Skip to main content

Amine-Borane Mediated Metal-Free Hydrogen Activation and Catalytic Hydrogenation

  • Chapter
  • First Online:
Frustrated Lewis Pairs I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 332))

Abstract

The use of frustrated Lewis pairs (FLPs) as hydrogenation catalysts is attracting increasing attention as one of the most modern and rapidly growing areas of organic chemistry, with many research groups around the world working on this subject. Since the pioneering studies of the groups of Stephan and Piers on the Lewis acid–base pairs, which do not react irreversibly with each other and act as a trap for small molecules, numerous FLPs for hydrogen activation have been reported. Among others, intra- and intermolecular systems based on phosphines, organic carbenes, amines as Lewis bases, and boranes or alanes as Lewis acids were studied. This review presents a progression from the first observation of the facile heterolytical cleavage of hydrogen gas by amines and B(C6F5)3 to highly active non-metal catalysts for both enantioselective and racemic hydrogenation of unsaturated nitrogen-containing compounds and also internal alkynes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1D NOE:

One-dimensional nuclear Overhauser effect spectroscopy

2D NOESY:

Two-dimensional nuclear Overhauser effect spectroscopy

9-BBN:

9-Borabicyclo[3.3.1]nonane

BCF:

Tris(pentafluorophenyl)borane

Bn:

Benzyl

Bu:

Butyl

d:

Day(s)

DABCO:

1,4-Diazabicyclo[2.2.2]octane

DFT:

Density functional theory

DHB:

Dihydrogen bond

DMDPP:

trans-2,6-Dimethyl-2,6-diphenylpiperidine

ee:

Enantiomer excess

equiv.:

Equivalent(s)

Et:

Ethyl

FLP:

Frustrated Lewis pair

FT-IR:

Fourier transform infrared spectroscopy

h:

Hour(s)

iPr:

Isopropyl

ItBu:

1,3-Di-tert-butylimidazolin-2-ylidene

LAB:

Lewis acid–base

Me:

Methyl

Mes:

Mesityl 2,4,6-trimethylphenyl (not methanesulfonyl)

min:

Minute(s)

MTBE:

Methyl tert-butyl ether

NHC:

N-Heterocyclic carbene

NMR:

Nuclear magnetic resonance

Np:

Naphthyl

o-Tol:

o-Methylphenyl

Ph:

Phenyl

PMP:

p-Methoxyphenyl

Pr:

Propyl

RT:

Room temperature

tBu:

tert-Butyl

THF:

Tetrahydrofuran

TMP:

2,2,6,6-Tetramethylpiperidine

TMS:

Trimethylsilyl

Tos:

Tosyl 4-toluenesulfonyl

TRIP:

3,3′-Bis(2,4,6-triisopropylphenyl)-1,1′-binaphthyl-2,2′-diyl hydrogenphosphate

References

  1. De Vries JG, Elsevier CJ (2008) The handbook of homogeneous hydrogenation. Wiley-VCH, Weinheim

    Google Scholar 

  2. Tye JW, Darensbourg Y, Hall MB (2006) The activation of dihydrogen. In: Tolman WB (ed) Activation of small molecules. Wiley-VCH, Weinheim

    Google Scholar 

  3. Beller M, Bolm C (2004) Transition metals for organic synthesis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  4. Spikes GH, Gettinger JC, Power PP (2005) Facile activation of dihydrogen by an unsaturated heavier main group compound. J Am Chem Soc 127:12232–12233

    Article  CAS  Google Scholar 

  5. Kenward AL, Piers WE (2007) Heterolytic H2 activation by non-metals. Angew Chem Int Ed 47:38–41

    Article  Google Scholar 

  6. Welch GC, Juan RRS, Masuda JD, Stephan DW (2006) Reversible, metal-free hydrogen activation. Science 314:1124–1126

    Article  CAS  Google Scholar 

  7. Welch GC, Stephan DW (2007) Facile heterolytic cleavage of dihydrogen by phosphines and boranes. J Am Chem Soc 129:1880–1881

