Advertisement

Hydroformylation in Natural Product Synthesis

  • Roderick W. BatesEmail author
  • Sivarajan Kasinathan
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 342)

Abstract

The application of hydroformylation to the synthesis of natural products and natural product-like molecules is surveyed.

Graphical Abstract

Keywords

Alkaloid Hydroformylation Tetrahydropyran 

Abbreviations

Ac

Acetyl

acac

Acetylacetonate

aq

Aqueous

B:L

Branched:linear ratio

BDP

Bisdiazaphospholane

BINAPHOS

2-Diphenylphosphino-1,1′-binaphthalene-2,2′-diylphosphite

BIPHEPHOS

6,6′-[(3,3′-Di-tert-butyl-5,5′-dimethoxy-1,1′-biphenyl- 2,2′-diyl) bis(oxy)]bis(dibenzo[d,f][1,3,2]dioxaphosphepin)

Bn

Benzyl

Boc

tert-Butoxycarbonyl

Bu

Butyl

Bz

Benzoyl

Cbz

Benzyloxycarbonyl

CDG

Catalyst directing group

cod

Cyclooctadiene

conv

Conversion

DBU

1,8-Diazabicyclo [5.4.0]undec-7-ene

DCC

N,N-Dicyclohexylcarbodiimide

DIBALH

Diisobutylaluminum hydride

DMAP

4-(Dimethylamino)pyridine

DMF

Dimethylformamide

DMSO

Dimethyl sulfoxide

DMTMM

4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium

dr

Diastereomer ratio

DuPHOS

1,2-Bis[2,5-di-iso-propylphospholano]benzene

ee

Enantiomer excess

gem

Geminal

h

Hour(s)

HFIP

1,1,1,3,3,3-Hexafluoro-2-propanol

IBX

2-Iodoxybenzoic acid

Ipc

Isopinocampheyl

i-Pr

Isopropyl

LiHMDS

Lithium bis(trimethylsilyl)amide

m-CPBA

m-Chloroperoxybenzoic acid

Me

Methyl

mol

Mole(s)

n-hept

n-Heptyl

NMO

N-Methylmorpholine-N-oxide

Nu

Nucleophile

o-DPPB

Ortho-diphenylphosphanylbenzoyl

PDC

Pyridinium dichromate

PFL

Pseudomonas florescens lipase

Ph

Phenyl

PMP

p-Methoxyphenyl

PPTS

Pyridinium p-toluenesulfonate

Pr

Propyl

pTSA

p-Toluenesulfonic acid

Pv

Pivaloyl

py

Pyridine

rt

Room temperature

TBAF

Tetra-n-butylammonium fluoride

TBS

tert-Butyldimethylsilyl

t-Bu

tert-Butyl

Temp

Temperature

TES

Triethylsilyl

Tf

Trifluoromethanesulfonyl (triflyl)

TFA

Trifluoroacetic acid

THP

Tetrahydropyran-2-yl or tetrahydropyran

TIPS

Triisopropylsilyl

TMEDA

N,N,N,N′-Tetramethyl-1,2-ethylenediamine

TMS

Trimethylsilyl

TPAP

Tetrapropylammonium perruthenate

Tr

Triphenylmethyl (trityl)

Ts

Tosyl 4-toluenesulfonyl

XANTPHOS

4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene

References

  1. 1.
    Ojika M, Nagoya T, Yamada K (1995) Tetrahedron Lett 36:7491–7494Google Scholar
  2. 2.
    Keck GE, McLaws MD (2005) Tetrahedron Lett 46:4911–4914Google Scholar
  3. 3.
    Burke SD, Cobb JE, Takeuchi K (1985) J Org Chem 50:3420–3421Google Scholar
  4. 4.
    Burke SD, Cobb JE, Takeuchi K (1990) J Org Chem 55:2138–2151Google Scholar
  5. 5.
    Burke SD, Cobb JE (1986) Tetrahedron Lett 27:4237–4240Google Scholar
  6. 6.
    Kupchan SM, La Voie EJ, Branfman AR, Fei BY, Bright WM, Bryan RF (1977) J Am Chem Soc 99:3199–3201Google Scholar
  7. 7.
    Pettit GR, Cragg GM, Suffness MI, Gust D, Boettner FE, Williams M, Saenz-Renauld JA, Brown P, Schmidt JM, Ellis PD (1984) J Org Chem 49:4258–4266Google Scholar
  8. 8.
    Bertelo CA, Schwartz J (1975) J Am Chem Soc 97:228–230Google Scholar
  9. 9.
    Carr DB, Schwartz J (1979) J Am Chem Soc 101:3521–3531Google Scholar
  10. 10.
    Corey EJ, Tius MA (1980) Tetrahedron Lett 21:3535–3538Google Scholar
  11. 11.
    Breit B, Zahn SK (2001) J Org Chem 66:4870–4877Google Scholar
  12. 12.
    Hoffmann RW (1987) Angew Chem Int Ed Engl 26:489–503Google Scholar
  13. 13.
    Breit B, Dauber M, Harms K (1999) Chemistry 5:2819–2827Google Scholar
  14. 14.
    Breit B (2000) Chemistry 6:1519–1524Google Scholar
  15. 15.
    Breit B (1996) Angew Chem Int Ed Engl 35:2835–2837Google Scholar
  16. 16.
    Breit B (1997) Liebigs Ann Chem 1841–1851Google Scholar
  17. 17.
    Rein C, Demel P, Outten RA, Netscher T, Breit B (2007) Angew Chem Int Ed Engl 46:8670–8673Google Scholar
  18. 18.
    Baldenius KU, von dem Bussche-Hünnefeld L, Hilgemann E, Hoppe P, Stürmer R (1996) Ullmann’s Encyclopedia of Industrial Chemistry, vol A27. VCH, Weinheim, pp 478–488, pp 594–597Google Scholar
  19. 19.
    Netscher T (1999) In: Gunstone FP (ed) Lipid Synthesis and Manufacture. Academic, Sheffield, pp 250–267Google Scholar
  20. 20.
    Wright AE, Botelho JC, Guzmán E, Harmody D, Linley P, McCarthy PJ, Pitts TP, Pomponi SA, Reed JK (2007) J Nat Prod 70:412–416Google Scholar
  21. 21.
    Gallon J, Reymond S, Cossy J (2008) C R Chimie 11:1463–1476Google Scholar
  22. 22.
    Woo SK, Kwon MS, Lee E (2008) Angew Chemie Int Ed 47:3242–3244Google Scholar
  23. 23.
    Risi RM, Burke SD (2012) Org Lett 14:1180–1182Google Scholar
  24. 24.
    Rodphaya D, Sekiguchi J, Yamada Y (1986) J Antibiot 5:629–635Google Scholar
  25. 25.
    Mori K, Sakai T (1988) Liebigs Ann Chem 1:13–17Google Scholar
  26. 26.
    Clark TP, Landis CR, Freed SL, Klosin J, Abboud KA (2005) J Am Chem Soc 127:5040–5042Google Scholar
  27. 27.
    Klosin J, Landis CR (2007) Acc Chem Res 40:1251–1259Google Scholar
  28. 28.
    Thomas PJ, Axtell AT, Klosin J, Peng W, Rand CL, Clark TP, Landis CR, Abboud KA (2007) Org Lett 9:2665–2668Google Scholar
  29. 29.
    Watkins AL, Landis CR (2010) J Am Chem Soc 132:10306–10317Google Scholar
  30. 30.
    McDonald RI, Wong GW, Neupane RP, Stahl SS, Landis CR (2010) J Am Chem Soc 132:14027–14029Google Scholar
  31. 31.
    Lumbroso A, Vautravers NR, Breit B (2010) Org Lett 12:5498–5501Google Scholar
  32. 32.
    Bestmann HJ, Kellermann W, Pecher B (1993) Synthesis 1:149–152Google Scholar
  33. 33.
    Xie ZF, Suemune H, Sakai K (1993) Tetrahedron Asymmetry 4:973–980Google Scholar
  34. 34.
    Liang X, Andersch J, Bols M (2001) J Chem Soc Perkin Trans 1 2136–2157Google Scholar
  35. 35.
    Clemens AJL, Burke SD (2012) J Org Chem 77:2983–2985Google Scholar
  36. 36.
    Horiuchi T, Ohta T, Shirakawa E, Nozaki K, Takaya H (1997) Tetrahedron 53:7795–7804Google Scholar
  37. 37.
    Liu P, Jacobsen EN (2001) J Am Chem Soc 123:10772–10773Google Scholar
  38. 38.
    Ringel SM, Greenough RC, Roemer S, Connor D, Gutt AL, Blair B, Kanter G, von Strandtmann M (1977) J Antibiot 30:371–375Google Scholar
  39. 39.
    Blakemore PR, Cole WJ, Kocienski PJ, Morley A (1998) Synlett 26–28Google Scholar
  40. 40.
    Julia M, Paris J-M (1973) Tetrahedron Lett 14:4833–4836Google Scholar
  41. 41.
    Smith TE, Fink SJ, Levine ZG, McClelland KA, Zackheim AA, Daub ME (2012) Org Lett 14:1452–1455Google Scholar
  42. 42.
    Chevallier C, Bugni TS, Feng X, Harper MK, Orendt AM, Ireland CM (2006) J Org Chem 71:2510–2513Google Scholar
  43. 43.
    Hornberger KR, Hamblett CL, Leighton JL (2000) J Am Chem Soc 122:12894–12895Google Scholar
  44. 44.
    Jung HH, Seiders JR, Floreancig PE (2007) Angew Chemie Int Ed 46:8464–8467Google Scholar
  45. 45.
    Breit B, Seiche W (2003) J Am Chem Soc 125:6608–6609Google Scholar
  46. 46.
    Seiche W, Schuschowski A, Breit B (2005) Adv Syn Cat 347:1488–1494Google Scholar
  47. 47.
    Zacuto MJ, Leighton JL (2005) Org Lett 7:5525–5527Google Scholar
  48. 48.
    Wuts PG, Bigelow SS (1988) J Org Chem 53:5023–5034Google Scholar
  49. 49.
    Brooks HA, Garoner D, Poyser JP, King TJ (1984) J Antibiot 37:1501–1504Google Scholar
  50. 50.
    Harrison TJ, Ho S, Leighton JL (2011) J Am Chem Soc 133:7308–7311Google Scholar
  51. 51.
    Thadani AN, Batey RA (2002) Org Lett 4:3827–3830Google Scholar
  52. 52.
    Marschall H, Penninger J, Weyerstahl P (1982) Liebigs Ann Chem 49–67Google Scholar
  53. 53.
    Marschall H, Penninger J, Weyerstahl P (1982) Liebigs Ann Chem 68–72Google Scholar
  54. 54.
    Reid AM, Steel PG (1998) J Chem Soc Perkin Trans 1 2795–2801Google Scholar
  55. 55.
    Nagahisa M, Koike K, Narita M, Ohmoto T (1994) Tetrahedron 50:10859–10866Google Scholar
  56. 56.
    Koike K, Suzuki Y, Ohmoto T (1994) Phytochemistry 35:701–704Google Scholar
  57. 57.
    Sawant MS, Katoch R, Trivedi GK, Desai UR (1998) J Chem Soc Perkin Trans 1 843–846Google Scholar
  58. 58.
    Sawant MS, Nadkarni PJ, Desai UR, Katoch R, Korde SS, Trivedi GK (1999) J Chem Soc Perkin Trans 1 2537–2542Google Scholar
  59. 59.
    Schmidt B, Costisella B, Roggenbuck R, Westhus M, Wildemann H, Eilbracht P (2001) J Org Chem 66:7658–7665Google Scholar
  60. 60.
    Cuny GD, Buchwald SL (1993) J Am Chem Soc 115:2066–2068Google Scholar
  61. 61.
    Oka M, Iimura S, Tenmyo O, Sawada Y, Sugawara M, Ohkusa N, Yamamoto H, Kawano K, Hu S-L, Fukagawa Y, Oki T (1993) J Antibiot 46:367–373Google Scholar
