Skip to main content

Paracyclophane Derivatives in Frustrated Lewis Pair Chemistry

  • Chapter
  • First Online:
Frustrated Lewis Pairs II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 334))

Abstract

The metal-free activation of hydrogen was achieved using [2.2]paracyclophane-derived bisphosphines as Lewis base in frustrated Lewis pair chemistry. The rigid scaffold allows the orientation of functional groups so that steric aspects can be studied without altering the electronic nature. Depending on the geometry, structurally different phosphonium hydridoborates were generated when the frustrated Lewis pairs were exposed to hydrogen. The bisphosphines were applied in the 1,4-hydrosilylation-hydrogenation domino reaction providing access to secondary silyl-protected alcohols from enones in one step. Additionally, the planar-chiral scaffold was applied for the synthesis of novel enantiopure Lewis acids and Lewis bases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Bu:

Butyl

DABCO:

1,4-Diazabicyclo[2.2.2]octane

dppe:

Bis(diphenylphosphino)ethane

dppm:

Bis(diphenylphosphino)methane

dr:

Diastereomer ratio

ee:

Enantiomer excess

equiv.:

Equivalent(s)

Et:

Ethyl

i-Pr:

Isopropyl

L:

Liter(s)

Me:

Methyl

Mes:

Mesityl, 2,4,6-trimethylphenyl

min:

Minute(s)

mol:

Mole(s)

Pc:

[2.2]Paracyclophanyl

Ph:

Phenyl

Pr:

Propyl

r.t.:

Room temperature

s:

Second(s)

s-Bu:

sec-Butyl

t-Bu:

tert-Butyl

THF:

Tetrahydrofuran

TMP:

2,2,6,6-Tetramethylpiperidin

TMS:

Trimethylsilyl

Tol:

4-Methylphenyl

References

  1. Zheng C, You S-L (2012) Transfer hydrogenation with Hantzsch esters and related organic hydride donors. Chem Soc Rev 41:2498–2518

    Article  CAS  Google Scholar 

  2. List B (2002) Proline-catalyzed asymmetric reactions. Tetrahedron 58(28):5573–5590

    Article  CAS  Google Scholar 

  3. Lelais G, MacMillan DWC (2006) Modern strategies in organic catalysis: the advent and development of iminium activation. Aldrichim Acta 39:79–87

    CAS  Google Scholar 

  4. Erkkila A, Majander I, Pihko PM (2007) Iminium catalysis. Chem Rev 107(12):5416–5470

    Article  Google Scholar 

  5. Ouellet SG, Walji AM, MacMillan DWC (2007) Enantioselective organocatalytic transfer hydrogenation reactions using Hantzsch esters. Acc Chem Res 40(12):1327–1339

    Article  CAS  Google Scholar 

  6. Yang JW, Fonseca MTH, Vignola N, List B (2005) Metal-free, organocatalytic asymmetric transfer hydrogenation of alpha, beta-unsaturated aldehydes. Angew Chem Int Ed 44(1):108–110, Angew Chem 117(1):110–112

    Article  CAS  Google Scholar 

  7. Yang JW, Fonseca MTH, List B (2004) A metal-free transfer hydrogenation: organocatalytic conjugate reduction of alpha, beta-unsaturated aldehydes. Angew Chem Int Ed 43(48):6660–6662, Angew Chem 116(48):6829–6832

    Article  Google Scholar 

  8. Ouellet SG, Tuttle JB, MacMillan DWC (2005) Enantioselective organocatalytic hydride reduction. J Am Chem Soc 127(1):32–33

    Article  CAS  Google Scholar 

  9. Li GL, Liang YX, Antilla JC (2007) A vaulted biaryl phosphoric acid-catalyzed reduction of alpha-imino esters: the highly enantioselective preparation of alpha-amino esters. J Am Chem Soc 129(18):5830–5831

    Article  CAS  Google Scholar 

  10. Kang Q, Zhao ZA, You SL (2008) Asymmetric transfer hydrogenation of beta, gamma-alkynyl alpha-imino esters by a Bronsted acid. Org Lett 10(10):2031–2034