    Article  CAS  Google Scholar 

  8. Frey GD, Lavallo V, Donnadieu B, Schoeller WW, Bertrand G (2007) Facile splitting of hydrogen and ammonia by nucleophilic activation at a single carbon center. Science 316:439–441

    Article  CAS  Google Scholar 

  9. Welch GC, Cabrera L, Chase PA, Hollink E, Masuda JD, Wei P, Stephan DW (2007) Tuning Lewis acidity using the reactivity of “frustrated Lewis pairs”: facile formation of phosphine-boranes and cationic phosphonium-boranes. Dalton Trans 3407–3414

    Google Scholar 

  10. Garrett CE, Prasad K (2004) The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd-catalyzed reactions. Adv Synth Catal 346:889–900

    Article  CAS  Google Scholar 

  11. Barbaras D, Brozio J, Johannsen I, Allmendinger T (2009) Removal of heavy metals from organic reaction mixtures: preparation and application of functionalized resins. Org Process Res Dev 13:1068–1079

    Article  CAS  Google Scholar 

  12. List B (2007) Special issue: “organocatalysis”. Chem Rev 107:5413–5883

    Article  CAS  Google Scholar 

  13. Brown HC, Schlesinger HI, Cardon SZ (1942) Studies in stereochemistry. I. Steric strains as a factor in the relative stability of some coordination compounds of boron. J Am Chem Soc 64:325–329

    Article  CAS  Google Scholar 

  14. Wittig G, Rückert A (1950) Über komplexbildung mit triphenylbor (II. Mitt.). Liebigs Ann Chem 566:101–113

    Article  CAS  Google Scholar 

  15. Wittig G, Bub O (1950) Über komplexbildung mit triphenyl-aluminium. Liebigs Ann Chem 566:113–127

    Article  CAS  Google Scholar 

  16. Wittig G, Schloeder H (1955) Über die addition des trityl-natriums an butadiene in gegenwart von triphenyl-bor. Liebigs Ann Chem 592:38–53

    Article  CAS  Google Scholar 

  17. Tochtermann W (1966) Structures and reactions of organic ate-complexes. Angew Chem Int Ed 5:351–371

    Article  CAS  Google Scholar 

  18. Wittig G, Gonsior L, Vogel H (1965) Über die struktur und hydrolyse eines aus tritylnatrium, triphenylbor und kohlenmonoxyd gebildeten komplexsalzes. Liebigs Ann Chem 688:1–13

    Article  CAS  Google Scholar 

  19. Rokob TA, Hamza A, Pápai I (2009) Rationalizing the reactivity of frustrated Lewis pairs: thermodynamics of H2 activation and the role of acid–base properties. J Am Chem Soc 131:10701–10710

    Article  CAS  Google Scholar 

  20. Roesler R, Piers WE, Parvez M (2003) Synthesis, structural characterization and reactivity of the amino borane 1-(NPh2)-2-[B(C6F5)2]C6H4. J Organomet Chem 680:218–222

    Article  CAS  Google Scholar 

  21. Chiu C-W, Gabbaï FP (2006) Fluoride ion capture from water with a cationic borane. J Am Chem Soc 128:14248–14249

    Article  CAS  Google Scholar 

  22. Hudnall TW, Gabbaï FP (2007) Ammonium boranes for the selective complexation of cyanide or fluoride ions in water. J Am Chem Soc 129:11978–11986

    Article  CAS  Google Scholar 

  23. Hudnall TW, Kim Y-M, Bebbington MWP, Bourissou D, Gabbaï FP (2008) Fluoride ion chelation by a bidentate phosphonium/borane Lewis acid. J Am Chem Soc 130:10890–10891

    Article  CAS  Google Scholar 

  24. Chernichenko K, Nieger M, Leskelä M, Repo T (2012) Hydrogen activation by 2-boryl-N,N-dialkylanilines: a revision of Piers’ ansa-aminoborane. Dalton Trans 41:9029–9032

