Skip to main content

Computational Studies of Lewis Acidity and Basicity in Frustrated Lewis Pairs

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 332))

Abstract

Computational studies that characterize the effects of Lewis acidity/basicity on FLP formation and reactivity are reviewed. Formation of the FLP encounter complex “cage” depends on Lewis acidities and basicities of substituent “external” atoms, and their abilities to interact intramolecularly. Computations indicate that these interactions are worth 9–18 kcal mol−1 for partly fluorinated FLPs such as (F5C6)3B···P(t-Bu)3, and less for less fluorinated species such as (H5C6)3B···P(t-Bu)3. Reactivity within the cage depends on the “classical” Lewis acidities/basicities of the internal atoms. Energetics here fall into the range of 5–50 kcal mol−1; the larger the value, the greater the ability of the FLP to capture or split a substrate. In several cases the computationally predicted reaction barriers differ little with internal Lewis acidity/basicity, indicating that the rate-determining step involves the substrate entering the cage rather than attack by the Lewis acid/base atoms. In others, barriers vary sizably with Lewis acidity/basicity, indicating the opposite. In one case it was shown that these effects cancel, such that the three component barriers are identical for a range of substituted Lewis acid FLP components.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABCO:

Azabicyclo[2,2,2]octane

Ad:

1-Adamantyl

Ar:

Arene or aryl

DABCO:

Diazabicyclo[2,2,2]octane

DFT:

Density functional theory

Dipp:

2,6-Di-(i-propyl)phenyl

FLP:

Frustrated Lewis pair

LA:

Lewis acid

LB:

Lewis base

Mes:

1,3,5-C6Me3H2

NHC:

N-Heterocyclic carbene

OG2R3:

3-Layer ONIOM-based G2R composite theory

ONI:

ONIOM-based composite method

Py:

Pyridine

SCRF:

Self consistent reaction field; continuum solvent correction model

Tmp:

2,2,6,6-Tetramethylpiperidine

References

  1. Jensen WB (1980) The Lewis acid–base concepts: an overview. Wiley, New York

    Google Scholar 

  2. Klopman G (1974) The generalized perturbation theory of chemical reactivity and its applications. In: Klopman G (ed) Chemical reactivity and reaction paths. Wiley, New York

    Google Scholar 

  3. Plumley JA, Evanseck JD (2009) Periodic trends and index of boron Lewis acidity. J Phys Chem A 113:5985–5992

    Article  CAS  Google Scholar 

  4. Bessac F, Frenking G (2006) Chemical bonding in phosphane and amine complexes of main group elements and transition metals. Inorg Chem 45:6956–6964

    Article  CAS  Google Scholar 

  5. Rowsell BD, Gillespie RJ, Heard GL (1999) Ligand close-packing and the Lewis acidity of BF3 and BCl3. Inorg Chem 38:4659–4662

    Article  CAS  Google Scholar 

  6. Alkorta I, Elguero J, Del Bene JE, Mó O, Yáñez M (2010) New insights into factors influencing B–N bonding in X:BH3-n F n and X:BH3-n Cl n for X = N2, HCN, LiCN, H2CNH, NF3, NH3 and n = 0−3: the importance of deformation. Chem Eur J 16:11897–11905

    Article  CAS  Google Scholar 

  7. Bessac F, Frenking G (2003) Why is BCl3 a stronger Lewis acid with respect to strong bases than BF3? Inorg Chem 42:7990–7994

    Article  CAS  Google Scholar 

  8. Brinck T, Murray JS, Politzer P (1993) A computational analysis of the bonding in boron trifluoride and boron trichloride and their complexes with ammonia. Inorg Chem 32:2622–2625

    Article  CAS  Google Scholar 

  9. Chapman AM, Haddow MF, Wass DF (2012) Cationic group 4 metallocene–(o-phosphanylaryl)oxido complexes: synthetic routes to transition-metal frustrated Lewis pairs. Eur J Inorg Chem 2012(9):1546–1554

    Article  CAS  Google Scholar 

  10. Grimme S, Kruse H, Goerigk L, Erker G (2010) The mechanism of dihydrogen activation by frustrated Lewis pairs revisited. Angew Chem Int Ed 49:1402–1405

    Article  CAS  Google Scholar 

  11. Hamza A, Stirling A, Rokob TA, Pápai I (2009) Mechanism of hydrogen activation by frustrated Lewis pairs: a molecular orbital approach. Int J Quantum Chem 109:2416–2425

    Article  CAS  Google Scholar 

  12. Rokob TA, Hamza A, Stirling A, Soós T, Pápai I (2008) Turning frustration into bond activation: a theoretical mechanistic study on heterolytic hydrogen splitting by frustrated Lewis pairs. Angew Chem Int Ed 47:2435–2438

    Article  CAS  Google Scholar 

  13. Wiegand T, Eckert H, Ekkert O, Fröhlich R, Kehr G, Erker G, Grimme S (2012) New insights into frustrated Lewis pairs: structural investigations of intramolecular phosphane-borane adducts by using modern solid-state NMR techniques and DFT calculations. J Am Chem Soc 134:4236–4249

    Article  CAS  Google Scholar 

  14. Rokob TA, Hamza A, Pápai I (2009) Rationalizing the reactivity of frustrated lewis Pairs: thermodynamics of H2 activation and the role of acid–base properties. J Am Chem Soc 131(30):10701–10710

    Article  CAS  Google Scholar 

  15. Gille AL, Gilbert TM (2008) Donor-acceptor dissociation energies of group 13–15 donor-acceptor complexes containing fluorinated substituents: approximate Lewis acidities of (F3C)3M vs (F5C6)3M and the effects of phosphine steric bulk. J Chem Theory Comput 3:1681–1689

    Article  Google Scholar 

  16. Kim HW, Rhee YM (2009) Dispersion-oriented soft interaction in a frustrated Lewis pair and the entropic encouragement effect in its formation. Chem Eur J 15:13348–13355

    CAS  Google Scholar 

  17. Hyla-Kryspin I, Haufe G, Grimme S (2008) MP2 and QCISD(T) study on the convergence of interaction energies of weak O-H···F-C, C-H···O, and C-H···F-C hydrogen bridges. Chem Phys 346:224–236

    Article  CAS  Google Scholar 

  18. Peuser I, Neu RC, Zhao X, Ulrich M, Schirmer B, Tannert JA, Kehr G, Fröhlich R, Grimme S, Erker G, Stephan D (2011) CO2 and formate complexes of phosphine/borane frustrated Lewis pairs. Chem Eur J 17:9640–9650

    Article  CAS  Google Scholar 

  19. Li H, Zhao L, Lu G, Mo Y, Wang Z-X (2010) Insight into the relative reactivity of “frustrated Lewis pairs” and stable carbenes in activating H2 and CH4: a comparative computational study. Phys Chem Chem Phys 12:5268–5275

    Article  CAS  Google Scholar 

  20. Jacobsen H, Berke H, Döring S, Kehr G, Erker G, Fröhlich R, Meyer O (1999) Lewis acid properties of tris(pentafluorophenyl)borane. Structure and bonding in L–B(C6F5)3 complexes. Organometallics 18:1724–1735

    Article  CAS  Google Scholar 

  21. Timoshkin AY, Frenking G (2008) Gas-phase Lewis acidity of perfluoroaryl derivatives of group 13 elements. Organometallics 27:371–380

    Article  CAS  Google Scholar 

  22. Gaffoor F, Ford TA (2008) The vibrational spectra of the boron halides and their molecular complexes. Spectrochim Acta 71A:550–558

    CAS  Google Scholar 

  23. Ford TA (2008) Vibrational spectra of the boron halides and their molecular complexes. Part 11. Complexes of boron trifluoride with phosphine and its methyl derivatives. An ab initio study. J Phys Chem A 112:7296–7302

    Article  CAS  Google Scholar 

  24. Loschen C, Voigt K, Frunzke J, Diefenbach A, Diedenhofen M, Frenking G (2002) Theoretical studies of inorganic compounds. 19. Quantum chemical investigations of the phosphane complexes X3B-PY3 and X3Al-PY3 (X = H, F, Cl; Y = F, Cl, Me, CN). Z Anorg Allg Chem 628:1294–1304

    Article  CAS  Google Scholar 

  25. Durfey BL, Gilbert TM (2011) Computational studies of Lewis acidities of tris(fluorophenyl)-substituted boranes: an additive relationship between Lewis acidity and fluorine position. Inorg Chem 50:7871–7879

    Article  CAS  Google Scholar 

  26. Welch GC, Cabrera L, Chase PA, Hollink E, Masuda JD, Wei P, Stephan DW (2007) Tuning Lewis acidity using the reactivity of “frustrated Lewis pairs”: facile formation of phosphine-boranes and cationic phosphonium-boranes. Dalton Trans 3407–3414

    Google Scholar 

  27. Bertini F, Lyaskovskyy V, Timmer BJJ, de Kanter FJJ, Lutz M, Ehlers AW, Slootweg JC, Lammertsma K (2012) Preorganized frustrated Lewis pairs. J Am Chem Soc 134:201–204

