Skip to main content

Conformational Heterogeneity Within the LID Domain Mediates Substrate Binding to Escherichia coli Adenylate Kinase: Function Follows Fluctuations

  • Chapter
  • First Online:
Dynamics in Enzyme Catalysis

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 337))

Abstract

Proteins exist as dynamic ensembles of molecules, implying that protein amino acid sequences evolved to code for both the ground state structure as well as the entire energy landscape of excited states. Accumulating theoretical and experimental evidence suggests that enzymes use such conformational fluctuations to facilitate allosteric processes important for substrate binding and possibly catalysis. This phenomenon can be clearly demonstrated in Escherichia coli adenylate kinase, where experimentally observed local unfolding of the LID subdomain, as opposed to a more commonly postulated rigid-body opening motion, is related to substrate binding. Because “entropy promoting” glycine mutations designed to increase specifically the local unfolding of the LID domain also affect substrate binding, changes in the excited energy landscape effectively tune the function of this enzyme without changing the ground state structure or the catalytic site. Thus, additional thermodynamic information, above and beyond the single folded structure of an enzyme–substrate complex, is likely required for a full and quantitative understanding of how enzymes work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AK:

Adenylate kinase

AK(e):

E. coli adenylate kinase

Ala:

Alanine

AMP:

Adenosine monophosphate

AMPbd:

AMP binding domain of adenylate kinase

Ap5A:

P1,P5-di(adenosine-5′) pentaphosphate

ATP:

Adenosine triphosphate

BC:

Binding competent

BI:

Binding incompetent

CD:

Circular dichroism spectroscopy

CORE:

Core domain of adenylate kinase

CPMG:

Carr-Purcell-Meiboom-Gill

Gly:

Glycine

HSQC:

Heteronuclear single quantum coherence

Ile:

Isoleucine

ITC:

Isothermal titration calorimetry

K:

Equilibrium constant

LID:

LID domain of adenylate kinase

NMR:

Nuclear magnetic resonance spectroscopy

U:

Unfolded

Val:

Valine

ΔG :

Gibbs free energy

ΔS :

Entropy change

References

  1. Lehninger AL (1975) Biochemistry. Worth, New York

    Google Scholar 

  2. Creighton TL (1993) Proteins: structures and molecular properties. W.H. Freeman and Company, New York

    Google Scholar 

  3. Berg JM, Tymoczko JL, Stryer L (2007) Biochemistry. W.H. Freeman and Company, New York

    Google Scholar 

  4. Fersht AR (1998) Structure and mechanism in protein science: a guide to enzyme catalysis and protein binding. W.H. Freeman and Company, New York

    Google Scholar 

  5. Roethlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J, Gallaher JL, Althoff EA, Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS, Baker D (2008) Nature 453:190

    Article  CAS  Google Scholar 

  6. Michaelis L, Menten ML, Johnson KA, Goody RS (2011) Biochemistry 50:8264

    Article  Google Scholar 

  7. Georlette D, Blaise V, Collins T, D'Amico S, Gratia E, Hoyoux A, Marx JC, Sonan G, Feller G, Gerday C (2004) FEMS Microbiol Rev 28:25

    Article  CAS  Google Scholar 

  8. Fields PA, Somero GN (1998) Proc Natl Acad Sci USA 95:11476

    Article  CAS  Google Scholar 

  9. Hammes GG, Benkovic SJ, Hammes-Schiffer S (2011) Biochemistry 50:10422

    Article  CAS  Google Scholar 

  10. Zavodszky P, Kardos J, Svingor A, Petsko GA (1998) Proc Natl Acad Sci USA 95:7406

    Article  CAS  Google Scholar 

  11. Wolf-Watz M, Thai V, Henzler-Wildman K, Hadjipavlou G, Eisenmesser EZ, Kern D (2004) Nat Struct Mol Biol 11:945

    Article  CAS  Google Scholar 

  12. Henzler-Wildman K, Kern D (2007) Nature 450:964

    Article  CAS  Google Scholar 

  13. Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, Kern D (2007) Nature 450:913

    Article  CAS  Google Scholar 

  14. Bosco DA, Eisenmesser EZ, Pochapsky S, Sundquist WI, Kern D (2002) Proc Natl Acad Sci USA 99:5247

    Article  CAS  Google Scholar 

  15. Miyashita O, Onuchic JN, Wolynes PG (2003) Proc Natl Acad Sci USA 100:12570

    Article  CAS  Google Scholar 

  16. Henzler-Wildman KA, Thai V, Lei M, Ott M, Wolf-Watz M, Fenn T, Pozharski E, Wilson MA, Petsko GA, Karplus M, Hubner CG, Kern D (2007) Nature 450:838

