Asymmetry 7:1829–1834Google Scholar
  34. 34.
    Diéguez M, Pàmies O, Claver C (2004) Tetrahedron Asymmetry 15:2113–2122Google Scholar
  35. 35.
    Babin JE, Whiteker GT (1993) Asymmetric synthesis. Patent No. WO 9303839Google Scholar
  36. 36.
    Whiteker GT, Briggs JR, Babin JE, Barne GA (2003) Asymmetric catalysis using biphosphite ligands in chemical industries, vol 89. Marcel Dekker, New YorkGoogle Scholar
  37. 37.
    van Leeuwen PWNM, van Roy A, Jongma T, Orij EEN, Kramer PCJ (1992) 203rd Meeting of the American Chemical Society, New York, 1992 Abstract I&EC 104Google Scholar
  38. 38.
    Buisman GJH, Vos EJ, Kamer PCJ, van Leeuwen PWNM (1995) J Chem Soc Dalton Trans 409–417Google Scholar
  39. 39.
    Buisman GJH, van der Veen LA, Klootwijk A, de Lange WGJ, Kamer PCJ, van Leeuwen PWNM, Vogt D (1997) Organometallics 16:2929–2939Google Scholar
  40. 40.
    Cserépi-Szûcs S, Tóth I, Párkanyi L, Bakos J (1998) Tetrahedron Asymmetry 9:3135–3142Google Scholar
  41. 41.
    Abdallah R, Breuzard JAJ, Bonet MC, Lemaire M (2006) J Mol Catal A Chem 249:218–222Google Scholar
  42. 42.
    Buisman GJH, van der Veen LA, Kamer PCJ, van Leeuwen PWNM (1997) Organometallics 16:5681–5687Google Scholar
  43. 43.
    Buisman GJH, Martin ME, Vos EJ, Klootwijk A, Kamer PCJ, van Leeuwen PWNM (1995) Tetrahedron Asymmetry 6:719–738Google Scholar
  44. 44.
    Pàmies O, Net G, Ruiz A, Claver C (2000) Tetrahedron Asymmetry 11:1097–1108Google Scholar
  45. 45.
    Diéguez M, Pàmies O, Ruiz A, Castillón S, Claver C (2001) Chem Eur J 7:3086–3094Google Scholar
  46. 46.
    Diéguez M, Pàmies O, Ruiz A, Claver C (2002) New J Chem 26:827–833Google Scholar
  47. 47.
    Gual A, Godard C, Castillón S, Claver C (2010) Adv Synth Catal 352:463–477Google Scholar
  48. 48.
    Gual A, Godard C, Claver C, Castillón S (2009) Eur J Org Chem 1191–1201Google Scholar
  49. 49.
    Cobley CJ, Klosin J, Qin C, Whiteker GT (2004) Org Lett 6:3277–3280Google Scholar
  50. 50.
    Cobley CJ, Gardner K, Klosin J, Praquin C, Hill C, Whiteker GT, Zanotti-Gerosa A (2004) J Org Chem 69:4031–4040Google Scholar
  51. 51.
    Sakai N, Mano S, Nozaki K, Takaya H (1993) J Am Chem Soc 115:7033–7034Google Scholar
  52. 52.
    Nozaki K (2005) Chem Rec 5:376–384Google Scholar
  53. 53.
    Tanaka R, Nakano K, Nozaki K (2007) J Org Chem 72:8671–8676Google Scholar
  54. 54.
    Nakano K, Tanaka R, Nozaki K (2006) Helv Chim Acta 89:1681–1686Google Scholar
  55. 55.
    Shibahara F, Nozaki K, Hiyama T (2003) J Am Chem Soc 125:8555–8560Google Scholar
  56. 56.
    Nozaki K, Matsuo T, Shibahara F, Hiyama T (2003) Organometallics 22:594–600Google Scholar
  57. 57.
    Shibahara F, Nozaki K, Matsuo T, Hiyama T (2002) Bioorg Med Chem Lett 12:1825–1827Google Scholar
  58. 58.
    Nozaki K, Matsuo T, Shibahara F, Hiyama T (2001) Adv Synth Catal 343:61–63Google Scholar
  59. 59.
    Horiuchi T, Ohta T, Shirakawa E, Nozaki K, Takaya H (1997) Tetrahedron 53:7795–7804Google Scholar
  60. 60.
    Nozaki K, Nanno T, Takaya H (1997) J Organomet Chem 527:103–108Google Scholar
  61. 61.
    Nozaki K, Li WG, Horiuchi T, Takaya H (1996) J Org Chem 61:7658–7659Google Scholar
  62. 62.
    Horiuchi T, Ohta T, Nozaki K, Takaya H (1996) Chem Commun 155–156Google Scholar
  63. 63.
