Skip to main content

N-Heterocyclic Carbenes in FLP Chemistry

  • Chapter
  • First Online:
Frustrated Lewis Pairs II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 334))

Abstract

The use of N-heterocyclic carbenes (NHCs) for the design and construction of frustrated Lewis pairs (FLPs) is outlined in this review. Stable carbene–borane adducts are briefly discussed, followed by a detailed survey of the reactivity of NHCs, in particular Arduengo-type imidazolin-2-ylidenes, towards B(C6F5)3. Structural and electronic NHC modification by variation of substituents and ring-size affords either stable normal adducts or FLPs, which undergo manifold deactivation reactions in the absence of substrates, e.g., by abnormal adduct formation, self-dehydrogenation, and other types of C–H and C–F bond activation. The degree of frustration is correlated with the calculated energies for the formation of the normal adducts NHC·B(C6F5)3, allowing one to predict and rationalize their reactivity towards small molecules such as dihydrogen, ethers, alkynes, main group elements, carbon dioxide, and nitrous oxide. Other carbene-based FLP systems with a variety of alternative Lewis acids such as boranes, alanes, and carbon-based Lewis acids are also covered, whenever “frustration” is observed. A brief introduction of structurally related bifunctional FLPs based on borylated N-heterocycles is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

9-BBN:

9-Borabicyclo [3.3.1]nonane

Alk:

Alkyl

Ar:

Aryl

Bu:

Butyl

d:

Day(s)

Dipp:

1,3-Diisopropylphenyl

equiv.:

Equivalent(s)

Et:

Ethyl

FLP:

Frustrated Lewis pair

h:

Hour(s)

Hal:

Halogen

iPr:

Isopropyl

Me:

Methyl

Mes:

Mesityl, 2,4,6-trimethylphenyl (not methanesulfonyl)

min:

Minute(s)

mol:

Mole(s)

NHC:

N-Heterocyclic carbene

Nu:

Nucleophile

Ph:

Phenyl

Pr:

Propyl

rt:

Room temperature

tBu:

tert-butyl

THF:

Tetrahydrofuran

References

  1. Welch GC, Cabrera L, Chase PA, Hollink E, Masuda JD, Wei P, Stephan DW (2007) Tuning Lewis acidity using the reactivity of “frustrated Lewis pairs”: facile formation of phosphine–boranes and cationic phosphonium–boranes. Dalton Trans 3407–3414. doi:10.1039/b704417h

    Google Scholar 

  2. Welch GC, Juan RRS, Masuda JD, Stephan DW (2006) Reversible, metal-free hydrogen activation. Science 314:1124–1126. doi:10.1126/science.1134230

    CAS  Google Scholar 

  3. Stephan DW (2008) “Frustrated Lewis pairs”: a concept for new reactivity and catalysis. Org Biomol Chem 6:1535–1539. doi:10.1039/b802575b

    CAS  Google Scholar 

  4. Stephan DW (2009) Frustrated Lewis pairs: a new strategy to small molecule activation and hydrogenation catalysis. Dalton Trans 3129–3136. doi:10.1039/b819621d

    Google Scholar 

  5. Stephan DW, Erker G (2010) Frustrated Lewis pairs: metal-free hydrogen activation and more. Angew Chem Int Ed 49:46–76. doi:10.1002/anie.200903708

    CAS  Google Scholar 

  6. Erker G (2011) Frustrated Lewis pairs: reactions with dihydrogen and other “small molecules”. C R Chim 14:831–841. doi:10.1016/j.crci.2011.05.008

    CAS  Google Scholar 

  7. Welch GC, Stephan DW (2007) Facile heterolytic cleavage of dihydrogen by phosphines and boranes. J Am Chem Soc 129:1880–1881. doi:10.1021/ja067961j

    CAS  Google Scholar 

  8. Rokob TA, Hamza A, Stirling A, Soos T, Papai I (2008) Turning frustration into bond activation: a theoretical mechanistic study on heterolytic hydrogen splitting by frustrated Lewis pairs. Angew Chem Int Ed 47:2435–2438. doi:10.1002/anie.200705586

    CAS  Google Scholar 

  9. Grimme S, Kruse H, Goerigk L, Erker G (2010) The mechanism of dihydrogen activation by frustrated Lewis pairs revisited. Angew Chem Int Ed 49:1402–1405. doi:10.1002/anie.200905484

    CAS  Google Scholar 

  10. Arduengo AJ, Harlow RL, Kline M (1991) A stable crystalline carbene. J Am Chem Soc 113:361–363. doi:10.1021/ja00001a054