    Article  CAS  Google Scholar 

  25. Lindqvist M, Sarnela N, Sumerin V, Chernichenko K, Leskelä M, Repo T (2012) Heterolytic dihydrogen activation by B(C6F5)3 and carbonyl compounds. Dalton Trans 41:4310–4312

    Article  CAS  Google Scholar 

  26. Welch GC, Holtrichter-Roessmann T, Stephan DW (2008) Thermal rearrangement of phosphine-B(C6F5)3 adducts. Inorg Chem 47:1904–1906

    Article  CAS  Google Scholar 

  27. Ullrich M, Lough AJ, Stephan DW (2009) Reversible, metal-free, heterolytic activation of H2 at room temperature. J Am Chem Soc 131:52–53

    Article  CAS  Google Scholar 

  28. Marwitz AJV, Dutton JL, Mercier LG, Piers WE (2011) Dihydrogen activation with tBu3P/B(C6F5)3: a chemically competent indirect mechanism via in situ-generated p-tBu2P–C6F4–B(C6F5)2. J Am Chem Soc 133:10026–10029

    Article  CAS  Google Scholar 

  29. Sumerin V, Schulz F, Nieger M, Leskelä M, Repo T, Rieger B (2008) Facile heterolytic H2 activation by amines and B(C6F5)3. Angew Chem Int Ed 47:6001–6003

    Article  CAS  Google Scholar 

  30. Focante F, Mercandelli P, Sironi A, Resconi L (2006) Complexes of tris(pentafluorophenyl)boron with nitrogen-containing compounds: synthesis, reactivity and metallocene activation. Coord Chem Rev 250:170–188

    Article  CAS  Google Scholar 

  31. Voss T, Mahdi T, Otten E, Fröhlich R, Kehr G, Stephan DW, Erker G (2012) Frustrated Lewis pair behavior of intermolecular amine/B(C6F5)3 pairs. Organometallics 31:2367–2378

    Article  CAS  Google Scholar 

  32. Mountford AJ, Lancaster SJ, Coles SJ, Horton PN, Hughes DL, Hursthouse MB, Light ME (2005) Intra- and intermolecular N–H···F–C hydrogen-bonding interactions in amine adducts of tris(pentafluorophenyl)borane and -alane. Inorg Chem 44:5921–5933

    Article  CAS  Google Scholar 

  33. Millot N, Santini CC, Fenet B, Basset JM (2002) Formation and characterization of zwitterionic stereoisomers from the reaction of B(C6F5)3 and NEt2Ph: (E)- and (Z)-[EtPhN+═CHCH2–B–(C6F5)3]. Eur J Inorg Chem 3328–3335

    Google Scholar 

  34. Sumerin V, Chernichenko K, Nieger M, Leskelä M, Rieger B, Repo T (2011) Highly active metal-free catalysts for hydrogenation of unsaturated nitrogen-containing compounds. Adv Synth Catal 353:2093–2110

    Article  CAS  Google Scholar 

  35. Farrell JM, Heiden ZM, Stephan DW (2011) Metal-free transfer hydrogenation catalysis by B(C6F5)3. Organometallics 30:4497–4500

    Article  CAS  Google Scholar 

  36. Chase PA, Jurca T, Stephan DW (2008) Lewis acid-catalyzed hydrogenation: B(C6F5)3-mediated reduction of imines and nitriles with H2. Chem Commun 1701–1703

    Google Scholar 

  37. Jiang C, Blacque O, Fox T, Berke H (2011) Heterolytic cleavage of H2 by frustrated B/N Lewis pairs. Organometallics 30:2117–2124

    Article  CAS  Google Scholar 

  38. Schulz F, Sumerin V, Leskelä M, Repo T, Rieger B (2010) Frustrated Lewis pairs: reactivities of TMS protected amines and phosphines in the presence of B(C6F5)3. Dalton Trans 39:1920–1922

    Article  CAS  Google Scholar 

  39. Erős G, Mehdi H, Pápai I, Rokob TA, Király P, Tárkányi G, Soós T (2010) Expanding the scope of metal-free catalytic hydrogenation through frustrated Lewis pair design. Angew Chem Int Ed 49:6559–6563

    Article  Google Scholar 

  40. Soós T (2011) Design of frustrated Lewis pair catalysts for metal-free and selective hydrogenation. Pure Appl Chem 83:667–675

    Article  Google Scholar 

  41. Lu Z, Cheng Z, Chen Z, Weng L, Li ZH, Wang H (2011) Heterolytic cleavage of dihydrogen by “frustrated Lewis pairs” comprising bis(2,4,6-tris(trifluoromethyl)phenyl)borane and amines: stepwise versus concerted mechanism. Angew Chem Int Ed 50:12227–12231

    Article  CAS  Google Scholar 

  42. Sumerin V, Schulz F, Nieger M, Atsumi M, Wang C, Leskelä M, Pyykkö P, Repo T, Rieger B (2009) Experimental and theoretical treatment of hydrogen splitting and storage in boron–nitrogen systems. J Organomet Chem 694:2654–2660

    Article  CAS  Google Scholar 

  43. Jiang C, Blacque O, Fox T, Berke H (2011) Reversible, metal-free hydrogen activation by frustrated Lewis pairs. Dalton Trans 40:1091–1097

    Article  Google Scholar 

  44. Pyykkö P, Wang C (2010) Theoretical study of H2 splitting and storage by boron–nitrogen-based systems: a bimolecular case and some qualitative aspects. Phys Chem Chem Phys 12:149–155

    Article  Google Scholar 

  45. Fan C, Mercier LG, Piers WE, Tuononen HM, Parvez M (2010) Dihydrogen activation by antiaromatic pentaarylboroles. J Am Chem Soc 132:9604–9606

    Article  CAS  Google Scholar 

  46. Rajeev R, Sunoj RB (2009) On the origin of reversible hydrogen activation by phosphino-boranes. Chem Eur J 15:12846–12855

    Article  CAS  Google Scholar 

  47. Rokob TA, Hamza A, Stirling A, Soós T, Pápai I (2008) Turning frustration into bond activation: a theoretical mechanistic study on heterolytic hydrogen splitting by frustrated Lewis pairs. Angew Chem Int Ed 47:2435–2438

    Article  CAS  Google Scholar 

  48. Kim HW, Rhee YM (2009) Dispersion-oriented soft interaction in a frustrated Lewis pair and the entropic encouragement effect in its formation. Chem Eur J 15:13348–13355

    CAS  Google Scholar 

  49. Grimme S, Kruse H, Goerigk L, Erker G (2010) The mechanism of dihydrogen activation by frustrated Lewis pairs revisited. Angew Chem Int Ed 49:1402–1405

    Article  CAS  Google Scholar 

  50. Guo Y, Li S (2008) Unusual concerted Lewis acid–Lewis base mechanism for hydrogen activation by a phosphine-borane compound. Inorg Chem 47:6212–6219

    Article  CAS  Google Scholar 

  51. Hamza A, Stirling A, Rokob TA, Pápai I (2009) Mechanism of hydrogen activation by frustrated Lewis pairs: a molecular orbital approach. Int J Quant Chem 109:2416–2425

    Article  CAS  Google Scholar 

  52. Nikonov GI, Vyboishchikov SF, Shirobokov OG (2012) Facile activation of H–H and Si–H bonds by boranes. J Am Chem Soc 134:5488–5491

    Article  CAS  Google Scholar 

  53. Ashley AE, Thompson AL, O’Hare D (2009) Non-metal-mediated homogeneous hydrogenation of CO2 to CH3OH. Angew Chem Int Ed 48:9839–9843