    Nanno T, Sakai N, Nozaki K, Takaya H (1995) Tetrahedron Asymmetry 6:2583–2591Google Scholar
  64. 64.
    Lambers-Verstappen MMH, de Vries JG (2003) Adv Synth Catal 345:478–482Google Scholar
  65. 65.
    Nozaki K, Sakai N, Nanno T, Higashijima T, Mano S, Horiuchi T, Takaya H (1997) J Am Chem Soc 119:4413–4423Google Scholar
  66. 66.
    Nozaki K, Ito Y, Shibahara F, Shirakawa E, Otha T, Takaya H, Hiyama T (1998) J Am Chem Soc 120:4051–4052Google Scholar
  67. 67.
    Yan Y, Zhang X (2006) J Am Chem Soc 128:7198–7202Google Scholar
  68. 68.
    Zhang X, Cao B, Yan Y, Yu S, Ji B, Zhang X (2010) Chem Eur J 16:871–877Google Scholar
  69. 69.
    Deeremberg S, Kamer PCJ, van Leeuwen PWNM (2000) Organometallics 19:2065–2072Google Scholar
  70. 70.
    Pàmies O, Net G, Ruiz A, Claver C (2001) Tetrahedron Asymmetry 12:3441–3445Google Scholar
  71. 71.
    Arena CG, Faraone F, Graiff C, Tiripicchio A (2002) Eur J Inorg Chem 711–716Google Scholar
  72. 72.
    Rubio M, Suárez A, Álvarez E, Bianchini C, Oberhauser W, Peruzzini M, Pizzano A (2007) Organometallics 26:6428–6436Google Scholar
  73. 73.
    Robert T, Abiri Z, Wassenaar J, Sandee AJ, Meeuwissen J, Sandee AJ, de Bruin B, Siegler MA, Spek AL, Reek JNH (2010) Organometallics 29:2413–2421Google Scholar
  74. 74.
    Arribas I, Vargas S, Rubio M, Suárez A, Domene C, Alvarez E, Pizzano A (2010) Organometallics 29:5791–5804Google Scholar
  75. 75.
    Doro F, Reek JNH, Leeuwen PWNM (2010) Organometallics 29:4440–4447Google Scholar
  76. 76.
    Robert T, Abiri Z, Wassenaar J, Sandee AJ, Romanski S, Neudörfl J-M, Schmalz H-G, Reek JNH (2010) Organometallics 29:478–483Google Scholar
  77. 77.
    Wassenaar J, de Bruin B, Reek JNH (2010) Organometallics 29:2767–2776Google Scholar
  78. 78.
    Axtell AT, Klosin J, Abboud KA (2006) Organometallics 25:5003–5009Google Scholar
  79. 79.
    Axtell AT, Klosin J, Whiteker GT, Cobley CJ, Fox ME, Jackson M, Abboud KA (2009) Organometallics 28:2993–2999Google Scholar
  80. 80.
    Axtell AT, Colbey CJ, Klosin J, Whiteker GT, Zanotti-Gerosa A, Abboud KA (2005) Angew Chem Int Ed 44:5834–5838Google Scholar
  81. 81.
    Clarkson GJ, Ansell JR, Cole-Hamilton DJ, Pogorzelec PJ, Whittell J, Wills M (2004) Tetrahedron Asymmetry 15:1787–1792Google Scholar
  82. 82.
    Clark TP, Landis CR, Freed SL, Klosin J, Abboud KA (2005) J Am Chem Soc 127:5040–5042Google Scholar
  83. 83.
    Zhao B, Peng X, Wang W, Xia C, Ding K (2008) Chem Eur J 14:7847–7857Google Scholar
  84. 84.
    Peng X, Wang Z, Xia C, Ding K (2008) Tetrahedron Lett 49:4862–4864Google Scholar
  85. 85.
    Noonan GM, Fuentes JA, Cobley CJ, Clarke ML (2012) Angew Chem Int Ed 51:2477–2480Google Scholar
  86. 86.
    Hua Z, Vassar VC, Choi H, Ojima I (2004) Proc Natl Acad Sci USA 101:5411–5416Google Scholar
  87. 87.
    Breit B, Seiche W (2005) Angew Chem Int Ed 44:1640–1643Google Scholar
  88. 88.
    Kuil M, Goudriaan PE, van Leeuwen PWNM, Reek JNH (2006) Chem Commun 4679–4681Google Scholar
  89. 89.
    Kuil M, Goudriaan PE, Kleij AW, Tooke DM, Spek AL, van Leeuwen PWNM, Reek JNH (2007) Dalton Trans 2311–2320Google Scholar
  90. 90.
    Kollar L, Farkas E, Batiu J (1997) J Mol Catal A Chem 115:283–288Google Scholar
  91. 91.