    CAS  Google Scholar 

  11. Herrmann WA, Köcher C (1997) N-Heterocyclic carbenes. Angew Chem Int Ed 36:2162–2187. doi:10.1002/anie.199721621

    CAS  Google Scholar 

  12. Nolan Steven P (2006) N-Heterocyclic carbenes in synthesis, 1st edn. Wiley-VCH, Weinheim

    Google Scholar 

  13. Glorius F (2007) N-Heterocyclic carbenes in transition metal catalysis. Springer, Berlin

    Google Scholar 

  14. Diez-Gonsalez S (2010) N-Heterocyclic carbenes. RSC catalysis, 1st edn. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  15. Green C, Scur RG, Arnold PL, Cloke GN (1997) An experimental and theoretical investigation of the electronic structure of Pd and Pt bis(carbene) complexes. Chem Commun 1963–1964. doi:10.1039/A705157C

    Google Scholar 

  16. Herrmann WA (2002) N-Heterocyclic carbenes: a new concept in organometallic catalysis. Angew Chem Int Ed 41:1290–1309. doi:10.1002/1521-3773(20020415)41:8<1290::AID-ANIE1290>3.0.CO;2-Y

    CAS  Google Scholar 

  17. Hahn FE, Jahnke MC (2008) Heterocyclic carbenes: synthesis and coordination chemistry. Angew Chem Int Ed 47:3122–3172. doi:10.1002/anie.200703883

    CAS  Google Scholar 

  18. Díez-González S, Marion N, Nolan SP (2009) N-Heterocyclic carbenes in late transition metal catalysis. Chem Rev 109:3612–3676. doi:10.1021/cr900074m

    Google Scholar 

  19. Dixon DA, Arduengo AJ (1991) Electronic structure of a stable nucleophilic carbene. J Phys Chem 95:4180–4182. doi:10.1021/j100164a003

    CAS  Google Scholar 

  20. Alder RW, Allen PR, Williams SJ (1995) Stable carbenes as strong bases. J Chem Soc Chem Commun 1267–1268. doi:10.1039/C39950001267

    Google Scholar 

  21. Amyes TL, Diver ST, Richard JP, Rivas FM, Toth K (2004) Formation and stability of N-heterocyclic carbenes in water: the carbon acid pKa of imidazolium cations in aqueous solution. J Am Chem Soc 126:4366–4374. doi:10.1021/ja039890j

    CAS  Google Scholar 

  22. Magill AM, Cavell KJ, Yates BF (2004) Basicity of nucleophilic carbenes in aqueous and nonaqueous solvents - theoretical predictions. J Am Chem Soc 126:8717–8724. doi:10.1021/ja038973x

    CAS  Google Scholar 

  23. Maji B, Breugst M, Mayr H (2011) N-Heterocyclic carbenes: organocatalysts with moderate nucleophilicity but extraordinarily high Lewis basicity. Angew Chem Int Ed 50:6915–6919. doi:10.1002/anie.201102435

    CAS  Google Scholar 

  24. Enders D, Niemeier O, Henseler A (2007) Organocatalysis by N-heterocyclic carbenes. Chem Rev 107:5606–5655. doi:10.1021/cr068372z

    CAS  Google Scholar 

  25. Marion N, Díez-González S, Nolan SP (2007) N-Heterocyclic carbenes as organocatalysts. Angew Chem Int Ed 46:2988–3000. doi:10.1002/anie.200603380

    CAS  Google Scholar 

  26. Cavallo L, Correa A, Costabile C, Jacobsen H (2005) Steric and electronic effects in the bonding of N-heterocyclic ligands to transition metals. J Organomet Chem 690:5407–5413. doi:10.1016/j.jorganchem.2005.07.012

    CAS  Google Scholar 

  27. Díez-González S, Nolan SP (2007) Stereoelectronic parameters associated with N-heterocyclic carbene (NHC) ligands: a quest for understanding. Coord Chem Rev 251:874–883. doi:10.1016/j.ccr.2006.10.004

    Google Scholar 

  28. Poater A, Cosenza B, Correa A, Giudice S, Ragone F, Scarano V, Cavallo L (2009) SambVca: a web application for the calculation of the buried volume of N-heterocyclic carbene ligands. Eur J Inorg Chem 1759–1766. doi:10.1002/ejic.200801160

    Google Scholar 

  29. Clavier H, Nolan SP (2010) Percent buried volume for phosphine and N-heterocyclic carbene ligands: steric properties in organometallic chemistry. Chem Commun 46:841–861. doi:10.1039/B922984A

    CAS  Google Scholar 

  30. Holschumacher D, Bannenberg T, Hrib CG, Jones PG, Tamm M (2008) Heterolytic dihydrogen activation by a frustrated carbene-borane Lewis pair. Angew Chem Int Ed 47:7428–7432. doi:10.1002/anie.200802705

    CAS  Google Scholar 

  31. Chase PA, Stephan DW (2008) Hydrogen and amine activation by a frustrated Lewis pair of a bulky N-heterocyclic carbene and B(C6F5)3. Angew Chem Int Ed 47:7433–7437. doi:10.1002/anie.200802596