    Article  CAS  Google Scholar 

  28. Gilbert TM (2012) Computational studies of complexation of nitrous oxide by borane-phosphine frustrated Lewis pairs. Dalton Trans 41:9046–9055

    Article  CAS  Google Scholar 

  29. Geier SJ, Gille AL, Gilbert TM, Stephan DW (2009) From classical adducts to frustrated Lewis pairs: steric effects in the interactions of pyridines and B(C6F5)3. Inorg Chem 48:10466–10474

    Article  CAS  Google Scholar 

  30. Wu D, Jia D, Liu L, Zhang L, Guo J (2010) Reactivity of 2,6-lutidine/BR3 and pyridine/BR3 Lewis pairs (R = F, Me, C6F5): a density functional study. J Phys Chem A 114:11738–11745

    Article  CAS  Google Scholar 

  31. Erös G, Mehdi H, Pápai I, Rokob TA, Király P, Tárkányi G, Soós T (2010) Expanding the scope of metal-free catalytic hydrogenation through frustrated Lewis pair design. Angew Chem Int Ed 49:6559–6563

    Article  Google Scholar 

  32. Heiden ZM, Schedler M, Stephan DW (2011) Synthesis and reactivity of o-benzylphosphido- and o-α-methylbenzyl(N, N-dimethyl)amine-boranes. Inorg Chem 50:1470–1479

    Article  CAS  Google Scholar 

  33. Kronig S, Theuergarten E, Holschumacher D, Bannenberg T, Daniliuc CG, Jones PG, Tamm M (2011) Dihydrogen activation by frustrated carbene-borane Lewis pairs: an experimental and theoretical study of carbene variation. Inorg Chem 50:7344–7359

    Article  CAS  Google Scholar 

  34. Zhao L, Li H, Lu G, Wang Z-X (2010) Computational design of metal-free catalysts for catalytic hydrogenation of imines. Dalton Trans 39:4038–4047

    Article  CAS  Google Scholar 

  35. Rokob TA, Hamza A, Stirling A, Pápai I (2009) On the mechanism of B(C6F5)3-catalyzed direct hydrogenation of imines: inherent and thermally induced frustration. J Am Chem Soc 131(5):2029–2036

    Article  CAS  Google Scholar 

  36. Lu Z, Cheng Z, Chen Z, Weng L, Li ZH, Wang H (2011) Heterolytic cleavage of dihydrogen by “frustrated Lewis pairs” comprising bis(2,4,6-tris(trifluoromethyl)phenyl)borane and amines: stepwise versus concerted mechanism. Angew Chem Int Ed 50:12227–12231

    Article  CAS  Google Scholar 

  37. Lu G, Li H, Zhai L, Huang F, Wang Z-X (2010) Computationally designed metal-free hydrogen activation site: reaching the reactivity of metal–ligand bifunctional hydrogenation catalysts. Inorg Chem 49:295–301

    Article  CAS  Google Scholar 

  38. Fukazawa A, Yamaguchi E, Ito E, Yamada H, Wang J, Irle S, Yamaguchi S (2011) Zwitterionic ladder stilbenes with phosphonium and borate bridges: intramolecular cascade cyclization and structure-photophysical properties relationship. Organometallics 30:3870–3879

    Article  CAS  Google Scholar 

  39. Lu G, Zhao L, Li H, Huang F, Wang Z-X (2010) Reversible heterolytic methane activation of metal-free closed-shell molecules: a computational proof-of-principle study. Eur J Inorg Chem 2010(15):2254–2260

    Article  Google Scholar 

  40. Guo Y, Li S (2008) A novel addition mechanism for the reaction of “frustrated Lewis pairs” with olefins. Eur J Inorg Chem 2008(16):2501–2505

    Article  Google Scholar 

  41. Mömming CM, Frömel S, Kehr G, Fröhlich R, Grimme S, Erker G (2009) Reactions of an intramolecular frustrated Lewis pair with unsaturated substrates: evidence for a concerted olefin addition reaction. J Am Chem Soc 131:12280–12289

    Article  Google Scholar 

  42. Neu RC, Otten E, Lough A, Stephan DW (2011) The synthesis and exchange chemistry of frustrated Lewis pair–nitrous oxide complexes. Chem Sci 2:170–176

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Gilbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gilbert, T.M. (2012). Computational Studies of Lewis Acidity and Basicity in Frustrated Lewis Pairs. In: Erker, G., Stephan, D. (eds) Frustrated Lewis Pairs I. Topics in Current Chemistry, vol 332. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_378

Download citation

Publish with us

Policies and ethics