    Article  CAS  Google Scholar 

  11. Kang Q, Zhao ZA, You SL (2007) Highly enantioselective transfer hydrogenation of alpha-imino esters by a phosphoric acid. Adv Synth Catal 349(10):1657–1660

    Article  CAS  Google Scholar 

  12. Rueping M, Antonchick AR, Theissmann T (2006) A highly enantioselective Bronsted acid catalyzed cascade reaction: organocatalytic transfer hydrogenation of quinolines and their application in the synthesis of alkaloids. Angew Chem Int Ed 45(22):3683–3686, Angew Chem 118(22):3765–3768

    Article  CAS  Google Scholar 

  13. Rueping M, Antonchick AP, Theissmann T (2006) Remarkably low catalyst loading in Bronsted acid catalyzed transfer hydrogenations: enantioselective reduction of benzoxazines, benzothiazines, and benzoxazinones. Angew Chem Int Ed 45(40):6751–6755, Angew Chem 118(40):6903–6907

    Article  CAS  Google Scholar 

  14. Rueping M, Theissmann T, Antonchick AP (2006) Metal-free Bronsted acid catalyzed transfer hydrogenation – new organocatalytic reduction of quinolines. Synlett (7):1071–1074

    Google Scholar 

  15. Rueping M, Sugiono E, Azap C, Theissmann T, Bolte M (2005) Enantioselective Bronsted acid catalyzed transfer hydrogenation: organocatalytic reduction of imines. Org Lett 7(17):3781–3783

    Article  CAS  Google Scholar 

  16. Zhang ZG, Schreiner PR (2007) Thiourea-catalyzed transfer hydrogenation of aldimines. Synlett (9):1455–1457

    Google Scholar 

  17. Paradies J, Schneider JF, Lauber MB, Muhr V, Kratzer D (2011) Readily available hydrogen bond catalysts for the asymmetric transfer hydrogenation of nitroolefins. Org Biomol Chem 9(11):4323–4327

    Article  Google Scholar 

  18. Menche D, Hassfeld J, Li J, Menche G, Ritter A, Rudolph S (2006) Hydrogen bond catalyzed direct reductive amination of ketones. Org Lett 8(4):741–744

    Article  CAS  Google Scholar 

  19. Menche D, Bohm S, Li J, Rudolph S, Zander W (2007) Synthesis of hindered tertiary amines by a mild reductive amination procedure. Tetrahedron Lett 48(3):365–369

    Article  CAS  Google Scholar 

  20. Menche D, Arikan F (2006) Thiourea-catalyzed direct reductive amination of aldehydes. Synlett (6):841–844

    Google Scholar 

  21. Martin NJA, Cheng X, List B (2008) Organocatalytic asymmetric transferhydrogenation of beta-nitroacrylates: accessing beta(2)-amino acids. J Am Chem Soc 130(42):13862–13863

    Article  CAS  Google Scholar 

  22. Chase PA, Jurca T, Stephan DW (2008) Lewis acid-catalyzed hydrogenation: B(C6F5)3-mediated reduction of imines and nitriles with H2. Chem Commun (14):1701–1703

    Google Scholar 

  23. Chase PA, Welch GC, Jurca T, Stephan DW (2007) Metal-free catalytic hydrogenation (vol 46, p 8050, 2007). Angew Chem Int Ed 46(48):9136–9136

    Google Scholar 

  24. Erker G (2011) Organometallic frustrated Lewis pair chemistry. Dalton Trans 40(29):7475–7483

    Article  CAS  Google Scholar 

  25. Welch GC, Juan RRS, Masuda JD, Stephan DW (2006) Reversible, metal-free hydrogen activation. Science 314(5802):1124–1126

    Article  CAS  Google Scholar 

  26. Wang HD, Fröhlich R, Kehr G, Erker G (2008) Heterolytic dihydrogen activation with the 1,8-bis(diphenylphosphino)-naphthalene/B(C6F5)3 pair and its application for metal-free catalytic hydrogenation of silyl enol ethers. Chem Commun (45):5966–5968

    Google Scholar 

  27. Ullrich M, Lough AJ, Stephan DW (2009) Reversible, metal-free, heterolytic activation of H2 at room temperature. J Am Chem Soc 131(1):52–53