    CAS  Google Scholar 

  32. Kronig S, Theuergarten E, Holschumacher D, Bannenberg T, Daniliuc CG, Jones PG, Tamm M (2011) Dihydrogen activation by frustrated carbene-borane Lewis pairs: an experimental and theoretical study of carbene variation. Inorg Chem 50:7344–7359. doi:10.1021/ic201290g

    CAS  Google Scholar 

  33. Arduengo AJ, Dias HVR, Calabrese JC, Davidson F (1992) A stable carbene-alane adduct. J Am Chem Soc 114:9724–9725. doi:10.1021/ja00050a098

    CAS  Google Scholar 

  34. Kuhn N, Henkel G, Kratz T, Kreutzberg J, Boese R, Maulitz AH (1993) Derivate des Imidazols, VI. Stabile Carben-Borane. Chem Ber 126:2041–2045. doi:10.1002/cber.19931260913

    CAS  Google Scholar 

  35. Wacker A, Pritzkow H, Siebert W (1998) Borane-substituted imidazol-2-ylidenes: syntheses, structures, and reactivity. Eur J Inorg Chem 843–849. doi:10.1002/(SICI)1099-0682(199806)1998:6<843::AID-EJIC843>3.0.CO;2-Y

    Google Scholar 

  36. Phillips AD, Power PP (2005) A main-group donor-acceptor adduct: 1,3,4,5-tetramethylimidazol-2-ylidene-tris(pentafluorophenyl)borane. Acta Crystallogr, Sect C 61:o291–o293. doi:doi:10.1107/S0108270105006293

    Google Scholar 

  37. Curran DP, Solovyev A, Brahmi MM, Fensterbank L, Malacria M, Lacôte E (2011) Synthesis and reactions of N-heterocyclic carbene boranes. Angew Chem Int Ed 50:10294–10317. doi:10.1002/anie.201102717

    CAS  Google Scholar 

  38. Wang Y, Quillian B, Wei P, Wannere CS, Xie Y, King RB, Schaefer HF, Schleyer PR, Robinson GH (2007) A stable neutral diborene containing a BB double bond. J Am Chem Soc 129:12412–12413. doi:10.1021/ja075932i

    CAS  Google Scholar 

  39. Filippou AC, Chernov O, Stumpf KW, Schnakenburg G (2010) Metal–silicon triple bonds: the molybdenum silylidyne complex [Cp(CO)2Mo≡Si-R]. Angew Chem Int Ed 49:3296–3300. doi:10.1002/anie.201000837

    CAS  Google Scholar 

  40. Mansaray HB, Rowe ADL, Phillips N, Niemeyer J, Kelly M, Addy DA, Bates JI, Aldridge S (2011) Modelling fundamental arene-borane contacts: spontaneous formation of a dibromoborenium cation driven by interaction between a borane Lewis acid and an arene π system. Chem Commun 47:12295–12297. doi:10.1039/C1CC15259A

    CAS  Google Scholar 

  41. Ramnial T, Jong H, McKenzie ID, Jennings M, Clyburne JAC (2003) An imidazol-2-ylidene borane complex exhibiting inter-molecular [C–Hδ+Hδ−–B] dihydrogen bonds. Chem Commun 1722–1723. doi:10.1039/B301416A

    Google Scholar 

  42. Ueng S-H, Makhlouf Brahmi M, Derat E, Fensterbank L, Lacôte E, Malacria M, Curran DP (2008) Complexes of borane and N-heterocyclic carbenes: a new class of radical hydrogen atom donor. J Am Chem Soc 130:10082–10083. doi:10.1021/ja804150k

    CAS  Google Scholar 

  43. Arduengo AJ III, Davidson F, Krafczyk R, Marshall WJ, Schmutzler R (2000) Carbene complexes of pnictogen pentafluorides and boron trifluoride. Monatsh Chem 131:251–265. doi:10.1007/s007060070101

    CAS  Google Scholar 

  44. Bissinger P, Braunschweig H, Kraft K, Kupfer T (2011) Trapping the elusive parent borylene. Angew Chem Int Ed 50:4704–4707. doi:10.1002/anie.201007543

    CAS  Google Scholar 

  45. Lindsay DM, McArthur D (2010) The synthesis of chiral N-heterocyclic carbene-borane and -diorganoborane complexes and their use in the asymmetric reduction of ketones. Chem Commun 46:2474–2476. doi:10.1039/c001466d

    CAS  Google Scholar 

  46. Brahmi MM, Monot J, Desage-El Murr M, Curran DP, Fensterbank L, Lacôte E, Malacria M (2010) Preparation of NHC borane complexes by Lewis base exchange with amine- and phosphine-boranes. J Org Chem 75:6983–6985. doi:10.1021/jo101301d

    CAS  Google Scholar 

  47. Yamaguchi Y, Kashiwabara T, Ogata K, Miura Y, Nakamura Y, Kobayashi K, Ito T (2004) Synthesis and reactivity of triethylborane adduct of N-heterocyclic carbene: versatile synthons for synthesis of N-heterocyclic carbene complexes. Chem Commun 2160–2161. doi:10.1039/B405459H