    Axet MR, Castillón S, Claver C (2006) Inorg Chim Acta 359:2973–2979Google Scholar
  92. 92.
    Nozaki K, Takaya H, Hiyama T (1997) Top Catal 4:175–185Google Scholar
  93. 93.
    Sakai N, Nozaki K, Takaya H (1994) J Chem Soc Chem Commun 395–396Google Scholar
  94. 94.
    Bellini R, Chikkali SH, Berthon-Gelloz G, Reek JNH (2011) Angew Chem Int Ed 50:7342–7345Google Scholar
  95. 95.
    Bellini R, Reek JNH (2012) Chem Eur J 18:7091–7099Google Scholar
  96. 96.
    Gadzikwa T, Bellini R, Dekker HL, Reek JNH (2012) J Am Chem Soc 134:2860–2863Google Scholar
  97. 97.
    Polo A, Real J, Claver C, Castillón S, Bayón JC (1990) J Chem Soc Chem Commun 600–601Google Scholar
  98. 98.
    Polo A, Claver C, Castillón S, Ruiz A, Bayón JC, Real J, Mealli C, Masi D (1992) Organometallics 11:3525–3533Google Scholar
  99. 99.
    del Río I, van Leeuwen PWNM, Claver C (2001) Can J Chem 79:560–565Google Scholar
  100. 100.
    Horiuchi T, Otha T, Shirakawa E, Nozaki K, Takaya H (1997) J Org Chem 62:4285–4292Google Scholar
  101. 101.
    Diéguez M, Pàmies O, Claver C (2005) Chem Commun 1221–1223Google Scholar
  102. 102.
    Mazuela J, Coll M, Pàmies O, Diéguez M (2009) J Org Chem 74:5440–5445Google Scholar
  103. 103.
    Chikkali SH, Bellini R, Berthon-Gelloz G, Van der Vlugt JI, de Bruin B, Reek JNH (2010) Chem Commun 46:1244–1246Google Scholar
  104. 104.
    Botteghi C, Paganelli S, Schionato A, Marchetti M (1991) Chirality 3:355–369Google Scholar
  105. 105.
    Consiglio G, Rama F (1991) J Mol Catal 66:1–5Google Scholar
  106. 106.
    Lu S, Li X, Wang A (2000) Catal Today 63:531–536Google Scholar
  107. 107.
    Huang J, Bunel E, Allgeier A, Tedrow J, Storz T, Preston J, Correl T, Manley D, Soukup T, Jensen R, Syed R, Moniz G, Larsen R, Martinelli M, Reider PJ (2005) Tetrahedron Lett 46:7831–7834Google Scholar
  108. 108.
    Sémeril D, Matt D, Toupet L (2008) Chem Eur J 14:7144–7155Google Scholar
  109. 109.
    Noonan GM, Cpbley CJ, Lebl T, Clarke ML (2010) Chem Eur J 16:12788–12791Google Scholar
  110. 110.
    Ojima I, Takai M, Takahashi T (2006) Patent No. WO 078766Google Scholar
  111. 111.
    Wang X, Buchwald SL (2011) J Am Chem Soc 47:19080–19083Google Scholar
  112. 112.
    Yeung CS, Dong VM (2011) Angew Chem Int Ed 50:809–812Google Scholar
  113. 113.
    Consiglio G, Kollar L, Kolliker R (1990) J Organomet Chem 396:375–383Google Scholar
  114. 114.
    García L, Claver C, Dieguez M, Masdeu-Bulto AM (2006) Chem Commun 191–193Google Scholar
  115. 115.
    Noonan GM, Newton D, Cobley CJ, Suárez A, Pizzano A, Clarke ML (2010) Adv Synth Catal 352:1047–1104Google Scholar
  116. 116.
    Watkins AL, Landis CR (2011) Org Lett 13:164–167Google Scholar
  117. 117.
    McDonald RI, Wong GW, Neupane RP, Stahl SS, Landis CR (2010) J Am Chem Soc 132:14027–14029Google Scholar
  118. 118.
    Grünanger CU, Breit B (2008) Angew Chem Int Ed 47:7346–7349Google Scholar
  119. 119.
    Hardie RC (2007) Nature 450:37–39Google Scholar
  120. 120.
    Lightburn TE, Dombrowski MT, Tan KL (2008) J Am Chem Soc 130:9210–9211Google Scholar
  121. 121.
    Nozaki K, Itoi Y, Shibahara F, Shirakawa E, Ohta T, Takaya H, Hiyama T (1998) J Am Chem Soc 120:4051–4052Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bernabé F. Perandones
    • 1
  • Cyril Godard
    • 1
    Email author
  • Carmen Claver
    • 1
  1. 1.Departament de Química Física i InorgánicaUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations