Skip to main content

Buckyballs

  • Chapter
  • First Online:
Polyarenes II

Abstract

Buckyballs represent a new and fascinating molecular allotropic form of carbon that has received a lot of attention by the chemical community during the last two decades. The unabating interest on this singular family of highly strained carbon spheres has allowed the establishing of the fundamental chemical reactivity of these carbon cages and, therefore, a huge variety of fullerene derivatives involving [60] and [70]fullerenes, higher fullerenes, and endohedral fullerenes have been prepared. Much less is known, however, of the chemistry of the uncommon non-IPR fullerenes which currently represent a scientific curiosity and which could pave the way to a range of new fullerenes. In this review on buckyballs we have mainly focused on the most recent and novel covalent chemistry of fullerenes involving metal catalysis and asymmetric synthesis, as well as on some of the most significant advances in supramolecular chemistry, namely H-bonded fullerene assemblies and the search for efficient concave receptors for the convex surface of fullerenes. Furthermore, we have also described the recent advances in the macromolecular chemistry of fullerenes, that is, those polymer molecules endowed with fullerenes which have been classified according to their chemical structures. This review is completed with the study of endohedral fullerenes, a new family of fullerenes in which the carbon cage of the fullerene contains a metal, molecule, or metal complex in the inner cavity. The presence of these species affords new fullerenes with completely different properties and chemical reactivity, thus opening a new avenue in which a more precise control of the photophysical and redox properties of fullerenes is possible. The use of fullerenes for organic electronics, namely in photovoltaic applications and molecular wires, complements the study and highlights the interest in these carbon allotropes for realistic practical applications. We have pointed out the so-called non-IPR fullerenes – those that do not follow the isolated pentagon rule – as the most intriguing class of fullerenes which, up to now, have only shown the tip of the huge iceberg behind the examples reported in the literature. The number of possible non-IPR carbon cages is almost infinite and the near future will show us whether they will become a reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All through the article we will report binding constants as logarithms, and without an error interval, for simplicity. The reader can refer to the original publications for these data.

References

  1. Kroto HW, Heath JR, O’Brien SC et al (1985) C60: buckminsterfullerene. Nature 318:162–163

    CAS  Google Scholar 

  2. Cami J, Bernard-Salas J, Peeters E et al (2010) Detection of C60 and C70 in a young planetary nebula. Science 329:1180–1182

    CAS  Google Scholar 

  3. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    CAS  Google Scholar 

  4. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    CAS  Google Scholar 

  5. Bethune DS, Kiang CH, de Vries MS et al (1993) Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607

    CAS  Google Scholar 

  6. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    CAS  Google Scholar 

  7. Delgado JL, Herranz MA, Martín N (2008) The nanoforms of carbon. J Mater Chem 18:1417–1426

    CAS  Google Scholar 

  8. Akasaka T, Nagase S (2002) Endofullerenes: a new family of carbon cluster. Kluwer, Dordrecht

    Google Scholar 

  9. Kroto HW (1997) Symmetry, space, stars, and C60. Angew Chem Int Ed 36:1578–1593

    Google Scholar 

  10. Smalley RE (1997) Discovering the fullerrenes. Angew Chem Int Ed 36:1594–1601

    Google Scholar 

  11. Curl RF (1997) Dawn of the fullerenes: conjecture and experiment. Angew Chem Int Ed 36:1566–1576

    Google Scholar 

  12. Martín N (2006) New challenges in fullerene chemistry. Chem Commun 2093–2104

    Google Scholar 

  13. Krätschmer W, Lamb LD, Fostiropoulos K et al (1990) Solid C60: a new form of carbon. Nature 347:354–358

    Google Scholar 

  14. Jones DEH (1966) Hollow molecules. New Sci 32:245

    Google Scholar 

  15. Chuvilin A, Kaiser U, Bichoutskaia E et al (2010) Direct transformation of graphene to fullerene. Nat Chem 2:450–453

    CAS  Google Scholar 

  16. Kroto HW (1987) The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature 329:529–531

    CAS  Google Scholar 

  17. Haddon RC (1992) Electronic structure, conductivity, and superconductivity of alkali metal doped C60. Acc Chem Res 25:127–133

    CAS  Google Scholar 

  18. Hirsch A, Chen Z, Jiao H (2000) Spherical aromaticity in Ih symmetrical fullerenes: the 2(N + 1)2 rule. Angew Chem Int Ed 39:3915–3917

    CAS  Google Scholar 

  19. Guldi DM, Martín N (eds) (2002) Fullerenes: from synthesis to optoelectronic properties. Kluwer Academic, Dordrecht

    Google Scholar 

  20. Hirsch A, Brettreich M (2005) Fullerenes, chemistry and reactions. Wiley-VCH, Weinheim

    Google Scholar 

  21. Langa F, Nierengarten JF (eds) (2012) Fullerenes: principles and applications. Royal Society of Chemistry, Cambridge

    Google Scholar 

  22. Haddon RC, Brus LE, Raghavachari K (1986) Electronic structure and bonding in icosahedral carbon cluster (C60). Chem Phys Lett 125:459–464

    CAS  Google Scholar 

  23. Xie Q, Perez-Cordero E, Echegoyen L (1992) Electrochemical detection of C60 and C70: enhanced stability of fullerides in solution. J Am Chem Soc 114:3978–3980

    CAS  Google Scholar 

  24. Martin N, Altable M, Filippone S et al (2006) Thermal [2+2] intramolecular cycloadditions of fuller-1,6-enynes. Angew Chem Int Ed 45:1439–1442

    CAS  Google Scholar 

  25. Altable M, Filippone S, Martin-Domenech A et al (2006) Intramolecular ene reaction of 1,6-fullerenynes: a new synthesis of allenes. Org Lett 8:5959–5962

    CAS  Google Scholar 

  26. Li H, Risko C, Seo JH et al (2011) Fullerene–carbene Lewis acid–base adducts. J Am Chem Soc 133:12410–12413

    CAS  Google Scholar 

  27. Cozzi F, Powell WH, Thilgen C (2005) Numbering of fullerenes. Pure Appl Chem 77:843–923

    CAS  Google Scholar 

  28. Komatsu K, Murata Y, Takimoto N et al (1994) Synthesis and properties of the first acetylene derivatives of C60. J Org Chem 59:6101–6102

    CAS  Google Scholar 

  29. Nagashima H, Terasaki H, Kimura E et al (1994) Silylmethylations of C60 with Grignard reagents: selective synthesis of HC60CH2SiMe2Y and C60(CH2SiMe2Y)2 with selection of solvents. J Org Chem 59:1246–1248

    CAS  Google Scholar 

  30. Hirsch A, Soi A, Karfunhel HR (1992) Titration of C60: a method for the synthesis of organofullerenes. Angew Chem Int Ed 31:766–768

    Google Scholar 

  31. Sawamura M, Iikura H, Nakamura E (1996) The first pentahaptofullerene metal complexes. J Am Chem Soc 118:12850–12851

    CAS  Google Scholar 

  32. Matsuo Y, Nakamura E (2008) Selective multiaddition of organocopper reagents to fullerenes. Chem Rev 108:3016–3028

    CAS  Google Scholar 

  33. Martin N, Altable M, Filippone S et al. (2004) Highly efficient Pauson–Khand reaction with C60: regioselective synthesis of unprecedented cis-1 biscycloadducts. Chem Commun 1338–1339

    Google Scholar 

  34. Martín N, Altable M, Filippone S et al (2005) Regioselective intramolecular Pauson–Khand reactions of C60: an electrochemical study and theoretical underpinning. Chemistry 11:2716–2729

    Google Scholar 

  35. Nambo M, Noyori R, Itami K (2007) Rh-catalyzed arylation and alkenylation of C60 using organoboron compounds. J Am Chem Soc 129:8080–8081

    CAS  Google Scholar 

  36. Nambo M, Segawa Y, Wakamiya A et al (2011) Selective introduction of organic groups to C60 and C70 using organoboron compounds and rhodium catalyst: a new synthetic approach to organo(hydro)fullerenes. Chem Asian J 6:590–598

    CAS  Google Scholar 

  37. Lu S, Jin T, Bao M et al (2011) Cobalt-catalyzed hydroalkylation of [60]fullerene with active alkyl bromides: selective synthesis of monoalkylated fullerenes. J Am Chem Soc 133:12842–12848

    CAS  Google Scholar 

  38. Xiao Z, Matsuo Y, Nakamura E (2010) Copper-catalyzed formal [4+2] annulation between alkyne and fullerene bromide. J Am Chem Soc 132:12234–12236

    CAS  Google Scholar 

  39. Zhu B, Wang G-W (2009) Palladium-catalyzed heteroannulation of [60]fullerene with anilides via C–H bond activation. Org Lett 11:4334–4337

    CAS  Google Scholar 

  40. Thilgen C, Gosse I, Diederich F (2003) Chirality in fullerene chemistry. Top Stereochem 23:1–124

    CAS  Google Scholar 

  41. Thilgen C, Diederich F (2006) Structural aspects of fullerene chemistry: a journey through fullerene chirality. Chem Rev 106:5049–5135

    CAS  Google Scholar 

  42. Nishimura T (2004) Macromolecular helicity induction on a poly(phenylacetylene) with C2-symmetric chiral [60]fullerene-bisadducts. J Am Chem Soc 126:11711–11717

    CAS  Google Scholar 

  43. Friedman SH, Ganapathi PS, Rubin Y et al (1998) Optimizing the binding of fullerene inhibitors of the HIV-1 protease through predicted increases in hydrophobic desolvation. J Med Chem 41:2424–2429

    CAS  Google Scholar 

  44. Hizume Y, Tashiro K, Charvet R et al (2010) Chiroselective assembly of a chiral porphyrin–fullerene dyad: photoconductive nanofiber with a top-class ambipolar charge-carrier mobility. J Am Chem Soc 132:6628–6629

    CAS  Google Scholar 

  45. Filippone S, Maroto EE, Martín-Domenech A et al (2009) An efficient approach to chiral fullerene derivatives by catalytic enantioselective 1,3-dipolar cycloadditions. Nat Chem 1:578–582

    CAS  Google Scholar 

  46. Maroto EE, Filippone S, Martin-Domenech A et al (2012) Switching the stereoselectivity: (fullero)pyrrolidines “a la carte”. J Am Chem Soc 134:12936–12938

    CAS  Google Scholar 

  47. Maroto EE, de Cózar A, Filippone S et al (2011) Hierarchical selectivity in fullerenes: site-, regio-, diastereo-, and enantiocontrol of the 1,3-dipolar cycloaddition to C70. Angew Chem Int Ed 50:6060–6064

    CAS  Google Scholar 

  48. Sawai K, Takano Y, Izquierdo M et al (2011) Enantioselective synthesis of endohedral metallofullerenes. J Am Chem Soc 133:17746–17752

    CAS  Google Scholar 

  49. Bosi S, Da Ros T, Spalluto G et al (2003) Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem 38:913–923

    CAS  Google Scholar 

  50. Prato M, Martín N (eds) (2002) Special issue: Functionalised fullerenes. J Mater Chem 12:1931–2159

    Google Scholar 

  51. Manoharan M, de Proft F, Geerlings P (2000) Aromaticity interplay between quinodimethanes and C60 in Diels–Alder reactions: insights from a theoretical study. J Org Chem 65:6132–6137

    CAS  Google Scholar 

  52. Kräutler B, Maynollo J (1995) A highly symmetric sixfold cycloaddition product of fullerene C60. Angew Chem Int Ed Engl 34:87–88

    Google Scholar 

  53. Herranz MA, Martín N, Ramey J et al (2002) Thermally reversible C60-based donor–acceptor ensembles. Chem Commun 2002:2968–2969

    Google Scholar 

  54. Bingel C (1993) Cyclopropanierung von fullerenen. Chem Ber 126:1957–1959

    CAS  Google Scholar 

  55. Kessinger R, Crassous J, Herrmann A et al (1998) Preparation of enantiomerically pure C76 with a general electrochemical method for the removal of di(alkoxycarbonyl)methano bridges from methanofullerenes: the retro-Bingel reaction. Angew Chem Int Ed 37:1919–1922

    CAS  Google Scholar 

  56. Kessinger R, Fender NS, Echegoyen LE et al (2000) Selective electrolytic removal of bis(alkoxycarbonyl)methano addends from C60 bis-adducts and electrochemical stability of C70 derivatives. Chemistry 6:2184–2192

    CAS  Google Scholar 

  57. Moonen NNP, Thilgen C, Echegoyen L et al (2000) The chemical retro-Bingel reaction: selective removal of bis(alkoxycarbonyl)methano addends from C60 and C70 with amalgamated magnesium. Chem Commun 5:335–336

    Google Scholar 

  58. Prato M, Maggini M (1998) Fulleropyrrolidines: a family of full-fledged fullerene derivatives. Acc Chem Res 31:519–526

    CAS  Google Scholar 

  59. Martín N, Altable M, Filippone S et al (2006) Retro-cycloaddition reaction of pyrrolidinofullerenes. Angew Chem Int Ed 45:110–114

    Google Scholar 

  60. Brunetti FG, Herrero MA, Muñoz JM et al (2007) Reversible microwave-assisted cycloaddition of aziridines to carbon nanotubes. J Am Chem Soc 129:14580–14581

    CAS  Google Scholar 

  61. Guryanov I, Montellano Lopez A, Carraro M et al (2009) Metal-free, retro-cycloaddition of fulleropyrrolidines in ionic liquids under microwave irradiation. Chem Commun 3940–3942

    Google Scholar 

  62. Filippone S, Izquierdo Barroso M, Martín-Domenech A et al (2008) On the mechanism of the thermal retrocycloaddition of pyrrolidinofullerenes (retro-Prato reaction). Chemistry 14:5198–5206

    CAS  Google Scholar 

  63. Lukoyanova O, Cardona CM, Altable M et al (2006) Selective electrochemical retro-cycloaddition reaction of pyrrolidinofullerenes. Angew Chem Int Ed 45:7430–7433

    CAS  Google Scholar 

  64. Martín N, Altable M, Filippone S et al (2007) Highly efficient retro-cycloaddition reaction of isoxazolino[4,5:1,2][60]- and -[70]fullerenes. J Org Chem 72:3840–3846

    Google Scholar 

  65. Delgado JL, Oswald F, Cardinali F et al (2008) On the thermal stability of [60]fullerene cycloadducts: retro-cycloaddition reaction of 2-pyrazolino[4,5:1,2][60]-fullerenes. J Org Chem 73:3184–3188

    CAS  Google Scholar 

  66. Olah GA, Bucsi I, Lambert C et al (1991) Polyarenefullerenes, C60(H-Ar)n, obtained by acid-catalyzed fullerenation of aromatics. J Am Chem Soc 113:9387–9388

    CAS  Google Scholar 

  67. Giacalone F, Martín N (2006) Fullerene polymers: synthesis and properties. Chem Rev 106:5136–5190

    CAS  Google Scholar 

  68. Giacalone F, Martín N (eds) (2009) Fullerene polymers: synthesis, properties and applications. Wiley VCH, Weinheim

    Google Scholar 

  69. Giacalone F, Martín N (2010) New concepts and applications in the macromolecular chemistry of fullerenes. Adv Mater 22:4220–4248

    CAS  Google Scholar 

  70. Special issue on polymeric fullerenes (1997) Appl Phys A: Mater Sci Process 64:223–330

    Google Scholar 

  71. Sundqvist B (1999) Fullerenes under high pressures. Adv Phys 48:1

    CAS  Google Scholar 

  72. Rao AM, Zhou P, Wang K-A et al (1993) Photo-induced polymerization of solid C60 films. Science 259:955–957

    CAS  Google Scholar 

  73. Iwasa Y, Arima T, Fleming RM et al (1994) New phases of C60 synthesized at high-pressure. Science 264:1570–1572

    CAS  Google Scholar 

  74. Takahashi N, Dock H, Matsuzawa N et al (1993) Plasma‐polymerized C60/C70 mixture films: electric conductivity and structure. J Appl Phys 74:5790–5798

    CAS  Google Scholar 

  75. Nuñez-Regueiro M, Marques L, Hodeau JL et al (1995) Polymerized fullerite structures. Phys Rev Lett 74:278–281

    Google Scholar 

  76. Rao AM, Eklund PC, Venkateswaran UD et al (1997) Properties of C60 polymerized under high pressure and temperature. Appl Phys A: Mater Sci Process 64:231–2239

    CAS  Google Scholar 

  77. Fedurco M, Costa DA, Balch AL et al (1995) Electrochemical synthesis of a redox-active polymer based on buckminsterfullerene epoxide. Angew Chem Int Ed Engl 34:194–196

    CAS  Google Scholar 

  78. Winkler K, Costa DA, Balch AL et al (1995) A study of fullerene epoxide electroreduction and electropolymerization processes. J Phys Chem 99:17431–17436

    CAS  Google Scholar 

  79. Liu B, Bunker CE, Sun T-P (1996) Preparation and characterization of soluble pendant [60]fullerene-polystyrene polymers. Chem Commun 1241–1242

    Google Scholar 

  80. Stalmach U, de Boer B, Videlot C et al (2000) Semiconducting diblock copolymers synthesized by means of controlled radical polymerization techniques. J Am Chem Soc 122:5464–5472

    CAS  Google Scholar 

  81. Zheng JW, Goh SH, Lee SY (2000) Miscibility of C60-containing poly(methyl methacrylate)/poly(vinylidene fluoride) blends. J Appl Polym Sci 75:1393–1396

    CAS  Google Scholar 

  82. Wang C, Tao Z, Yang W et al (2001) Synthesis and photoconductivity study of C60-containing styrene/acrylamide copolymers. Macromol Rapid Commun 22:98–103

    Google Scholar 

  83. Gutiérrez-Nava M, Masson P, Nierengarten J-F (2003) Synthesis of copolymers alternating oligophenylenevinylene subunits and fullerene moieties. Tetrahedron Lett 44:4487–4490

    Google Scholar 

  84. Vitalini D, Mineo P, Iudicelli V et al (2000) Preparation of functionalized copolymers by thermal processes: porphyrination and fullerenation of a commercial polycarbonate. Macromolecules 33:7300–7309

    CAS  Google Scholar 

  85. Kraus A, Müllen K (1999) [60]Fullerene-containing poly(dimethylsiloxane)s: easy access to soluble polymers with high fullerene content. Macromolecules 32:4214–4219

    CAS  Google Scholar 

  86. Ungurenasu C, Pienteala M (2007) Syntheses and characterization of water-soluble C60–curdlan sulfates for biological applications. J Polym Sci Part A: Polym Chem 45:3124–3128

    CAS  Google Scholar 

  87. Cravino A, Sariciftci NS (2002) Double-cable polymers for fullerene based organic optoelectronic applications. J Mater Chem 12:1931–1943

    CAS  Google Scholar 

  88. Cravino A, Sariciftci NS (2003) Organic electronics: molecules as bipolar conductors. Nat Mater 2:360–361

    CAS  Google Scholar 

  89. Kawase T (2012) Receptors for pristine fullerenes based on concave-convex π-π interactions. In: Martín N, Nierengarten J-F (eds) Supramolecular chemistry of fullerenes and carbon nanotubes. Wiley-VCH, Weinheim, pp 55–78 (Chap. 3)

    Google Scholar 

  90. Martín N, Nierengarten J-F (2012) Supramolecular chemistry of fullerenes and carbon nanotubes. Wiley-VCH, Weinheim

    Google Scholar 

  91. Sterescu DM, Stamatialis DF, Mendes E, Wibbenhorst M, Wessling M (2006) Fullerene-modified poly(2,6-dimethyl-1,4-phenylene oxide) gas separation membranes: why binding is better than dispersing. Macromolecules 39:9234–9242

    CAS  Google Scholar 

  92. Vinogradova LV, Polotskaya GA, Shevtsova AA et al (2009) Gas-separating properties of membranes based on star-shaped fullerene (C60)-containing polystyrenes. Polym Sci Ser A 51:209–215

    Google Scholar 

  93. Wang H, DeSousa R, Gasa J et al (2007) Fabrication of new fullerene composite materials and their application in proton exchange membrane fuel cells. J Membr Sci 289:277–283

    CAS  Google Scholar 

  94. Chen X, Gholamkhass B, Han X et al (2007) Polythiophene-graft-styrene and polythiophene-graft-(styrene-graft-C60) copolymers. Macromol Rapid Commun 28:1792–1797

    CAS  Google Scholar 

  95. Nanjo M, Cyr PW, Liu K et al (2008) Donor–acceptor C60-containing polyferrocenylsilanes: synthesis, characterization, and applications in photodiode devices. Adv Funct Mater 18:470–477

    CAS  Google Scholar 

  96. Ling Q-D, Lim S-L, Song Y et al (2007) Nonvolatile polymer memory device based on bistable electrical switching in a thin film of poly(N-vinylcarbazole) with covalently bonded C60. Langmuir 23:312–319

    CAS  Google Scholar 

  97. Tutt LW, Kost A (1992) Optical limiting performance of C60 and C70 solutions. Nature 356:225–226

    CAS  Google Scholar 

  98. Cha M, Sariciftci NS, Heeger AJ et al (1995) Enhanced nonlinear absorption and optical limiting in semiconducting polymer/methanofullerene charge transfer films. Appl Phys Lett 67:3850–3852

    CAS  Google Scholar 

  99. Maggini M, Scorrano G, Prato M et al (1995) C60 derivatives embedded in sol–gel silica films. Adv Mater 7:404–406

    CAS  Google Scholar 

  100. Bunker CE, Lawson GE, Sun YP (1995) Fullerene-styrene random copolymers. Novel optical properties. Macromolecules 28:3744–3746

    CAS  Google Scholar 

  101. Kojima Y, Matsuoka T, Takahashi H et al (1995) Optical limiting property of polystyrene-bound C60. Macromolecules 28:8868–8869

    CAS  Google Scholar 

  102. Lu Z, Goh SH, Lee SY et al (1999) Synthesis, characterization and nonlinear optical properties of copolymers of benzylaminofullerene with methyl methacrylate or ethyl methacrylate. Polymer 40:2863–2867

    CAS  Google Scholar 

  103. Sun YP, Riggs JE (1997) Non-linear absorptions in pendant [60]fullerene–polystyrene polymers. J Chem Soc Faraday Trans 93:1965–1969

    CAS  Google Scholar 

  104. Tang BZ, Xu HY, Lam JWY et al (2000) C60-containing poly(1-phenyl-1-alkynes): synthesis, light emission, and optical limiting. Chem Mater 12:1446–1449

    CAS  Google Scholar 

  105. Li FY, Li YL, Guo ZX et al (2000) Synthesis and optical limiting properties of polycarbonates containing fullerene derivative. J Phys Chem Solids 61:1101–1103

    CAS  Google Scholar 

  106. Celli A, Marchese P, Vannini M et al (2011) Synthesis of novel fullerene-functionalized polysulfones for optical limiting applications. React Funct Polym 71:641–647

    CAS  Google Scholar 

  107. Mroz P, Tegos GP, Gali H et al (2007) Photodynamic therapy with fullerenes. Photochem Photobiol Sci 6:1139–1149

    CAS  Google Scholar 

  108. Liu Y, Wang H, Liang P et al (2004) Water-soluble supramolecular fullerene assembly mediated by metallobridged β-cyclodextrins. Angew Chem Int Ed 43:2690–2694

    CAS  Google Scholar 

  109. Samal S, Choi B-J, Geckeler KE (2001) DNA-cleavage by fullerene-based synzymes. Macromol Biosci 1:329–331

    CAS  Google Scholar 

  110. Liu J, Ohta S, Sonoda A et al (2007) Preparation of PEG-conjugated fullerene containing Gd3+ ions for photodynamic therapy. J Control Release 117:104–110

    CAS  Google Scholar 

  111. Stoilova O, Jérôme C, Detrembleur C et al (2007) C60-containing nanostructured polymeric materials with potential biomedical applications. Polymer 48:1835–1843

    CAS  Google Scholar 

  112. Drees M, Hoppe H, Winder C et al (2005) Stabilization of the nanomorphology of polymer–fullerene “bulk heterojunction” blends using a novel polymerizable fullerene derivative. J Mater Chem 15:5158–5163

    CAS  Google Scholar 

  113. Sivula K, Ball ZT, Watanabe N et al (2006) Amphiphilic diblock copolymer compatibilizers and their effect on the morphology and performance of polythiophene:fullerene solar cells. Adv Mater 18:206–210

    CAS  Google Scholar 

  114. Yang C, Lee JK, Heeger AJ et al (2009) Well-defined donor–acceptor rod–coil diblock copolymers based on P3HT containing C60: the morphology and role as a surfactant in bulk-heterojunction solar cells. J Mater Chem 19:5416–5423

    CAS  Google Scholar 

  115. Hsieh C-H, Cheng Y-J, Li P-J et al (2010) Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer. J Am Chem Soc 132:4887–4893

    CAS  Google Scholar 

  116. Cheng Y-J, Hsieh C-H, He Y et al (2010) Combination of indene-C60 bis-adduct and cross-linked fullerene interlayer leading to highly efficient inverted polymer solar cells. J Am Chem Soc 132:17381–17383

    CAS  Google Scholar 

  117. Jeffery GA (1997) An introduction to hydrogen bonding. Oxford University Press, Oxford

    Google Scholar 

  118. Collins AF, Critchley C (2005) Artificial photosynthesis: from basic biology to industrial applications. Wiley, Weinheim

    Google Scholar 

  119. Delgado JL, Bouit PA, Filippone S et al (2010) Organic photovoltaics: a chemical approach. Chem Commun 46:4853–4865

    CAS  Google Scholar 

  120. Pinzón JR, Villalta-Cerdas A, Echegoyen L (2012) Fullerenes, carbon nanotubes, and graphene for molecular electronics. Top Curr Chem 312:127–174

    Google Scholar 

  121. Diederich F, Echegoyen L, Gómez-López M et al (1999) The self-assembly of fullerene-containing [2]pseudorotaxanes: formation of a supramolecular C60 dimer. J Chem Soc Perkin Trans 2:1577–1586

    Google Scholar 

  122. Rispens MT, Sánchez L, Knol J et al (2001) Supramolecular organization of fullerenes by quadruple hydrogen bonding. Chem Commun 161–162

    Google Scholar 

  123. González JJ, González S, Priego E et al (2001) A new approach to supramolecular C60-dimers based in quadruple hydrogen bonding. Chem Commun 163–164

    Google Scholar 

  124. Da Ros T, Guldi DM, Morales AF et al (2003) Hydrogen bond-assembled fullerene molecular shuttle. Org Lett 5:689–691

    Google Scholar 

  125. Mateo-Alonso A, Fioravanti G, Marcaccio M et al (2006) Reverse shuttling in a fullerene-stoppered rotaxane. Org Lett 8:5173–5176

    CAS  Google Scholar 

  126. Mateo-Alonso A, Brough P, Prato M (2007) Stabilization of fulleropyrrolidine N-oxides through intrarotaxane hydrogen bonding. Chem Commun 1412–1414

    Google Scholar 

  127. Mateo-Alonso A, Fioravanti G, Marcaccio M et al (2007) An electrochemically driven molecular shuttle controlled and monitored by C60. Chem Commun 1945–1947

    Google Scholar 

  128. Scarel F, Valenti G, Gaikwad S et al (2012) A molecular shuttle driven by fullerene radical-anion recognition. Chemistry 44:14063–14068

    Google Scholar 

  129. Guldi DM, Ramey J, Martínez-Díaz MV et al (2002) Reversible zinc phthalocyanine fullerene ensembles. Chem Commun 2774–2775

    Google Scholar 

  130. Sánchez L, Sierra M, Martín N et al (2006) Exceptionally strong electronic communication through hydrogen bonds in porphyrin–C60 pairs. Angew Chem Int Ed 45:4637–4641

    Google Scholar 

  131. Sessler JL, Jayawickramarajah J, Gouloumis A et al (2005) Synthesis and photophysics of a porphyrin-fullerene dyad assembled through Watson–Crick hydrogen bonding. Chem Commun 1892–1894

    Google Scholar 

  132. Torres T, Gouloumis A, Sánchez-García D et al (2007) Photophysical characterization of a cytidine-guanosine tethered phthalocyanine-fullerene dyad. Chem Commun 292–294

    Google Scholar 

  133. Wessendorf F, Gnichwitz J-F, Sarova GH et al (2007) Implementation of a Hamilton-receptor-based hydrogen-bonding motif toward a new electron donor-acceptor prototype: electron versus energy transfer. J Am Chem Soc 129:16057–16071

    CAS  Google Scholar 

  134. Maurer K, Grimm B, Wessendorf F et al (2010) Self-assembling depsipeptide dendrimers and dendritic fullerenes with new cis- and trans-symmetric Hamilton receptor functionalized Zn–porphyrins: synthesis, photophysical properties and cooperativity phenomena. Eur J Org Chem 5010–5029

    Google Scholar 

  135. Grimm B, Schornbaum J, Jasch H et al (2012) Step-by-step self-assembled hybrids that feature control over energy and charge transfer. Proc Natl Acad Sci U S A 109:15565–15571

    CAS  Google Scholar 

  136. Santos J, Grimm B, Illescas BM et al (2008) Cooperativity between π-π and H-bonding interactions – a supramolecular complex formed by C60 and exTTF. Chem Commun 5993–5995

    Google Scholar 

  137. Huang C-H, McClenaghan ND, Kuhn A et al (2005) Enhanced photovoltaic response in hydrogen-bonded all-organic devices. Org Lett 7:3409–3412

    CAS  Google Scholar 

  138. Chu C-C, Raffy G, Ray D et al (2010) Self-assembly of supramolecular fullerene ribbons via hydrogen-bonding interactions and their impact on fullerene electronic interactions and charge carrier mobility. J Am Chem Soc 132:12717–12723

    CAS  Google Scholar 

  139. Pérez EM, Martín N (2008) Curves ahead: molecular receptors for fullerenes based on concave-convex complementarity. Chem Soc Rev 37:1512–1519

    Google Scholar 

  140. Tashiro K, Aida T (2007) Metalloporphyrin hosts for supramolecular chemistry of fullerenes. Chem Soc Rev 36:189–197

    CAS  Google Scholar 

  141. Kawase T, Kurata H (2006) Ball-, bowl-, and belt-shaped conjugated systems and their complexing abilities: exploration of the concave-convex π−π interaction. Chem Rev 106:5250–5273

    CAS  Google Scholar 

  142. Mizyed S, Georghiou PE, Bancu M et al (2001) Embracing C60 with multiarmed geodesic partners. J Am Chem Soc 123:12770–12774

    CAS  Google Scholar 

  143. Sygula A, Fronczek FR, Sygula R et al (2007) A double concave hydrocarbon buckycatcher. J Am Chem Soc 129:3842–3843

    CAS  Google Scholar 

  144. Pérez EM, Martín N (2010) Molecular tweezers for fullerenes. Pure Appl Chem 82:523–533

    Google Scholar 

  145. Kawase T, Darabi HR, Oda M (1996) Cyclic [6]- and [8]paraphenylacetylenes. Angew Chem Int Ed 35:2664–2666

    CAS  Google Scholar 

  146. Kawase T, Tanaka K, Fujiwara N et al (2003) Complexation of a carbon nanoring with fullerenes. Angew Chem Int Ed 42:1624–1628

    CAS  Google Scholar 

  147. Kawase T, Tanaka K, Seirai Y et al (2003) Complexation of carbon nanorings with fullerenes: supramolecular dynamics and structural tuning for a fullerene sensor. Angew Chem Int Ed 42:5597–5600

    CAS  Google Scholar 

  148. Omachi H, Segawa Y, Itami K (2012) Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes. Acc Chem Res 45:1378–1389

    CAS  Google Scholar 

  149. Iwamoto T, Watanabe Y, Sadahiro T et al (2011) Size-selective encapsulation of C60 by [10]cycloparaphenylene: formation of the shortest fullerene-peapod. Angew Chem Int Ed 50:8342–8344

    CAS  Google Scholar 

  150. Xia J, Bacon JW, Jasti R (2012) Gram-scale synthesis and crystal structures of [8]- and [10]CPP, and the solid-state structure of C60·[10]CPP. Chem Sci 3:3018–3021

    CAS  Google Scholar 

  151. Pérez EM, Sánchez L, Fernández G et al (2006) exTTF as a building block for fullerene receptors. Unexpected solvent-dependent positive homotropic cooperativity. J Am Chem Soc 128:7172–7173

    Google Scholar 

  152. Gayathri SS, Wielopolski M, Pérez EM et al (2009) Discrete supramolecular donor-acceptor complexes. Angew Chem Int Ed 48:815–819

    CAS  Google Scholar 

  153. Pérez EM, Capodilupo AL, Fernández G et al (2008) Weighting non-covalent forces in the molecular recognition of C60. Relevance of concave-convex complementarity. Chem Commun 4567–4569

    Google Scholar 

  154. Pérez EM, Martín N (2012) Chiral recognition of carbon nanoforms. Org Biomol Chem 10:3577–3583

    Google Scholar 

  155. Pérez EM, Sierra M, Sánchez L et al (2007) Concave tetrathiafulvalene-type donors as supramolecular partners for fullerenes. Angew Chem Int Ed 46:1847–1851

    Google Scholar 

  156. Haino T, Yanase M, Fukazawa Y (1998) Fullerenes enclosed in bridged calix[5]arenes. Angew Chem Int Ed 37:997–998

    CAS  Google Scholar 

  157. Uno H, Furukawa M, Fujimoto A et al (2011) Porphyrin molecular tweezers for fullerenes. J Porphyr Phthalocyanins 15:951–963

    CAS  Google Scholar 

  158. Sun D, Tham FS, Reed CA et al (2000) Porphyrin-fullerene host-guest chemistry. J Am Chem Soc 122:10704–10705

    CAS  Google Scholar 

  159. Sun D, Tham FS, Reed CA et al (2002) Supramolecular fullerene-porphyrin chemistry. Fullerene complexation by metalated “jaws porphyrin” hosts. J Am Chem Soc 124:6604–6612

    CAS  Google Scholar 

  160. Hosseini A, Taylor S, Accorsi G et al (2006) Calix[4]arene-linked bisporphyrin hosts for fullerenes: binding strength, solvation effects, and porphyrin-fullerene charge transfer bands. J Am Chem Soc 128:15903–15913

    CAS  Google Scholar 

  161. Ayabe M, Ikeda A, Shinkai S et al (2002) A novel [60]fullerene receptor with a Pd(II)-switched bisporphyrin cleft. Chem Commun 1032–1033

    Google Scholar 

  162. Fernández G, Pérez EM, Sánchez L et al (2008) Self-organization of electroactive materials: a head-to-tail donor-acceptor supramolecular polymer. Angew Chem Int Ed 47:1094–1097

    Google Scholar 

  163. Fernández G, Pérez EM, Sánchez L et al (2008) An electroactive dynamically polydisperse supramolecular dendrimer. J Am Chem Soc 130:2410–2411

    Google Scholar 

  164. Santos J, Pérez EM, Illescas BM et al (2011) Linear and hyperbranched electron-acceptor supramolecular oligomers. Chem Asian J 6:1848–1853

    CAS  Google Scholar 

  165. Fernández G, Sánchez L, Pérez EM et al (2008) Large exTTF-based dendrimers. Self-assembly and peripheral cooperative multiencapsulation of C60. J Am Chem Soc 130:10674–10683

    Google Scholar 

  166. Canevet D, Pérez EM, Martín N (2011) Wraparound hosts for fullerenes: tailored macrocycles and cages. Angew Chem Int Ed 50:9248–9259

    CAS  Google Scholar 

  167. Tashiro K, Aida T, Zheng J-Y et al (1999) A cyclic dimer of metalloporphyrin forms a highly stable inclusion complex with C60. J Am Chem Soc 121:9477–9478

    CAS  Google Scholar 

  168. Yanagisawa M, Tashiro K, Yamasaki M et al (2007) Hosting fullerenes by dynamic bond formation with an iridium porphyrin cyclic dimer: a “chemical friction” for rotary guest motions. J Am Chem Soc 129:11912–11913

    CAS  Google Scholar 

  169. Gil-Ramírez G, Karlen SD, Shundo A et al (2010) A cyclic porphyrin trimer as a receptor for fullerenes. Org Lett 12:3544–3547

    Google Scholar 

  170. Song J, Aratani N, Shinokubo H et al (2010) A porphyrin nanobarrel that encapsulates C60. J Am Chem Soc 132:16356–16357

    CAS  Google Scholar 

  171. Zheng J-Y, Tashiro K et al (2001) Cyclic dimers of metalloporphyrins as tunable hosts for fullerenes: a remarkable effect of rhodium(III). Angew Chem Int Ed 40:1857–1861

    CAS  Google Scholar 

  172. Isla H, Gallego M, Pérez EM et al (2010) A bis-exTTF macrocyclic receptor that associates C60 with micromolar affinity. J Am Chem Soc 132:1772–1773

    CAS  Google Scholar 

  173. Canevet D, Gallego M, Isla H et al (2011) Macrocyclic hosts for fullerenes: extreme changes in binding abilities with small structural variations. J Am Chem Soc 133:3184–3190

    CAS  Google Scholar 

  174. Akasaka T, Wudl F, Nagase S (2010) Chemistry of nanocarbons. Wiley-VCH, Chichester

    Google Scholar 

  175. Yamada M, Akasaka T, Nagase S (2010) Endohedral metal atoms in pristine and functionalized fullerene cages. Acc Chem Res 43:92–102

    CAS  Google Scholar 

  176. Lu X, Akasaka T, Nagase S (2012) Chemistry of endohedral metallofullerenes: the role of metals. Chem Commun 47:5942–5957

    Google Scholar 

  177. Rodríguez-Fortea A, Balch AL, Poblet JM (2011) Endohedral metallofullerenes: a unique host-guest association. Chem Soc Rev 40:3551–3563

    Google Scholar 

  178. Dunsch L, Yang S (2007) Metal nitride cluster fullerenes: their current state and future prospects. Small 3:1298–1320

    CAS  Google Scholar 

  179. Stevenson S, Mackey MA, Stuart MA et al (2008) A distorted tetrahedral metal oxide cluster inside an icosahedral carbon cage. Synthesis, isolation, and structural characterization of Sc4(mu3-O)2@Ih-C80. J Am Chem Soc 130:11844–11845

    CAS  Google Scholar 

  180. Chaur MN, Melin F, Ortiz AL et al (2009) Chemical, electrochemical, and structural properties of endohedral metallofullerenes. Angew Chem Int Ed 48:7514–7538

    CAS  Google Scholar 

  181. Saunders M, Jiménez-Vázquez HA, Cross RJ et al (1993) Stable compounds of helium and neon. He@C60 and Ne@C60. Science 259:1428–1430

    CAS  Google Scholar 

  182. Kurotobi K, Murata Y (2011) A single molecule of water encapsulated in fullerene C60. Science 333:613–616

    CAS  Google Scholar 

  183. Campanera JM, Bo C, Olmstead MM et al (2002) Bonding within the endohedral fullerenes Sc3N@C78 and Sc3N@C80 as determined by density functional calculations and reexamination of the crystal structure of {Sc3N@C78}·Co(OEP)}·1.5(C6H6)·0.3(CHCl3). J Phys Chem A 106:12356–12364

    CAS  Google Scholar 

  184. Aoyagi S, Nishibori E, Sawa H et al (2010) A layered ionic crystal of polar Li@C60 superatoms. Nat Chem 2:678–683

    CAS  Google Scholar 

  185. Aoyagi S, Sado Y, Nishibori E et al (2012) Rock-salt-type crystal of thermally contracted C60 with encapsulated lithium cation. Angew Chem Int Ed 51:3377–3381

    CAS  Google Scholar 

  186. Chai Y, Guo T, Jin C et al (1991) Fullerenes with metals inside. J Phys Chem 95:7564–7568

    CAS  Google Scholar 

  187. Nagase S, Kobayashi K (1994) The ionization energies and electron affinities of endohedral metallofullerenes MC82(M = Sc, Y, La): density functional calculations. J Chem Soc Chem Commun 1837–1838

    Google Scholar 

  188. Tsuchiya T, Sato K, Kurihara H et al (2006) Spin-site exchange system constructed from endohedral metallofullerenes and organic donors. J Am Chem Soc 128:14418–14419

    CAS  Google Scholar 

  189. Sato S, Seki S, Honsho Y et al (2011) Semi-metallic single-component crystal of soluble La@C82 derivative with high electron mobility. J Am Chem Soc 133:2766–2771

    CAS  Google Scholar 

  190. Feng L, Tsuchiya T, Wakahara T et al (2006) Synthesis and characterization of a bisadduct of La@C82. J Am Chem Soc 128:5990–5991

    CAS  Google Scholar 

  191. Wakahara T, Yamada M, Takahashi S et al (2007) Two-dimensional hopping motion of encapsulated La atoms in silylated La2@C80. Chem Commun 2680–2682

    Google Scholar 

  192. Yamada M, Mizorogi N, Tsuchiya T et al (2009) Synthesis and characterization of the D 5h isomer of the endohedral dimetallofullerene Ce2@C80: two-dimensional circulation of encapsulated metal atoms inside a fullerene cage. Chemistry 15:9486–9493

    CAS  Google Scholar 

  193. Stevenson S, Rice G, Glass T et al (1999) Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401:55–57

    CAS  Google Scholar 

  194. Popov AA, Dunsch L (2007) Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M3N@C2n (M = Sc, Y; 2n = 68–98): a density functional theory study. J Am Chem Soc 129:11835–11849

    CAS  Google Scholar 

  195. Rodríguez-Fortea A, Alegret N, Balch AL et al (2010) The maximum pentagon separation rule provides a guideline for the structures of endohedral metallofullerenes. Nat Chem 2:955–961

    Google Scholar 

  196. Stevenson S, Phillips JP, Reid JE et al (2004) Pyramidalization of Gd3N inside a C80 cage. The synthesis and structure of Gd3N@C80. Chem Commun 2814–2815

    Google Scholar 

  197. Chaur MN, Melin F, Elliott B et al (2007) Gd3N@C2n (n = 40, 42, and 44): remarkably low HOMO-LUMO gap and unusual electrochemical reversibility of Gd3N@C88. J Am Chem Soc 129:14826–14829

    CAS  Google Scholar 

  198. Chaur MN, Melin F, Ashby J et al (2008) Lanthanum nitride endohedral fullerenes La3N@C2n (43< or =n< or =55): preferential formation of La3N@C96. Chemistry 14:8213–8219

    CAS  Google Scholar 

  199. Cao B, Wakahara T, Maeda Y et al (2004) Lanthanum endohedral metallofulleropyrrolidines: synthesis, isolation, and EPR characterization. Chemistry 10:716–720

    CAS  Google Scholar 

  200. Cardona CM, Kitaygorodskiy A, Echegoyen L (2005) Trimetallic nitride endohedral metallofullerenes: reactivity dictated by the encapsulated metal cluster. J Am Chem Soc 127:10448–10453

    CAS  Google Scholar 

  201. Yamada M, Someya C, Wakahara T et al (2008) Metal atoms collinear with the spiro carbon of 6,6-open adducts, M2@C80(Ad) (M = La and Ce, Ad = adamantylidene). J Am Chem Soc 130:1171–1176

    CAS  Google Scholar 

  202. Shustova NB, Popov AA, Mackey MA et al (2007) Radical trifluoromethylation of Sc3N@C80. J Am Chem Soc 129:11676–11677

    CAS  Google Scholar 

  203. Shu C, Cai T, Xu L et al (2007) Manganese(III)-catalyzed free radical reactions on trimetallic nitride endohedral metallofullerenes. J Am Chem Soc 129:15710–15717

    CAS  Google Scholar 

  204. Iezzi EB, Duchamp JC, Harich K (2002) A symmetric derivative of the trimetallic nitride endohedral metallofullerene, Sc3N@C80. J Am Chem Soc 124:524–525

    CAS  Google Scholar 

  205. Lee HM, Olmstead MM, Iezzi E et al (2002) Crystallographic characterization and structural analysis of the first organic functionalization product of the endohedral fullerene Sc3N@C80. J Am Chem Soc 124:3494–3495

    CAS  Google Scholar 

  206. Ge Z, Duchamp JC, Cai T et al (2005) Purification of endohedral trimetallic nitride fullerenes in a single, facile step. J Am Chem Soc 127:16292–16298

    CAS  Google Scholar 

  207. Cai T, Ge Z, Iezzi EB et al (2005) Synthesis and characterization of the first trimetallic nitride templated pyrrolidino endohedral metallofullerenes. Chem Commun 3594–3596

    Google Scholar 

  208. Wakahara T, Iiduka Y, Ikenaga O et al (2006) Characterization of the bis-silylated endofullerene Sc3N@C80. J Am Chem Soc 128:9919–9925

    CAS  Google Scholar 

  209. Yamada M, Minowa M, Sato S et al (2011) Regioselective cycloaddition of La2@I h -C80 with tetracyanoethylene oxide: formation of an endohedral dimetallofullerene adduct featuring enhanced electron-accepting character. J Am Chem Soc 33:3796–3799

    Google Scholar 

  210. Liu T-X, Wei T, Zhu S-E et al (2012) Azide addition to an endohedral metallofullerene: formation of azafulleroids of Sc3N@I h -C80. J Am Chem Soc 134:11956–11959

    CAS  Google Scholar 

  211. Yamada M, Nakahodo T, Wakahara T et al (2005) Positional control of encapsulated atoms inside a fullerene cage by exohedral addition. J Am Chem Soc 127:14570–14571

    CAS  Google Scholar 

  212. Yamada M, Wakahara T, Nakahodo T et al (2006) Synthesis and structural characterization of endohedral pyrrolidinodimetallofullerene: La2@C80(CH2)2NTrt. J Am Chem Soc 128:1402–1403

    CAS  Google Scholar 

  213. Cardona CM, Elliott B, Echegoyen L (2006) Unexpected chemical and electrochemical properties of M3N@C80 (M = Sc, Y, Er). J Am Chem Soc 128:6480–6485

    CAS  Google Scholar 

  214. Rodríguez-Fortea A, Campanera JM, Cardona CM et al (2006) Dancing on a fullerene surface: isomerization of Y3N@(N-ethylpyrrolidino-C80) from the 6,6 to the 5,6 regioisomers. Angew Chem Int Ed 45:8176–8180

    Google Scholar 

  215. Pinzón JR, Plonska-Brzezinska ME, Cardona CM et al (2008) Sc3N@C80-ferrocene electron-donor/acceptor conjugates as promising materials for photovoltaic applications. Angew Chem Int Ed 47:4173–4176

    Google Scholar 

  216. Takano Y, Herranz MA, Martín N et al (2010) Donor-acceptor conjugates of lanthanum endohedral metallofullerene and π-extended tetrathiafulvalene. J Am Chem Soc 132:8048–8055

    CAS  Google Scholar 

  217. Li FF, Pinzón JR, Mercado BQ et al (2011) [2+2]Cycloaddition reaction to Sc3N@I h -C80. The formation of very stable [5,6]- and [6,6]-adducts. J Am Chem Soc 133:1563–1571

    CAS  Google Scholar 

  218. Wang GW, Liu TX, Jiao M et al (2011) The cycloaddition reaction of I h -Sc3N@C80 with 2-amino-4,5-diisopropoxybenzoic acid and isoamyl nitrite to produce an open-cage metallofullerene. Angew Chem Int Ed 50:4658–4662

    CAS  Google Scholar 

  219. Lukoyanova O, Cardona CM, Rivera J et al (2007) Open rather than closed malonate methano-fullerene derivatives. The formation of methanofulleroid adducts of Y3N@C80. J Am Chem Soc 129:10423–10430

    CAS  Google Scholar 

  220. Cai T, Xu L, Shu C et al (2008) Selective formation of a symmetric Sc3N@C78 bisadduct: adduct docking controlled by an internal trimetallic nitride cluster. J Am Chem Soc 130:2136–2137

    CAS  Google Scholar 

  221. Rudolf M, Wolfrum S, Guldi DM et al (2012) Endohedral metallofullerenes–filled fullerene derivatives towards multifunctional reaction center mimics. Chemistry 8:5136–48

    Google Scholar 

  222. Feng L, Rudolf M, Wolfrum S et al (2012) A paradigmatic change: linking fullerenes to electron acceptors. J Am Chem Soc 34:12190–12197

    Google Scholar 

  223. Li FF, Rodríguez-Fortea A, Poblet JM et al (2011) Reactivity of metallic nitride endohedral metallofullerene anions: electrochemical synthesis of a Lu3N@I h -C80 derivative. J Am Chem Soc 133:2760–2765

    CAS  Google Scholar 

  224. Li FF, Rodríguez-Fortea A, Peng P et al (2012) Electrosynthesis of a Sc3N@I h -C80 methano derivative from trianionic Sc3N@Ih-C80. J Am Chem Soc 134:480–7487

    Google Scholar 

  225. Tsuchiya T, Wielopolski M, Sakuma N et al (2011) Stable radical anions inside fullerene cages: formation of reversible electron transfer systems. J Am Chem Soc 133:13280–13283

    CAS  Google Scholar 

  226. Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angew Chem Int Ed 46:52–66

    CAS  Google Scholar 

  227. Chapin DM, Fuller CS, Pearson GL (1954) A new silicon pn junction photocell for converting solar radiation into electrical power. J Appl Chem 25:676–678

    CAS  Google Scholar 

  228. Rispens MT, Hummelen JC (2002) Fullerenes: from synthesis to optoelectronic properties. In: Guldi DM, Martín N (eds) Photovoltaic applications. Kluwer Academic, Dordrech, pp 387–435 (Chap. 12)

    Google Scholar 

  229. Hummelen JC, Knight BW, LePeq F et al (1995) Preparation and characterization of fulleroid and methanofullerene derivatives. J Org Chem 60:532–538

    CAS  Google Scholar 

  230. Yu G, Gao J, Hummelen JC et al (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791

    CAS  Google Scholar 

  231. Zhang Y, Yip HL, Acton O et al (2009) A simple and effective way of achieving highly efficient and thermally stable bulk-heterojunction polymer solar cells using amorphous fullerene derivatives as electron acceptor. Chem Mater 21:2598–2600

    CAS  Google Scholar 

  232. Lenes L, Wetzelaer GJAH, Kooistra FB et al (2008) Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells. Adv Mater 20:2116–2119

    CAS  Google Scholar 

  233. Wienk MM, Kroon JM, Verhees WJH et al (2003) Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew Chem Int Ed 42:3371–3375

    CAS  Google Scholar 

  234. Park SH, Roy A, Beaupré S et al (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3:297–302

    CAS  Google Scholar 

  235. Kooistra FB, Mihailetchi VD, Popescu LM et al (2006) New C84 derivative and its application in a bulk heterojunction solar cell. Chem Mater 18:3068–3073

    CAS  Google Scholar 

  236. Li CZ, Yip HL, Jen AKY (2012) Functional fullerenes for organic photovoltaics. J Mater Chem 22:4161–4177

    CAS  Google Scholar 

  237. Riedel I, von Hauff E, Parisi J et al (2005) Diphenylmethanofullerenes: new and efficient acceptors in bulk-heterojunction solar cells. Adv Funct Mater 15:1979–1987

    CAS  Google Scholar 

  238. Riedel I, Martín N, Giacalone F et al (2004) Polymer solar cells with novel fullerene-based acceptor. Thin Solid Films 451:43–47

    Google Scholar 

  239. Backer S, Sivula K, Kavulak DF et al (2007) High efficiency organic photovoltaics incorporating a new family of soluble fullerene derivatives. Chem Mater 19:2927–2929

    CAS  Google Scholar 

  240. He Y, Chen HY, Hou J et al (2010) Indene–C60 bisadduct: a new acceptor for high-performance polymer solar cells. J Am Chem Soc 132:1377–1382

    CAS  Google Scholar 

  241. Weiss EA, Wasielewski MR, Ratner MA (2005) Molecules as wires: molecule-assisted movement of charge and energy. Top Curr Chem 257:103–133

    Google Scholar 

  242. Guldi DM, Illescas BM, Atienza CM et al (2009) Fullerene for organic electronics. Chem Soc Rev 38:1587–1597

    CAS  Google Scholar 

  243. Ito O, Yamanaka K (2009) Roles of molecular wires between fullerenes and electron donors in photoinduced electron transfer. Bull Chem Soc Jpn 82:316–332

    CAS  Google Scholar 

  244. Vail SA, Schuster DI, Guldi DM et al (2006) Energy and electron transfer in beta-alkynyl-linked porphyrin-[60]fullerene dyads. J Phys Chem B 110:14155–14166

    CAS  Google Scholar 

  245. Vail SA, Krawczuk PJ, Guldi DM et al (2005) Energy and electron transfer in polyacetylene-linked zinc–porphyrin–[60]fullerene molecular wires. Chemistry 11:3375–3388

    CAS  Google Scholar 

  246. Tashiro K, Sato A, Yuzawa T et al (2006) Long-range photoinduced electron transfer mediated by oligo-p-phenylenebutadiynylene conjugated bridges. Chem Lett 35:518–519

    CAS  Google Scholar 

  247. Lembo A, Tagliatesta P, Guldi DM et al (2009) Porphyrin-β-oligo-ethynylenephenylene-[60]fullerene triads: synthesis and electrochemical and photophysical characterization of the new porphyrin-oligo-PPE-[60]fullerene systems. J Phys Chem A 113:1779–1793