  62. 62.
    Jung HJ, Lee HB, Kim CJ, Rho J-R, Shin J, Kwon HJ (2003) J Antibiot 56:492–496Google Scholar
  63. 63.
    Chan J, Jamison TF (2004) J Am Chem Soc 126:10682–10691Google Scholar
  64. 64.
    Brown HC, Vara Prasad JVN (1986) J Am Chem Soc 108:2049–2054Google Scholar
  65. 65.
    Spangenberg T, Breit B, Mann A (2009) Org Lett 11:261–264Google Scholar
  66. 66.
    Bates RW, Sa-Ei K (2002) Tetrahedron 58:5957–5978Google Scholar
  67. 67.
    Milligan GL, Mossman CJ, Aubé J (1995) J Am Chem Soc 117:10449–10459Google Scholar
  68. 68.
    Lee H-L, Aubé J (2007) Tetrahedron 63:9007–9015Google Scholar
  69. 69.
    Airiau E, Spangenberg T, Girard N, Breit B, Mann A (2010) Org Lett 12:528–531Google Scholar
  70. 70.
    Laemmerhold KM, Breit B (2010) Angew Chem Int Ed 49:2367–2370Google Scholar
  71. 71.
    Breit B (2003) Acc Chem Res 36:264–275Google Scholar
  72. 72.
    Breit B (2007) In: Chatani N (ed) Topics in Organometallic Chemistry, vol 24. Springer, Berlin, pp 145–168Google Scholar
  73. 73.
    Rucker C (1995) Chem Rev 95:1009–1064Google Scholar
  74. 74.
    Airiau E, Spangenberg T, Girard N, Schoenfelder A, Salvadori J, Taddei M, Mann A (2008) Chemistry 14:10938–10948Google Scholar
  75. 75.
    Guerlet G, Spangenberg T, Mann A, Faure H, Ruat M (2011) Bioorg Med Chem Lett 21:3608–3612Google Scholar
  76. 76.
    Teoh E, Campi EM, Jackson WR, Robinson AJ (2003) New J Chem 27:387–394Google Scholar
  77. 77.
    Spangenberg T, Airiau E, Thuong MBT, Donnard M, Billet M, Mann A (2008) Synlett 18:2859–2863Google Scholar
  78. 78.
    Veenstra SJ, Schmid P (1997) Tetrahedron Lett 38:997–1000Google Scholar
  79. 79.
    See reference 77Google Scholar
  80. 80.
    Breit B, Zahn SK (2005) Tetrahedron 61:6171–6179Google Scholar
  81. 81.
    Airiau E, Girard N, Pizzeti M, Salvadori J, Taddei M, Mann A (2010) J Org Chem 75:8670–8673. For further approaches to poly-substituted piperidines, see Arena G, Zill N, Salvadori J, Girard N, Mann A, Taddei M (2011) Org Lett 13:2294–2297Google Scholar
  82. 82.
    Cook GR, Beholz LG, Stille JR (1994) Tetrahedron Lett 35:1669–1672Google Scholar
  83. 83.
    Saitoh Y, Moriyama Y, Takahashi T, Khuong-Huu Q (1980) Tetrahedron Lett 21:75–78Google Scholar
  84. 84.
    Saitoh Y, Moriyama Y, Horita H, Takahashi T, Khuong-Huu (1981) Q Bull Chem Soc Jpn 54:488–492Google Scholar
  85. 85.
    Holmes AB, Thompson J, Baxter AJG, Dixon J (1985) J Chem Soc Chem Commun 37–39Google Scholar
  86. 86.
    Ciufolini MA, Hermann CW, Whitmire KH, Byrne NE (1989) J Am Chem Soc 111:3473–3475Google Scholar
  87. 87.
    Yuasa Y, Ando J, Shibuya S (1995) Tetrahedron Asymmetry 6:1525–1526Google Scholar
  88. 88.
    Yuasa Y, Ando J, Shibuya S (1996) J Chem Soc Perkin Trans 1 793–802Google Scholar
  89. 89.
    Kadota I, Kawada M, Muramatsu Y, Yamamoto Y (1997) Tetrahedron Lett 38:7469–7470Google Scholar
  90. 90.
    Takao K, Nigawara Y, Nishino E, Tagaki I, Maeda K, Tadano K, Ogawa S (1994) Tetrahedron 50:5681–5704Google Scholar
  91. 91.
    Luker T, Hiemstra H, Speckamp WN (1997) J Org Chem 62:3592–3596Google Scholar
  92. 92.
    Ojima I, Vidal ES (1998) J Org Chem 63:7999–8003Google Scholar
  93. 93.
    Ojima I, Tazamarioudaki M, Eguchi M (1995) J Org Chem 60:7078–7079Google Scholar
  94. 94.
    Ladenburg A, Adam G (1891) Chem Ber 24:1671–1676Google Scholar
  95. 95.
    Rall GJH, Smalberger TM, de Waal HL, Arndt RR (1967) Tetrahedron Lett 8:3465–3469Google Scholar
  96. 96.
    Smalberger TM, Rall GJH, de Waal HL, Arndt RR (1968) Tetrahedron 24:6417–6421Google Scholar
  97. 97.
    Vilaivan T, Winotapan C, Banphavichit V, Shinada T, Ohfune Y (2005) J Org Chem 70:3464–3471Google Scholar
  98. 98.
    Bates RW, Sivarajan K, Straub F (2011) J Org Chem 76:6844–6848Google Scholar
  99. 99.
    Bates RW, Sivarajan K (2013) Tetrahedron 69:3088–3092Google Scholar
  100. 100.
    Helmchen G (2009) In: Oro LA, Claver C (eds) Iridium complexes in organic synthesis. Wiley-VCH, Weinheim, 211Google Scholar
  101. 101.
    Helmchen G, Dahnz A, Dübon P, Schelwies M, Weihofen R (2007) Chem Commun 675–691Google Scholar
  102. 102.
    Takeuchi R, Kezuka S (2006) Synthesis 3349–3366Google Scholar
  103. 103.
    Miyabe H, Takemoto Y (2005) Synlett 1641–1655Google Scholar
  104. 104.
    Dubon P, Farwick A, Helmchen G (2009) Synlett 1413–1416Google Scholar
  105. 105.
    Busacca CA, Dong Y (1996) Tetrahedron Lett 37:3947–3950Google Scholar
  106. 106.
    Felpin F-X, Lebreton J (2003) Eur J Org Chem 3693–3712Google Scholar
  107. 107.
    Wagner FF, Comins DL (2007) Tetrahedron 63:8065–8082Google Scholar
  108. 108.
    Schäfer B (2008) Chem Unserer Zeit 42:330–344Google Scholar
  109. 109.
    Baxendale IR, Brusotti G, Matsuoka M, Ley SV (2002) J Chem Soc Perkin Trans 1 143–154Google Scholar
  110. 110.
    Welter C, Moreno RM, Streiff S, Helmchen G (2005) Org Biomol Chem 3:3266–3268Google Scholar
  111. 111.
    Pedder DJ, Fales HM, Jaouni T, Blum M, MacConnell J, Crewe RM (1976) Tetrahedron 32:2275–2279Google Scholar
  112. 112.
    Tufariello JJ, Puglis JM (1986) Tetrahedron Lett 27:1489–1492Google Scholar
  113. 113.
    Wistrand L-G, Skinjar M (1991) Tetrahedron 47:573–582Google Scholar
  114. 114.
    Oppolzer W, Bochet CG, Merifield E (1994) Tetrahedron Lett 35:7015–7018Google Scholar
  115. 115.
    Arredondo VM, Tian S, McDonald FE, Marks TJ (1999) J Am Chem Soc 121:3633–3639Google Scholar
  116. 116.
    Rouchaud A, Braekman JC (2009) Eur J Org Chem 2666–2674Google Scholar
  117. 117.
    Charette AB, Mathieu S, Martel J (2005) Org Lett 7:5401–5404Google Scholar
  118. 118.
    Kim JT, Butt J, Gevorgyan V (2004) J Org Chem 69:5638–5645Google Scholar
  119. 119.
    Kim JT, Gevorgyan V (2002) Org Lett 4:4697–4699Google Scholar
  120. 120.
    Takahata H, Kubota M, Ikota N (1999) J Org Chem 64:8594–8601Google Scholar
  121. 121.
    Yue C, Gauthier I, Royer J, Husson H-P (1996) J Org Chem 61:4949–4954Google Scholar
  122. 122.
    Devijver C, Macours P, Braekman J-C, Daloze D, Pasteels JM (1995) Tetrahedron 51:10913–10922Google Scholar
  123. 123.