    Article  CAS  Google Scholar 

  28. Sumerin V, Schulz F, Nieger M, Leskela M, Repo T, Rieger B (2008) Facile heterolytic H2 activation by amines and B(C6F5)3. Angew Chem Int Ed 47(32):6001–6003, Angew Chem (120):6090–6092

    Article  CAS  Google Scholar 

  29. Sumerin V, Schulz F, Atsumi M, Wang C, Nieger M, Leskela M, Repo T, Pyykko P, Rieger B (2008) Molecular tweezers for hydrogen: synthesis, characterization, and reactivity. J Am Chem Soc 130(43):14117–14119

    Article  CAS  Google Scholar 

  30. Sumerin V, Chernichenko K, Nieger M, Leskela M, Rieger B, Repo T (2011) Highly active metal-free catalysts for hydrogenation of unsaturated nitrogen-containing compounds. Adv Synth Catal 353(11–12):2093–2110

    Article  CAS  Google Scholar 

  31. Schulz F, Sumerin V, Heikkinen S, Pedersen B, Wang C, Atsumi M, Leskela M, Repo T, Pyykko P, Petry W, Rieger B (2011) Molecular hydrogen tweezers: structure and mechanisms by neutron diffraction, NMR, and deuterium labeling studies in solid and solution. J Am Chem Soc 133(50):20245–20257

    Article  CAS  Google Scholar 

  32. Chase PA, Welch GC, Jurca T, Stephan DW (2007) Metal-free catalytic hydrogenation. Angew Chem Int Ed 46(42):8050–8053, Angew Chem 119(42):8196–8199

    Article  CAS  Google Scholar 

  33. Jiang CF, Blacque O, Fox T, Berke H (2011) Heterolytic cleavage of H2 by frustrated B/N Lewis pairs. Organometallics 30(8):2117–2124

    Article  CAS  Google Scholar 

  34. Jiang CF, Blacque O, Fox T, Berke H (2011) Reversible, metal-free hydrogen activation by frustrated Lewis pairs. Dalton Trans 40(5):1091–1097

    Article  Google Scholar 

  35. Jiang CF, Blacque O, Berke H (2009) Metal-free hydrogen activation and hydrogenation of imines by 1,8-bis(dipentafluorophenylboryl)naphthalene. Chem Commun (37):5518–5520

    Google Scholar 

  36. Geier SJ, Chase PA, Stephan DW (2010) Metal-free reductions of N-heterocycles via Lewis acid catalyzed hydrogenation. Chem Commun 46(27):4884–4886

    Article  CAS  Google Scholar 

  37. Ramos A, Lough AJ, Stephan DW (2009) Activation of H2 by frustrated Lewis pairs derived from mono- and bis-phosphinoferrocenes and B(C6F5)3. Chem Commun (9):1118–1120

    Google Scholar 

  38. Stephan DW, Greenberg S, Graham TW, Chase P, Hastie JJ, Geier SJ, Farrell JM, Brown CC, Heiden ZM, Welch GC, Ullrich M (2011) Metal-free catalytic hydrogenation of polar substrates by frustrated Lewis pairs. Inorg Chem 50(24):12338–12348

    Article  CAS  Google Scholar 

  39. Stephan DW (2008) “Frustrated Lewis pairs”: a concept for new reactivity and catalysis. Org Biomol Chem 6(9):1535–1539

    Article  CAS  Google Scholar 

  40. Paradies J (2011) [2.2]Paracyclophane derivatives: synthesis and application in catalysis. Synthesis 2011 (23):3749–3766

    Google Scholar 

  41. Gibson SE, Knight JD (2003) [2.2]Paracyclophane derivatives in asymmetric catalysis. Org Biomol Chem 1(8):1256–1269

    Article  CAS  Google Scholar 

  42. Falk FC, Fröhlich R, Paradies J (2011) Coupling of ortho-substituted aryl chlorides with bulky amides. Chem Commun 47(39):11095–11097

    Article  CAS  Google Scholar 

  43. Pye PJ, Rossen K, Reamer RA, Tsou NN, Volante RP, Reider PJ (1997) A new planar chiral bisphosphine ligand for asymmetric catalysis: highly enantioselective hydrogenations under mild conditions. J Am Chem Soc 119(26):6207–6208

    Article  CAS  Google Scholar 

  44. Falk FC (2012) Neue Liganden und Katalysatorsysteme auf [2.2]Paracyclophanbasis; Synthese, Anwendung und Untersuchungen von Struktur-Reaktivitätsbeziehungen. Thesis, Karlsruhe Institute of Technology (KIT)

    Google Scholar 

  45. El Shaieb K, Narayanan V, Hopf H, Dix I, Fischer A, Jones PG, Ernst L, Ibrom K (2003) 4,15-Diamino[2.2]paracyclophane as a starting material for pseudo-geminally substituted [2.2]paracyclophanes. Eur J Org Chem (3):567–577

    Google Scholar 

  46. Greb L, Oña-Burgos P, Kubas A, Falka FC, Breher F, Fink K, Paradies J (2012) [2.2]Paracyclophane derived bisphosphines for the activation of hydrogen by FLPs: application in domino hydrosilylation/hydrogenation of enones. Dalton Trans 40:9056–9060

    Article  Google Scholar 

  47. Greb L, Oña-Burgos P, Schirmer B, Grimme S, Stephan DW, Paradies J (2012) Metal-free catalytic olefin hydrogenations: low temperature H2-activation by frustrated Lewis pairs. Angew Chem Int Ed. doi:10.1002/anie.201204007

    Google Scholar 

  48. Blackwell JM, Morrison DJ, Piers WE (2002) B(C6F5)3 catalyzed hydrosilation of enones and silyl enol ethers. Tetrahedron 58(41):8247–8254

    Article  CAS  Google Scholar 

  49. Chang SY, Jiaang WT, Cherng CD, Tang KH, Huang CH, Tsai YM (1997) The scope and limitations of intramolecular radical cyclizations of acylsilanes with alkyl, aryl, and vinyl radicals. J Org Chem 62(26):9089–9098

    Article  CAS  Google Scholar 

  50. Spies P, Fröhlich R, Kehr G, Erker G, Grimme S (2008) Structural importance of secondary interactions in molecules: origin of unconventional conformations of phosphine–borane adducts. Chem Eur J 14(1):333–343

    Article  CAS  Google Scholar 

  51. Spies P, Kehr G, Bergander K, Wibbeling B, Fröhlich R, Erker G (2009) Metal-free dihydrogen activation chemistry: structural and dynamic features of intramolecular P/B pairs. Dalton Trans (9):1534–1541

    Google Scholar 

  52. Vögtle F (1990) Cyclophan-Chemie : Synthesen, Strukturen, Reaktionen : Einführung und Überblick. Teubner Studienbücher Chemie. Teubner, Stuttgart

    Google Scholar 

  53. Gleiter R, Hopf H (2004) Modern cyclophane chemistry. Wiley-VCH, Weinheim

    Book  Google Scholar 

  54. Cipiciani A, Fringuelli F, Mancini V, Piermatti O, Pizzo F, Ruzziconi R (1997) Synthesis of chiral (R)-4-hydroxy- and (R)-4-halogeno[2.2]paracyclophanes and group polarizability. Optical rotation relationship. J Org Chem 62(11):3744–3747

    Article  CAS  Google Scholar 

  55. Rowlands GJ (2008) The synthesis of enantiomerically pure [2.2]paracyclophane derivatives. Org Biomol Chem 6(9):1527–1534

    Article  CAS  Google Scholar 

  56. Hitchcock PB, Rowlands GJ, Parmar R (2005) The synthesis of enantiomerically pure 4-substituted [2.2]paracyclophane derivatives by sulfoxide-metal exchange. Chem Commun (33):4219–4221

    Google Scholar 

  57. Horton AD, de With J (1997) Controlled alkene and alkyne insertion reactivity of a cationic zirconium complex stabilized by an open diamide ligand. Organometallics 16(25):5424–5436

    Article  CAS  Google Scholar 

  58. Blackwell JM, Piers WE, Parvez M (2000) Mechanistic studies on selectivity in the B(C6F5)3-catalyzed allylstannation of aldehydes: is hypercoordination at boron responsible? Org Lett 2(5):695–698

    Article  CAS  Google Scholar 

  59. Blount JF, Finocchiaro P, Gust D, Mislow K (1973) Conformational analysis of triarylboranes. J Am Chem Soc 95(21):7019–7029

    Article  CAS  Google Scholar 

  60. Cummings SA, Iimura M, Harlan CJ, Kwaan RJ, Trieu IV, Norton JR, Bridgewater BM, Jäkle F, Sundararaman A, Tilset M (2006) An estimate of the reduction potential of B(C6F5)3 from electrochemical measurements on related mesityl boranes. Organometallics 25(7):1565–1568

    Article  CAS  Google Scholar 

  61. Mayer U, Gutmann V, Gerger W (1975) The acceptor number — a quantitative empirical parameter for the electrophilic properties of solvents. Monatshefte f Chem 106(6):1235–1257

    Article  CAS  Google Scholar 

  62. Gutmann V (1976) Solvent effects on the reactivities of organometallic compounds. Coord Chem Rev 18(2):225–255

    Article  CAS  Google Scholar 

  63. Beckett MA, Brassington DS, Coles SJ, Hursthouse MB (2000) Lewis acidity of tris(pentafluorophenyl)borane: crystal and molecular structure of B(C6F5)3·OPEt3. Inorg Chem Commun 3(10):530–533

    Article  CAS  Google Scholar 

  64. Britovsek GJP, Ugolotti J, White AJP (2005) From B(C6F5)3 to B(OC6F5)3: synthesis of (C6F5)2BOC6F5 and C6F5B(OC6F5)2 and their relative Lewis acidity. Organometallics 24(7):1685–1691

    Article  CAS  Google Scholar 

  65. Childs RF, Mulholland DL, Nixon A (1982) The Lewis acid complexes of α, β-unsaturated carbonyl and nitrile compounds. A nuclear magnetic resonance study. Canadian J Chem 60(6):801–808

    Article  CAS  Google Scholar 

  66. Ashley AE, Herrington TJ, Wildgoose GG, Zaher H, Thompson AL, Rees NH, Krämer T, O’Hare D (2011) Separating electrophilicity and Lewis acidity: the synthesis, characterization, and electrochemistry of the electron deficient tris(aryl)boranes B(C6F5)3–n(C6Cl5)n (n = 1–3). J Am Chem Soc 133(37):14727–14740

    Article  CAS  Google Scholar 

  67. Geier SJ, Stephan DW (2009) Lutidine/B(C6F5)3: at the boundary of classical and frustrated Lewis pair reactivity. J Am Chem Soc 131(10):3476–3477

    Article  CAS  Google Scholar 

  68. Sumerin V, Schulz F, Nieger M, Leskelä M, Repo T, Rieger B (2008) Einfache heterolytische H2-Aktivierung mit Aminen und B(C6F5)3. Angew Chem 120(32):6090–6092

    Article  Google Scholar 

  69. Erős G, Mehdi H, Pápai I, Rokob TA, Király P, Tárkányi G, Soós T (2010) Expanding the scope of metal-free catalytic hydrogenation through frustrated Lewis pair design. Angew Chem 122(37):6709–6713, Angew Chem Int Ed (49):6559–6563

    Article  Google Scholar 

  70. Müller TE, Mingos DMP (1995) Determination of the Tolman cone angle from crystallographic parameters and a statistical analysis using the crystallographic data base. Transition Met Chem 20(6):533–539

    Article  Google Scholar 

  71. Tolman CA (1977) Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis. Chem Rev 77(3):313–348

    Article  CAS  Google Scholar 

  72. Brown TL, Lee KJ (1993) Ligand steric properties. Coord Chem Rev 128(1–2):89–116

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Paradies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Greb, L., Paradies, J. (2012). Paracyclophane Derivatives in Frustrated Lewis Pair Chemistry. In: Erker, G., Stephan, D. (eds) Frustrated Lewis Pairs II. Topics in Current Chemistry, vol 334. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_375

Download citation

Publish with us

Policies and ethics