    Article  CAS  Google Scholar 

  17. Hilser VJ, Garcia-Moreno EB, Oas TG, Kapp G, Whitten ST (2006) Chem Rev 106:1545

    Article  CAS  Google Scholar 

  18. Hilser VJ, Freire E (1997) Proteins 27:171

    Article  CAS  Google Scholar 

  19. Hilser VJ, Freire E (1996) J Mol Biol 262:756

    Article  CAS  Google Scholar 

  20. Liu T, Pantazatos D, Li S, Hamuro Y, Hilser VJ, Woods VLJ (2012) J Am Soc Mass Spectrom 23:43

    Article  CAS  Google Scholar 

  21. Pan H, Lee JC, Hilser VJ (2000) Proc Natl Acad Sci USA 97:12020

    Article  CAS  Google Scholar 

  22. Motlagh H, Hilser VJ (2012) Proc Natl Acad Sci USA 109:4134

    CAS  Google Scholar 

  23. Whitten ST, Garcia-Moreno EB, Hilser VJ (2005) Proc Natl Acad Sci USA 102:4282

    Article  CAS  Google Scholar 

  24. Wooll JO, Wrabl JO, Hilser VJ (2000) J Mol Biol 301:247

    Article  CAS  Google Scholar 

  25. Hilser VJ, Thompson EB (2007) Proc Natl Acad Sci USA 104:8311

    Article  CAS  Google Scholar 

  26. Hilser VJ, Wrabl JO, Motlagh H (2012) Annu Rev Biophys 41:585

    Article  CAS  Google Scholar 

  27. Schrank TP, Bolen DW, Hilser VJ (2009) Proc Natl Acad Sci USA 106:16984

    Article  CAS  Google Scholar 

  28. Schrank TP, Elam WA, Li J, Hilser VJ (2011) Methods Enzymol 492:253

    Article  CAS  Google Scholar 

  29. Liu T, Whitten ST, Hilser VJ (2007) Proc Natl Acad Sci USA 104:4347

    Article  CAS  Google Scholar 

  30. Feller G, Gerday C (2003) Nature reviews. Microbiology 1:200

    CAS  Google Scholar 

  31. Wrabl JO, Gu J, Liu T, Schrank TP, Whitten ST, Hilser VJ (2011) Biophys Chem 159:129

    Article  CAS  Google Scholar 

  32. Aden J, Wolf-Watz M (2007) J Am Chem Soc 129:14003

    Article  Google Scholar 

  33. Muller CW, Schlauderer GJ, Reinstein J, Schulz GE (1996) Structure 4:147

    Article  CAS  Google Scholar 

  34. Muller CW, Schulz GE (1992) J Mol Biol 224:159

    Article  CAS  Google Scholar 

  35. Sheng XR, Li X, Pan XM (1999) J Biol Chem 274:22238

    Article  CAS  Google Scholar 

  36. Tsai MD, Yan HG (1991) Biochemistry 30:6806

    Article  CAS  Google Scholar 

  37. Fukami-Kobayashi K, Nosaka M, Nakazawa A, Go M (1996) FEBS Lett 385:214

    Article  CAS  Google Scholar 

  38. Schulz GE, Schiltz E, Tomasselli AG, Frank R, Brune M, Wittinghofer A, Schirmer RH (1986) Eur J Biochem 161:127

    Article  CAS  Google Scholar 

  39. Hamada M, Sumida M, Kurokawa Y, Sunayashiki-Kusuzaki K, Okuda H, Watanabe T, Kuby SA (1985) J Biol Chem 260:11595

    CAS  Google Scholar 

  40. Cukier RI (2009) J Phys Chem B 113:1662

    Article  CAS  Google Scholar 

  41. Maragakis P, Karplus M (2005) J Mol Biol 352:807

    Article  CAS  Google Scholar 

  42. Daily MD, Phillips GN Jr, Cui Q (2010) J Mol Biol 400:618

    Article  CAS  Google Scholar 

  43. Beckstein O, Denning EJ, Perilla JR, Woolf TB (2009) J Mol Biol 394:160

    Article  CAS  Google Scholar 

  44. Chu JW, Voth GA (2007) Biophys J 93:3860

    Article  CAS  Google Scholar 

  45. Arora K, Brooks CL 3rd (2007) Proc Natl Acad Sci USA 104:18496

    Article  CAS  Google Scholar 

  46. Brylinski M, Skolnick J (2008) Proteins 70:363

    Article  CAS  Google Scholar 

  47. Munier-Lehmann H, Burlacu-Miron S, Craescu CT, Mantsch HH, Schultz CP (1999) Proteins 36:238

    Article  CAS  Google Scholar 

  48. Auton M, Bolen DW (2007) Methods Enzymol 428:397

    Article  CAS  Google Scholar 

  49. D'Aquino JA, Gomez J, Hilser VJ, Lee KH, Amzel LM, Freire E (1996) Proteins 25:143

    Google Scholar 

  50. Creamer TP (2000) Proteins 40:443

    Article  CAS  Google Scholar 

  51. Manson A, Whitten ST, Ferreon JC, Fox RO, Hilser VJ (2009) J Am Chem Soc 131:6785

    Article  CAS  Google Scholar 

  52. Whitten ST, Yang HW, Fox RO, Hilser VJ (2008) Protein Sci 17:1200

    Article  CAS  Google Scholar 

  53. Leach SJ, Nemethy G, Scheraga HA (1966) Biopolymers 4:369

    Article  CAS  Google Scholar 

  54. Loria JP, Rance M, Palmer AG (1999) J Am Chem Soc 121:2331

    Article  CAS  Google Scholar 

  55. Tollinger M, Skrynnikov NR, Mulder FA, Forman-Kay JD, Kay LE (2001) J Am Chem Soc 123:11341

    Article  CAS  Google Scholar 

  56. Palmer AG 3rd, Kroenke CD, Loria JP (2001) Methods Enzymol 339:204

    Article  CAS  Google Scholar 

  57. Kern D, Eisenmesser EZ, Wolf-Watz M (2005) Methods Enzymol 394:507

    Article  CAS  Google Scholar 

  58. Vallurupalli P, Kay LE (2006) Proc Natl Acad Sci USA 103:11910

    Article  CAS  Google Scholar 

  59. McConnell HM (1958) J Chem Phys 28:430

    Article  CAS  Google Scholar 

  60. Braun D, Wider G, Wuethrich K (1994) J Am Chem Soc 116:8466

    Article  CAS  Google Scholar 

  61. Eftink MR, Anusiem AC, Biltonen RL (1983) Biochemistry 22:3884

    Article  CAS  Google Scholar 

  62. Freire E (2001) Methods Mol Biol 168:37

    CAS  Google Scholar 

  63. Russell NJ (2000) Extremophiles 4:83

    Article  CAS  Google Scholar 

  64. Deng H, Zheng J, Clarke A, Holbrook JJ, Callender R, Burgner JW 2nd (1994) Biochemistry 33:2297

    Article  CAS  Google Scholar 

  65. Aghajari N, Feller G, Gerday C, Haser R (1998) Structure 6:1503

    Article  CAS  Google Scholar 

  66. Hardy JA, Wells JA (2004) Curr Opin Struct Biol 14:706

    Article  CAS  Google Scholar 

  67. Aden J, Verna A, Schug A, Wolf-Watz M (2012) J Am Chem Soc 134:16562

    Article  Google Scholar 

  68. Ferreon JC, Hamburger JB, Hilser VJ (2004) J Am Chem Soc 126:12774

    Article  CAS  Google Scholar 

  69. Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE (2012) Annu Rev Biophys 41:429

    Article  CAS  Google Scholar 

  70. Zhang Y, Skolnick J (2005) Nucleic Acids Res 33:2302

    Article  CAS  Google Scholar 

  71. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235

    Article  CAS  Google Scholar 

  72. Huang Y, Niu B, Gao Y, Fu L, Li W (2010) Bioinformatics 26:680

    Article  CAS  Google Scholar 

  73. Pei J, Kim BH, Grishin NV (2008) Nucleic Acids Res 36:2295

    Article  CAS  Google Scholar 

  74. Goodstadt L, Ponting CP (2001) Bioinformatics 17:845

    Article  CAS  Google Scholar 

  75. Burlacu-Miron S, Gilles AM, Popescu A, Barzu O, Craescu CT (1999) Eur J Biochem 264:765

    Article  CAS  Google Scholar 

  76. Ponder JW, Richards FM (1987) J Mol Biol 193:775

    Article  CAS  Google Scholar 

  77. Ramachandran GN, Sasisekharan V (1968) Adv Protein Chem 23:283

    Article  CAS  Google Scholar 

  78. Ramakrishnan C, Ramachandran GN (1965) Biophys J 5:909

    Article  CAS  Google Scholar 

  79. Wuethrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent J. Hilser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schrank, T.P., Wrabl, J.O., Hilser, V.J. (2013). Conformational Heterogeneity Within the LID Domain Mediates Substrate Binding to Escherichia coli Adenylate Kinase: Function Follows Fluctuations. In: Klinman, J., Hammes- Schiffer, S. (eds) Dynamics in Enzyme Catalysis. Topics in Current Chemistry, vol 337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_410

Download citation

Publish with us

Policies and ethics