    CAS  Google Scholar 

  248. Giacalone F, Segura JL, Martín N et al (2004) Exceptionally small attenuation factors in molecular wires. J Am Chem Soc 126:5340–5341

    CAS  Google Scholar 

  249. Giacalone F, Segura JL, Martín N et al (2005) Probing molecular wires: synthesis, structural, and electronic study of donor-acceptor assemblies exhibiting long-range electron transfer. Chemistry 11:4819–4834

    CAS  Google Scholar 

  250. de la Torre G, Giacalone F, Segura JL et al (2005) Electronic communication through π-conjugated wires in covalently linked porphyrin/C60 ensembles. Chemistry 11:12671280

    Google Scholar 

  251. Molina-Ontoria A, Wielopolski M, Gebhardt J (2011) [2,2′]Paracyclophane-based π-conjugaed molecular wires reveal molecular-junction behavior. J Am Chem Soc 133:2370–2373

    CAS  Google Scholar 

  252. Atienza-Castellanos C, Wielopolski M, Guldi DM et al (2007) Determination of the attenuation factor in fluorene-based molecular wires. Chem Commun 5164–5166

    Google Scholar 

  253. Wielopolski M, Santos J, Illescas BM et al (2011) Vinyl spacers – tuning electron transfer through fluorene-based molecular wires. Energy Environ Sci 4:765–771

    CAS  Google Scholar 

  254. Ikemoto J, Takimiya K, Aso Y et al (2002) Porphyrin–oligothiophene–fullerene triads as an efficient intramolecular electron-transfer system. Org Lett 4:309–311

    CAS  Google Scholar 

  255. Nakamura T, Fujitsuka M, Araki Y et al (2004) Photoinduced electron transfer in porphyrin-oligothiophene-fullerene linked triads by excitation of a porphyrin moiety. J Phys Chem B 108:10700–10710

    CAS  Google Scholar 

  256. Wessendorf F, Grimm B, Guldi DM et al (2010) Pairing fullerenes and porphyrins: supramolecular wires that exhibit charge transfer activity. J Am Chem Soc 132:10786–10795

    CAS  Google Scholar 

  257. Schmalz TG, Seitz WA, Klein DJ et al (1986) C60 carbon cages. Chem Phys Lett 130:203–207

    CAS  Google Scholar 

  258. Schein S, Friedrich TA (2008) A geometric constraint, the head-to-tail exclusion rule, may be the basis for the isolated-pentagon rule in fullerenes with more than 60 vertices. Proc Natl Acad Sci U S A 105:19142–19147

    CAS  Google Scholar 

  259. Tan T-Z, Li J, Zhu F et al (2010) Chlorofullerenes featuring triple sequentially fused pentagons. Nat Chem 2:269–273

    CAS  Google Scholar 

  260. Martín N (2011) Fullerene C72Cl4: the exception that proves the rule? Angew Chem Int Ed 50:5431–5433

    Google Scholar 

  261. Tan Y-Z, Xie S-Y, Huang R-B et al (2009) The stabilization of fused-pentagon fullerene molecules. Nat Chem 1:450–460

    CAS  Google Scholar 

  262. Wang CR, Kai T, Tomiyama T et al (2000) Materials science – C66 fullerene encaging a scandium dimer. Nature 408:426–427

    CAS  Google Scholar 

  263. Stevenson S, Fowler PW, Heine T et al (2000) Materials science: a stable non-classical metallofullerene family. Nature 408:427–428

    CAS  Google Scholar 

  264. Beavers CM, Zuo TM, Duchamp JC et al (2006) Tb3N@C84: an improbable, egg-shaped endohedral fullerene that violates the isolated pentagon rule. J Am Chem Soc 128:11352–11353

    CAS  Google Scholar 

  265. Yang SF, Popov AA, Dunsch L (2007) Violating the isolated pentagon rule (IPR): the endohedral non-IPR C70 cage of Sc3N@C70. Angew Chem Int Ed 46:1256–1259

    CAS  Google Scholar 

  266. Ma YH, Wang TS, Wu JY et al (2011) Size effect of endohedral cluster on fullerene cage: preparation and structural studies of Y3N@C78-C2. Nanoscale 3:4955–4957

    CAS  Google Scholar 

  267. Shi ZQ, Wu X, Wang CR et al (2006) Isolation and characterization of Sc2C2@C68: a metal-carbide endofullerene with a non-IPR carbon cage. Angew Chem Int Ed 45:2107–2111

    CAS  Google Scholar 

  268. Wu JY, Wang TS, Ma YH et al (2011) Synthesis, isolation, characterization, and theoretical studies of Sc3NC@C78-C2. J Phys Chem C 115:23755–23759

    CAS  Google Scholar 

  269. Campanera JM, Bo C, Poblet JM (2005) General rule for the stabilization of fullerene cages encapsulating trimetallic nitride templates. Angew Chem Int Ed 44:7230–7233

    CAS  Google Scholar 

  270. Summerscales OT, Cloke FGN (2006) The organometallic chemistry of pentalene. Coord Chem Rev 250:1122–1140

    CAS  Google Scholar 

  271. Xie SY, Gao F, Lu X et al (2004) Capturing the labile fullerene[50] as C50Cl10. Science 304:699–699

    CAS  Google Scholar 

  272. Wang CR, Shi ZQ, Wan LJ et al (2006) C64H4: production, isolation, and structural characterizations of a stable unconventional fulleride. J Am Chem Soc 128:6605–6610

    CAS  Google Scholar 

  273. Li B, Shu CY, Lu X et al (2010) Addition of carbene to the equator of C(70) to produce the most stable C(71)H(2) isomer: 2 aH-2(12)a-homo(C(70)-D(5 h(6)))[5,6]fullerene. Angew Chem Int Ed 49:962–966

    CAS  Google Scholar 

  274. Tan YZ, Li J, Zhou T, Feng YQ et al (2010) Pentagon-fused hollow fullerene in C78 family retrieved by chlorination. J Am Chem Soc 132:12648–12652

    CAS  Google Scholar 

  275. Kato H, Taninaka A, Sugai T et al (2003) Structure of a missing-caged metallofullerene: La2@C72. J Am Chem Soc 125:7782–7783

    CAS  Google Scholar 

  276. Yamada M, Wakahara T, Tsuchiya T et al (2008) Spectroscopic and theoretical study of endohedral dimetallofullerene having a non-IPR fullerene cage: Ce2@C72. J Phys Chem A 112:7627–7631

    CAS  Google Scholar 

  277. Wakahara T, Nikawa H, Kikuchi T et al (2006) La@C72 having a non-IPR carbon cage. J Am Chem Soc 128:14228–14229

    CAS  Google Scholar 

  278. Chen N, Beavers CM, Mulet-Gas M et al (2012) Sc2S@C(s)(10528)-C72: a dimetallic sulfide endohedral fullerene with a non isolated pentagon rule cage. J Am Chem Soc 134:7851–7860

    CAS  Google Scholar 

  279. Tan Y-Z, Zhou T, Bao J, Shan G-J, Xie S-Y, Huang R-B, Zheng L-S (2010) C72Cl4: a pristine fullerene with favorable pentagon-adjacent structure. J Am Chem Soc 132:17102–17104

    CAS  Google Scholar 

  280. Ziegler K, Mueller A, Amsharov KY, Jansen M (2010) Disclosure of the elusive C2v-C72 carbon cage. J Am Chem Soc 132:17099–17101

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazario Martín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Delgado, J.L. et al. (2013). Buckyballs. In: Siegel, J., Wu, YT. (eds) Polyarenes II. Topics in Current Chemistry, vol 350. Springer, Cham. https://doi.org/10.1007/128_2012_414

Download citation

Publish with us

Policies and ethics