    Google Scholar 

  48. van den Broeke J, Stam M, Lutz M, Kooijman H, Spek Anthony L, Deelman B-J, van Koten G (2003) Designing ionic liquids: 1-butyl-3-methylimidazolium cations with substituted tetraphenylborate counterions. Eur J Inorg Chem 2798–2811. doi:10.1002/ejic.200300057

    Google Scholar 

  49. Nielsen DJ, Cavell KJ, Skelton BW, White AH (2003) Tetrafluoroborate anion B–F bond activation—unusual formation of a nucleophilic heterocyclic carbene:BF3 adduct. Inorg Chim Acta 352:143–150. doi:10.1016/s0020-1693(03)00143-9

    CAS  Google Scholar 

  50. Taylor AW, Lovelock KRJ, Jones RG, Licence P (2011) Borane-substituted imidazol-2-ylidenes: syntheses in vacuo. Dalton Trans 40:1463–1470. doi:10.1039/C0DT01240H

    CAS  Google Scholar 

  51. Chu Q, Makhlouf Brahmi M, Solovyev A, Ueng S-H, Curran DP, Malacria M, Fensterbank L, Lacôte E (2009) Ionic and organometallic reductions with N-heterocyclic carbene boranes. Chem Eur J 15:12937–12940. doi:0.1002/chem.200902450

    CAS  Google Scholar 

  52. Monot J, Brahmi MM, Ueng S-H, Robert C, Murr MD-E, Curran DP, Malacria M, Fensterbank L, Lacôte E (2009) Suzuki–Miyaura coupling of NHC–boranes: a new addition to the C–C coupling toolbox. Org Lett 11:4914–4917. doi:10.1021/ol902012c

    CAS  Google Scholar 

  53. Solovyev A, Lacôte E, Curran DP (2011) Ring lithiation and functionalization of imidazol-2-ylidene-boranes. Org Lett 13:6042–6045. doi:10.1021/ol202516c

    CAS  Google Scholar 

  54. Weber L, Dobbert E, Stammler H-G, Neumann B, Boese R, Bläser D (1997) Reaction of 1,3-dialkyl-4,5-dimethylimidazol-2-ylidenes with 2-bromo-2,3-dihydro-1H-1,3,2-diazaboroles (alkyl=iPr and tBu). Chem Ber 130:705–710. doi:10.1002/cber.19971300606

    CAS  Google Scholar 

  55. Matsumoto T, Gabbai FP (2009) A borenium cation stabilized by an N-heterocyclic carbene ligand. Organometallics 28:4252–4253. doi:10.1021/om900476g

    CAS  Google Scholar 

  56. Ueng S-H, Solovyev A, Yuan X, Geib SJ, Fensterbank L, Lacôte E, Malacria M, Newcomb M, Walton JC, Curran DP (2009) N-Heterocyclic carbene boryl radicals: a new class of boron-centered radical. J Am Chem Soc 131:11256–11262. doi:10.1021/ja904103x

    CAS  Google Scholar 

  57. Walton JC, Brahmi MM, Fensterbank L, Lacôte E, Malacria M, Chu Q, Ueng S-H, Solovyev A, Curran DP (2010) EPR studies of the generation, structure, and reactivity of N-heterocyclic carbene borane radicals. J Am Chem Soc 132:2350–2358. doi:10.1021/ja909502q

    CAS  Google Scholar 

  58. Braunschweig H, Chiu C-W, Radacki K, Kupfer T (2010) Synthesis and structure of a carbene-stabilized π-boryl anion. Angew Chem Int Ed 49:2041–2044. doi:10.1002/anie.200906884

    CAS  Google Scholar 

  59. Monot J, Solovyev A, Bonin-Dubarle H, Derat É, Curran DP, Robert M, Fensterbank L, Malacria M, Lacôte E (2010) Generation and reactions of an unsubstituted N-heterocyclic carbene boryl anion. Angew Chem Int Ed 49:9166–9169. doi:10.1002/anie.201004215

    CAS  Google Scholar 

  60. Zheng X, Herberich GE (2000) Borabenzene derivatives. 33. 3,5-Dimethylborabenzene 1,3,4,5-tetramethylimidazol-2-ylidene: the first carbene adduct of a borabenzene. Organometallics 19:3751–3753. doi:10.1021/om000532o

    CAS  Google Scholar 

  61. Wood TK, Piers WE, Keay BA, Parvez M (2009) 9-Boraanthracene derivatives stabilized by N-heterocyclic carbenes. Angew Chem Int Ed 48:4009–4012. doi:10.1002/anie.200901217

    CAS  Google Scholar 

  62. Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451. doi:10.1021/j100785a001

    CAS  Google Scholar 

  63. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41:157–167. doi:10.1021/ar700111a

    CAS  Google Scholar 

  64. Welch GC, Holtrichter-Roessmann T, Stephan DW (2008) Thermal rearrangement of phosphine–B(C6F5)3 adducts. Inorg Chem 47:1904–1906. doi:10.1021/ic702485r

    CAS  Google Scholar 

  65. Holschumacher D, Taouss C, Bannenberg T, Hrib CG, Daniliuc CG, Jones PG, Tamm M (2009) Dehydrogenation reactivity of a frustrated carbene-borane Lewis pair. Dalton Trans 6927–6929. doi:10.1039/b908074k

    Google Scholar 

  66. Iglesias M, Beetstra DJ, Knight JC, Ooi L-L, Stasch A, Coles S, Male L, Hursthouse MB, Cavell KJ, Dervisi A, Fallis IA (2008) Novel expanded ring N-heterocyclic carbenes: free carbenes, silver complexes, and structures. Organometallics 27:3279–3289. doi:10.1021/om800179t

    CAS  Google Scholar 

  67. Manuel I, Dirk JB, Benson K, Kingsley JC, Athanasia D, Ian AF (2009) Synthesis and structural features of rhodium complexes of expanded ring N-heterocyclic carbenes. Eur J Inorg Chem 2009:1913–1919. doi:10.1002/ejic.200801179

    Google Scholar 

  68. Dunsford JJ, Cavell KJ, Kariuki BM (2012) Gold(I) complexes bearing sterically imposing, saturated six- and seven-membered expanded ring N-heterocyclic carbene ligands. Organometallics 31:4118–4121. doi:10.1021/om300351s

    CAS  Google Scholar 

  69. Denk MK, Rodezno JM, Gupta S, Lough AJ (2001) Synthesis and reactivity of subvalent compounds: part 11. Oxidation, hydrogenation and hydrolysis of stable diamino carbenes. J Organomet Chem 617–618:242–253. doi:10.1016/s0022-328x(00)00551-9

    Google Scholar 

  70. Frey GD, Lavallo V, Donnadieu B, Schoeller WW, Bertrand G (2007) Facile splitting of hydrogen and ammonia by nucleophilic activation at a single carbon center. Science 316:439–441. doi:10.1126/science.1141474

    CAS  Google Scholar 

  71. Li H, Zhao L, Lu G, Mo Y, Wang Z-X (2010) Insight into the relative reactivity of “frustrated Lewis pairs” and stable carbenes in activating H2 and CH4: a comparative computational study. Phys Chem Chem Phys 12:5268–5275. doi:10.1039/b924586c

    CAS  Google Scholar 

  72. Chase PA, Welch GC, Jurca T, Stephan DW (2007) Metal-free catalytic hydrogenation. Angew Chem Int Ed 46:8050–8053. doi:10.1002/anie.200702908

    CAS  Google Scholar 

  73. Spies P, Schwendemann S, Lange S, Kehr G, Fröhlich R, Erker G (2008) Metal-free catalytic hydrogenation of enamines, imines, and conjugated phosphinoalkenylboranes. Angew Chem Int Ed 47:7543–7546. doi:10.1002/anie.200801432

    CAS  Google Scholar 

  74. Rokob TA, Hamza A, Papai I (2009) Rationalizing the reactivity of frustrated Lewis pairs: thermodynamics of H2 activation and the role of acid–base properties. J Am Chem Soc 131:10701–10710. doi:10.1021/ja903878z

    CAS  Google Scholar 

  75. Jana A, Objartel I, Roesky HW, Stalke D (2009) Dehydrogenation of LGeH by a Lewis N-heterocyclic carbene borane pair under the formation of L'Ge and its reactions with B(C6F5)3 and trimethylsilyl diazomethane: an unprecedented rearrangement of a diazo compound to an isonitrile. Inorg Chem 48:7645–7649. doi:10.1021/ic900341r

    CAS  Google Scholar 

  76. Jana A, Tavcar G, Roesky HW, Schulzke C (2010) Facile synthesis of dichlorosilane by metathesis reaction and dehydrogenation of dihydrogermane by a frustrated Lewis pair. Dalton Trans 39:6217–6220. doi:10.1039/c002395g

    CAS  Google Scholar 

  77. Doerrer LH, Graham AJ, Haussinger D, Green MLH (2000) Electrophilic addition reactions of the Lewis acids B(C6F5)2R [R = C6F5, Ph, H or Cl] with the metallocene hydrides [M(η-C5H5)2H2] (M = Mo or W), [Re(η-C5H5)2H] and [Ta(η-C5H5)2H3]. J Chem Soc Dalton Trans 813–820. doi:10.1039/A908623D

    Google Scholar 

  78. Lorber C, Choukroun R, Vendier L (2008) Reactivity of B(C6F5)3 with simple early transition metal alkoxides: alkoxide-aryl exchange, THF ring-opening, or acetonitrile CC coupling. Organometallics 27:5017–5024. doi:10.1021/om800234z

    CAS  Google Scholar 

  79. Welch GC, Prieto R, Dureen MA, Lough AJ, Labeodan OA, Holtrichter-Rossmann T, Stephan DW (2009) Reactions of phosphines with electron deficient boranes. Dalton Trans 1559–1570. doi:10.1039/B814486A

    Google Scholar 

  80. Birkmann B, Voss T, Geier SJ, Ullrich M, Kehr G, Erker G, Stephan DW (2010) Frustrated Lewis pairs and ring-opening of THF, dioxane, and thioxane. Organometallics 29:5310–5319. doi:10.1021/om1003896

    CAS  Google Scholar 

  81. Focante F, Mercandelli P, Sironi A, Resconi L (2006) Complexes of tris(pentafluorophenyl)boron with nitrogen-containing compounds: synthesis, reactivity and metallocene activation. Coord Chem Rev 250:170–188. doi:10.1016/j.ccr.2005.05.005

    CAS  Google Scholar 

  82. Chase PA, Gille AL, Gilbert TM, Stephan DW (2009) Frustrated Lewis pairs derived from N-heterocyclic carbenes and Lewis acids. Dalton Trans 7179–7188. doi:10.1039/b908737k

    Google Scholar 

  83. Cowan JA, Clyburne JAC, Davidson MG, Harris RLW, Howard JAK, Küpper P, Leech MA, Richards SP (2002) On the interaction between N-heterocyclic carbenes and organic acids: structural authentication of the first N–H⋅⋅⋅C hydrogen bond and remarkably short C–H⋅⋅⋅O interactions. Angew Chem Int Ed 41:1432–1434. doi:10.1002/1521-3773(20020415)41:8<1432::aid-anie1432>3.0.co;2-m

    CAS  Google Scholar 

  84. Dureen MA, Brown CC, Stephan DW (2010) Deprotonation and addition reactions of frustrated Lewis pairs with alkynes. Organometallics 29:6594–6607. doi:10.1021/om1009044

    CAS  Google Scholar 

  85. Geier SJ, Stephan DW (2010) Lewis acid mediated P–P bond hydrogenation and hydrosilylation. Chem Commun 46:1026–1028. doi:10.1039/B925126J

    CAS  Google Scholar 

  86. Dureen MA, Welch GC, Gilbert TM, Stephan DW (2009) Heterolytic cleavage of disulfides by frustrated Lewis pairs. Inorg Chem 48:9910–9917. doi:10.1021/ic901590s

    CAS  Google Scholar 

  87. Masuda JD, Schoeller WW, Donnadieu B, Bertrand G (2007) NHC-mediated aggregation of P4: isolation of a P12 cluster. J Am Chem Soc 129:14180–14181. doi:10.1021/ja077296u

    CAS  Google Scholar 

  88. Back O, Kuchenbeiser G, Donnadieu B, Bertrand G (2009) Nonmetal-mediated fragmentation of P4: isolation of P1 and P2 bis(carbene) adducts. Angew Chem Int Ed 48:5530–5533. doi:10.1002/anie.200902344

    CAS  Google Scholar 

  89. Holschumacher D, Bannenberg T, Ibrom K, Daniliuc CG, Jones PG, Tamm M (2010) Selective heterolytic P–P bond cleavage of white phosphorus by a frustrated carbene-borane Lewis pair. Dalton Trans 39:10590–10592. doi:10.1039/c0dt01045f

    CAS  Google Scholar 

  90. Holschumacher D, Daniliuc CG, Jones PG, Tamm M (2011) Sulfur and selenium activation by frustrated NHC/B(C6F5)3 Lewis pairs; conformational flexibility of products. Z Naturforsch, B: J Chem Sci 66:371–377

    CAS  Google Scholar 

  91. Ansell GB, Forkey DM, Moore DW (1970) The molecular structure of 1,3-dimethyl-2(3H)-imidazolethione (C5H8N2S). J Chem Soc D Chem Commun 56b–57. doi:10.1039/C2970000056B

    Google Scholar 

  92. Huang J, Schanz H-J, Stevens ED, Nolan SP, Capps KB, Bauer A, Hoff CD (2000) Structural and solution calorimetric studies of sulfur binding to nucleophilic carbenes. Inorg Chem 39:1042–1045. doi:10.1021/ic990906+

    CAS  Google Scholar 

  93. Williams DJ, Fawcett-Brown MR, Raye RR, VanDerveer D, Pang YT, Jones RL, Bergbauer KL (1993) Synthesis, characterization, and X-ray crystallographic structure of 1,3-dimethyl-2(3H)-imidazoleselone. Heteroatom Chem 4:409–414. doi:10.1002/hc.520040416

    CAS  Google Scholar 

  94. Mömming CM, Otten E, Kehr G, Fröhlich R, Grimme S, Stephan DW, Erker G (2009) Reversible metal-free carbon dioxide binding by frustrated Lewis pairs. Angew Chem Int Ed 48:6643–6646. doi:10.1002/anie.200901636