    Article  CAS  Google Scholar 

  54. Tran SD, Tronic TA, Kaminsky W, Heinekey DM, Mayer JM (2011) Metal-free carbon dioxide reduction and acidic C–H activations using a frustrated Lewis pair. Inorg Chim Acta 369:126–132

    Article  CAS  Google Scholar 

  55. Riduan SN, Zhang Y, Ying JY (2009) Conversion of carbon dioxide into methanol with silanes over N-heterocyclic carbene catalysts. Angew Chem Int Ed 48:3322–3325

    Article  CAS  Google Scholar 

  56. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, New York

    Google Scholar 

  57. Berkefeld A, Piers WE, Parvez M (2010) Tandem frustrated Lewis pair/tris(pentafluorophenyl)borane-catalyzed deoxygenative hydrosilylation of carbon dioxide. J Am Chem Soc 132:10660–10661

    Article  CAS  Google Scholar 

  58. Geier SJ, Chase PA, Stephan DW (2010) Metal-free reductions of N-heterocycles via Lewis acid catalyzed hydrogenation. Chem Commun 4884–4886

    Google Scholar 

  59. Chen D, Klankermayer J (2008) Metal-free catalytic hydrogenation of imines with tris(perfluorophenyl)borane. Chem Commun 2130–2131

    Google Scholar 

  60. Mahdi T, Heiden ZM, Grimme S, Stephan DW (2012) Metal-free aromatic hydrogenation: aniline to cyclohexyl-amine derivatives. J Am Chem Soc 134:4088–4091

    Article  CAS  Google Scholar 

  61. Erős G, Nagy K, Mehdi H, Pápai I, Nagy P, Király P, Tárkányi G, Soós T (2012) Catalytic hydrogenation with frustrated Lewis pairs: selectivity achieved by size-exclusion design of Lewis acids. Chem Eur J 18:574–585

    Article  Google Scholar 

  62. Sumerin V, Schulz F, Atsumi M, Wang C, Nieger M, Leskelä M, Repo T, Pyykkö P, Rieger B (2008) Molecular tweezers for hydrogen: synthesis, characterization, and reactivity. J Am Chem Soc 130:14117–14119

    Article  CAS  Google Scholar 

  63. Schulz F, Sumerin V, Heikkinen S, Pedersen B, Wang C, Atsumi M, Leskelä M, Repo T, Pyykkö P, Petry W, Rieger B (2011) Molecular hydrogen tweezers: structure and mechanisms by neutron diffraction, NMR, and deuterium labeling studies in solid and solution. J Am Chem Soc 133:20245–20257

    Article  CAS  Google Scholar 

  64. Grabowski SJ, Sokalski WA, Leszczynski J (2007) Wide spectrum of H⋯H interactions: van der Waals contacts, dihydrogen bonds and covalency. Chem Phys 337:68–76

    Article  CAS  Google Scholar 

  65. Heiden ZM, Schedler M, Stephan DW (2011) Synthesis and reactivity of o-benzylphosphino- and o-α-methylbenzyl(N,N-dimethyl)amine-boranes. Inorg Chem 50:1470–1479

    Article  CAS  Google Scholar 

  66. Schwendemann S, Fröhlich R, Kehr G, Erker G (2011) Intramolecular frustrated N/B Lewis pairs by enamine hydroboration. Chem Sci 2:1842–1849

    Article  CAS  Google Scholar 

  67. Theuergarten E, Schlüns D, Grunenberg J, Daniliuc CG, Jones PG, Tamm M (2010) Intramolecular heterolytic dihydrogen cleavage by a bifunctional frustrated pyrazolylborane Lewis pair. Chem Commun 8561–8563

    Google Scholar 

  68. Yalpani M, Boese R, Köster R (1990) Pyrazole-organoboranes, VI. Monomeric and dimeric 9-pyrazolyl-9-borabicyclo[3.3.1]nonanes. Chem Ber 123:1275–1283