    Barluenga J, Tomas M, Kouznetsov V, Rubio E (1994) J Org Chem 59:3699–3700Google Scholar
  124. 124.
    Merlin P, Braekman JC, Daloze D (1991) Tetrahedron 47:3805–3816Google Scholar
  125. 125.
    Jones TH (1990) Tetrahedron Lett 31:4543–4544Google Scholar
  126. 126.
    Mizutani N, Chiou W-H, Ojima I (2002) Org Lett 4:4575–4578Google Scholar
  127. 127.
    Campi EM, Jackson WR, Nilsson Y (1991) Tetrahedron Lett 32:1093–1094Google Scholar
  128. 128.
    Lazzaroni R, Settambolo R, Caiazzo A, Pontorno L (2000) J Organomet Chem 601:320–323Google Scholar
  129. 129.
    Katritzky AR, Fali CN, Li J (1997) J Org Chem 62:4148–4154Google Scholar
  130. 130.
    Sayah B, Pelloux-Léon N, Valleé Y (2000) J Org Chem 65:2824–4154Google Scholar
  131. 131.
    Settambolo R, Caiazzo A, Lazzaroni R (2001) Tetrahedron Lett 42:4045–4048Google Scholar
  132. 132.
    Guazzelli G, Lazzaroni R, Settambolo R (2008) Beilstein J Org Chem 4(2)Google Scholar
  133. 133.
    Settambolo R, Guazzelli G, Mengali L, Mandoli A, Lazzaroni R (2003) Tetrahedron: Asymmetry 14:2491–2493Google Scholar
  134. 134.
    Chiou W-H, Lin G-H, Hsu C-C, Chaterpaul SJ, Ojima I (2009) Org Lett 11:2659–2662Google Scholar
  135. 135.
    Zhang Q, Tu G, Zhao Y, Cheng T (2002) Tetrahedron 58:6795–6798Google Scholar
  136. 136.
    Schell FM, Smith AM (1983) Tetrahedron Lett 24:1883–1884Google Scholar
  137. 137.
    Szawkalo J, Zawadzka A, Wojtasiewicz K, Leniewski A, Drabowicz J, Czarnocki Z (2005) Terahedron: Asymmetry 16:3619–3621Google Scholar
  138. 138.
    Meyer N, Opatz T (2006) Eur J Org Chem 3997–4002Google Scholar
  139. 139.
    King FD (2007) Tetrahedron 63:2053–2056Google Scholar
  140. 140.
    Allin SM, Gaskell SN, Towler JMR, Page PCB, Saha B, McKenzie MJ, Martin WP (2007) J Org Chem 72:8972–8975Google Scholar
  141. 141.
    Kam T-S, Sim K-M (1998) Phytochemistry 47:145–147Google Scholar
  142. 142.
    Itoh T, Miyazaki M, Nagata K, Yokoya M, Nakamura S, Ohsawa A (2002) Heterocycles 58:115–118Google Scholar
  143. 143.
    Allin SM, Thomas CI, Allard JE, Duncton M, Elsegood MRJ, Edgar M (2003) Tetrahedron Lett 44:2335–2337Google Scholar
  144. 144.
    Knölker H.-J, Agarwal S (2004) Synlett 1767–1768Google Scholar
  145. 145.
    Raheem IT, Thiara PS, Peterson EA, Jacobsen EN (2007) J Am Chem Soc 129:13404–13405Google Scholar
  146. 146.
    Allin SM, Gaskell SN, Elsegood MRJ, Martin WP (2007) Tetrahedron Lett 48:5669–5671Google Scholar
  147. 147.
    Szawkalo J, Czarnocki SJ, Zawadzka A, Wojtasiewicz K, Leniewski A, Maurin JK, Czarnocki Z, Drabowicz J (2007) Tetrahedron: Asymmetry 18:406–413Google Scholar
  148. 148.
    Chiou WH, Lin YH, Chen GT, Gao YK, Tseng YC, Kao CL, Tsai JC (2011) Chem Commun 47:3562–3564Google Scholar
  149. 149.
    Speckamp WN, Moolenaar MJ (2000) Tetrahedron 56:3817–3856Google Scholar
  150. 150.
    Ohmiya S, Kubo H, Otomasu H, Saito K, Murakoshi I (1990) Heterocycles 30:537–542Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Division of Chemistry and Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore

Personalised recommendations