    Google Scholar 

  95. Ashley AE, Thompson AL, O'Hare D (2009) Non-metal-mediated homogeneous hydrogenation of CO2 to CH3OH. Angew Chem Int Ed 48:9839–9843. doi:10.1002/anie.200905466

    CAS  Google Scholar 

  96. Berkefeld A, Piers WE, Parvez M (2010) Tandem frustrated Lewis pair/tris(pentafluorophenyl)borane-catalyzed deoxygenative hydrosilylation of carbon dioxide. J Am Chem Soc 132:10660–10661. doi:10.1021/ja105320c

    CAS  Google Scholar 

  97. Appelt C, Westenberg H, Bertini F, Ehlers AW, Slootweg JC, Lammertsma K, Uhl W (2011) Geminal phosphorus/aluminum-based frustrated Lewis pairs: C–H versus C≡C activation and CO2 fixation. Angew Chem Int Ed 50:4011–4014. doi:10.1002/anie.201006901

    Google Scholar 

  98. Peuser I, Neu RC, Zhao X, Ulrich M, Schirmer B, Tannert JA, Kehr G, Fröhlich R, Grimme S, Erker G, Stephan DW (2011) CO2 and formate complexes of phosphine/borane frustrated Lewis pairs. Chem Eur J 17:9640–9650. doi:10.1002/chem.201100286

    CAS  Google Scholar 

  99. Duong HA, Tekavec TN, Arif AM, Louie J (2004) Reversible carboxylation of N-heterocyclic carbenes. Chem Commun 112–113. doi:10.1039/B311350G

    Google Scholar 

  100. Van Ausdall BR, Glass JL, Wiggins KM, Aarif AM, Louie J (2009) A systematic investigation of factors influencing the decarboxylation of imidazolium carboxylates. J Org Chem 74:7935–7942. doi:10.1021/jo901791k

    Google Scholar 

  101. Delaude L (2009) Betaine adducts of N-heterocyclic carbenes: synthesis, properties, and reactivity. Eur J Inorg Chem 2009:1681–1699. doi:10.1002/ejic.200801227

    Google Scholar 

  102. Voutchkova AM, Appelhans LN, Chianese AR, Crabtree RH (2005) Disubstituted imidazolium-2-carboxylates as efficient precursors to N-heterocyclic carbene complexes of Rh, Ru, Ir, and Pd. J Am Chem Soc 127:17624–17625. doi:10.1021/ja056625k

    CAS  Google Scholar 

  103. Voutchkova AM, Feliz M, Clot E, Eisenstein O, Crabtree RH (2007) Imidazolium carboxylates as versatile and selective N-heterocyclic carbene transfer agents: synthesis, mechanism, and applications. J Am Chem Soc 129:12834–12846. doi:10.1021/ja0742885

    CAS  Google Scholar 

  104. Kayaki Y, Yamamoto M, Ikariya T (2009) N-Heterocyclic carbenes as efficient organocatalysts for CO2 fixation reactions. Angew Chem Int Ed 48:4194–4197. doi:10.1002/anie.200901399

    CAS  Google Scholar 

  105. Theuergarten E, Holschumacher D, Tamm M (2012). Manuscript in preparation

    Google Scholar 

  106. Otten E, Neu RC, Stephan DW (2009) Complexation of nitrous oxide by frustrated Lewis pairs. J Am Chem Soc 131:9918–9919. doi:10.1021/ja904377v

    CAS  Google Scholar 

  107. Tskhovrebov AG, Solari E, Wodrich MD, Scopelliti R, Severin K (2012) Covalent capture of nitrous oxide by N-heterocyclic carbenes. Angew Chem Int Ed 51:232–234. doi:10.1002/anie.201106589

    CAS  Google Scholar 

  108. Runyon JW, Steinhof O, Dias HVR, Calabrese JC, Marshall WJ, Arduengo AJ (2011) Carbene-based Lewis pairs for hydrogen activation. Aust J Chem 64:1165–1172. doi:10.1071/CH11246

    CAS  Google Scholar 

  109. Kolychev EL, Bannenberg T, Freytag M, Daniliuc CG, Jones PG, Tamm M (2012). Manuscript in preparation

    Google Scholar 

  110. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. doi:10.1002/jcc.20495

    CAS  Google Scholar 

  111. Grimme S (2011) Density functional theory with London dispersion corrections. WIREs Comput Mol Sci 1:211–228. doi:10.1002/wcms.30

    CAS  Google Scholar 

  112. Schmitt A-L, Schnee G, Welter R, Dagorne S (2010) Unusual reactivity in organoaluminium and NHC chemistry: deprotonation of AlMe3 by an NHC moiety involving the formation of a sterically bulky NHC–AlMe3 Lewis adduct. Chem Commun 46:2480–2482. doi:10.1039/B922425D

    CAS  Google Scholar 

  113. Shih W-C, Wang C-H, Chang Y-T, Yap GPA, Ong T-G (2009) Synthesis and structure of an amino-linked N-heterocyclic carbene and the reactivity of its aluminum adduct. Organometallics 28:1060–1067. doi:10.1021/om800917j