    Article  CAS  Google Scholar 

  69. Holschumacher D, Bannenberg T, Hrib CG, Jones PG, Tamm M (2008) Heterolytic dihydrogen activation by a frustrated carbene–borane Lewis pair. Angew Chem Int Ed 47:7428–7432

    Article  CAS  Google Scholar 

  70. Chase PA, Welch GC, Jurca T, Stephan DW (2007) Metal-free catalytic hydrogenation. Angew Chem Int Ed 46:8050–8053

    Article  CAS  Google Scholar 

  71. Spies P, Schwendemann S, Lange S, Kehr G, Fröhlich R, Erker G (2008) Metal-free catalytic hydrogenation of enamines, imines, and conjugated phosphinoalkenylboranes. Angew Chem Int Ed 47:7543–7546

    Article  CAS  Google Scholar 

  72. Chen D, Wang Y, Klankermayer J (2010) Enantioselective hydrogenation with chiral frustrated Lewis pairs. Angew Chem Int Ed 49:9475–9478

    Article  CAS  Google Scholar 

  73. Parks DJ, Piers WE, Yap GPA (1998) Synthesis, properties, and hydroboration activity of the highly electrophilic borane bis(pentafluorophenyl)borane, HB(C6F5)2. Organometallics 17:5492–5503

    Article  CAS  Google Scholar 

  74. DeWitt EJ, Ramp FL, Trapasso LE (1961) Homogeneous hydrogenation catalyzed by boranes. J Am Chem Soc 83:4672

    Article  CAS  Google Scholar 

  75. Ramp FL, DeWitt EJ, Trapasso LE (1962) Homogeneous hydrogenation catalyzed by boranes. J Org Chem 27:4368–4372

    Article  CAS  Google Scholar 

  76. Yalpani M, Lunow T, Köster R (1989) Reduction of polycyclic arenes by boranes. II. Borane catalyzed hydrogenation of naphthalenes to tetralins. Chem Ber 122:687–693

    Article  CAS  Google Scholar 

  77. Yalpani M, Köster R (1990) Partial hydrogenation: from anthracene to coronene. Chem Ber 123:719–724

    Article  CAS  Google Scholar 

  78. Haenel MW, Narangerel J, Richter U-B, Rufinska A (2006) The first liquefaction of high-rank bituminous coals by preceding hydrogenation with homogeneous borane or iodine catalysts. Angew Chem Int Ed 45:1061–1066

    Article  CAS  Google Scholar 

  79. Xu B-H, Kehr G, Fröhlich R, Wibbeling B, Schirmer B, Grimme S, Erker G (2011) Reaction of frustrated Lewis pairs with conjugated ynones-selective hydrogenation of the carbon–carbon triple bond. Angew Chem Int Ed 50:7183–7186

    Article  CAS  Google Scholar 

  80. Greb L, Oña-Burgos P, Schirmer B, Grimme S, Stephan DW, Paradies J (2012) Metal-free catalytic olefin hydrogenation: low-temperature H2 activation by frustrated Lewis pairs. Angew Chem Int Ed. doi:10.1002/anie.201204007

  81. Chernichenko K, Nieger M, Leskelä M, Repo T (2012) Angew Chem Int Ed (submitted)

    Google Scholar 

  82. Jiang C, Blacque O, Berke H (2009) Metal-free hydrogen activation and hydrogenation of imines by 1,8-bis(dipentafluorophenylboryl)naphthalene. Chem Commun 5518–5520

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bernhard Rieger or Timo Repo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sumerin, V., Chernichenko, K., Schulz, F., Leskelä, M., Rieger, B., Repo, T. (2012). Amine-Borane Mediated Metal-Free Hydrogen Activation and Catalytic Hydrogenation. In: Erker, G., Stephan, D. (eds) Frustrated Lewis Pairs I. Topics in Current Chemistry, vol 332. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_391

Download citation

Publish with us

Policies and ethics