    CAS  Google Scholar 

  114. Tai C-C, Chang Y-T, Tsai J-H, Jurca T, Yap GPA, Ong T-G (2012) Subtle reactivities of boron and aluminum complexes with amino-linked N-heterocyclic carbene ligation. Organometallics 31:637–643. doi:10.1021/om200878e

    CAS  Google Scholar 

  115. Zhang Y, Miyake GM, Chen EYX (2010) Alane-based classical and frustrated Lewis pairs in polymer synthesis: rapid polymerization of MMA and naturally renewable methylene butyrolactones into high-molecular-weight polymers. Angew Chem Int Ed 49:10158–10162. doi:10.1002/anie.201005534

    CAS  Google Scholar 

  116. Dureen MA, Brown CC, Stephan DW (2010) Addition of enamines or pyrroles and B(C6F5)3 “frustrated Lewis pairs” to alkynes. Organometallics 29:6422–6432. doi:10.1021/om1008346

    CAS  Google Scholar 

  117. Ullrich M, Seto KSH, Lough AJ, Stephan DW (2009) 1,4-Addition reactions of frustrated Lewis pairs to 1,3-dienes. Chem Commun 2335–2337. doi:10.1039/b901212e

    Google Scholar 

  118. Ines B, Holle S, Goddard R, Alcarazo M (2010) Heterolytic S–S bond cleavage by a purely carbogenic frustrated Lewis pair. Angew Chem Int Ed 49:8389–8391. doi:10.1002/anie.201004149

    CAS  Google Scholar 

  119. Wang Z, Lu G, Li H, Zhao L (2010) Encumbering the intramolecular π donation by using a bridge: a strategy for designing metal-free compounds to hydrogen activation. Chin Sci Bull 55:239–245. doi:10.1007/s11434-010-0005-x

    CAS  Google Scholar 

  120. Lu G, Li H, Zhao L, Huang F, Wang Z-X (2010) Computationally designed metal-free hydrogen activation site: reaching the reactivity of metal-ligand bifunctional hydrogenation catalysts. Inorg Chem 49:295–301. doi:10.1021/ic902039g

    CAS  Google Scholar 

  121. Theuergarten E, Schlüns D, Grunenberg J, Daniliuc CG, Jones PG, Tamm M (2010) Intramolecular heterolytic dihydrogen cleavage by a bifunctional frustrated pyrazolylborane Lewis pair. Chem Commun 46:8561–8563. doi:10.1039/c0cc03474f

    CAS  Google Scholar 

  122. Yalpani M, Boese R, Köster R (1990) Pyrazole-organoboranes, VI. Monomeric and dimeric 9-pyrazolyl-9-borabicyclo[3.3.1]nonanes. Chem Ber 123:1275–1283. doi:10.1002/cber.19901230610

    CAS  Google Scholar 

  123. Yalpani M, Köster R, Boese R, Brett WA (1990) Das erste monomere Diorgano(pyrazolyl)boran – ein nichtklassisches Boronium-Ion in Lösung? Angew Chem 102:318–320. doi:10.1002/ange.19901020324

    CAS  Google Scholar 

  124. Sumerin V, Schulz F, Atsumi M, Wang C, Nieger M, Leskelä M, Repo T, Pyykkö P, Rieger B (2008) Molecular tweezers for hydrogen: synthesis, characterization, and reactivity. J Am Chem Soc 130:14117–14119. doi:10.1021/ja806627s

    CAS  Google Scholar 

  125. Theuergarten E, Schlösser J, Schlüns D, Freytag M, Daniliuc CG, Jones PG, Tamm M (2012) Fixation of carbon dioxide and related small molecules by a bifunctional frustrated pyrazolylborane Lewis pair. Dalton Trans. doi:10.1039/C2DT30448A

  126. Wang Y, Xie Y, Abraham MY, Wei P, Schaefer HF, Schleyer PR, Robinson GH (2010) A viable anionic N-heterocyclic dicarbene. J Am Chem Soc 132:14370–14372. doi:10.1021/ja106631r

    CAS  Google Scholar 

  127. Wang Y, Abraham MY, Gilliard RJ, Wei P, Smith JC, Robinson GH (2012) From anionic N-heterocyclic dicarbenes to abnormal carbene–borane complexes: a logical synthetic route. Organometallics 31:791–793. doi:10.1021/om201259d

    CAS  Google Scholar 

  128. Winkler A (2011) M Sci thesis, Technische Universität Braunschweig, Braunschweig

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Tamm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolychev, E.L., Theuergarten, E., Tamm, M. (2012). N-Heterocyclic Carbenes in FLP Chemistry. In: Erker, G., Stephan, D. (eds) Frustrated Lewis Pairs II. Topics in Current Chemistry, vol 334. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_379

Download citation

Publish with us

Policies and ethics