Skip to main content

Intramolecular Frustrated Lewis Pairs: Formation and Chemical Features

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 332))

Abstract

Intramolecular vicinal and geminal frustrated Lewis pairs (FLPs) featuring bulky substituents at phosphorus or nitrogen and strongly electron-withdrawing bulky pentafluorophenyl substituents at boron undergo a variety of addition and/or activation reactions with small molecules. A number of examples of such reactions are presented and discussed, among them the FLP activation of dihydrogen to give zwitterionic phosphonium (or ammonium)/hydridoborate zwitterions. Intramolecular FLPs also add to organic carbonyl compounds (including carbon dioxide), to alkenes and alkynes (including conjugated dienes, diynes or enynes), to heterocumulenes, to azides, and to nitric oxide.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Bu:

Butyl

CP:

Cross polarization

DABCO:

1,4-Diazabicyclo[2.2.2]octane

DEAD:

Diethyl azodicarboxylate

DFT:

Density functional theory

equiv.:

Equivalent(s)

Et:

Ethyl

FLP:

Frustrated Lewis pair

gem.:

Geminal

h:

Hour(s)

HAA:

Hydrogen atom abstraction

i-Pr:

iso-Propyl

LA:

Lewis acid

LB:

Lewis base

MAS:

Magic angle spinning

Me:

Methyl

Mes:

Mesityl, 2,4,6-trimethylphenyl

min:

Minute(s)

NMR:

Nuclear magnetic resonance

Ph:

Phenyl

Pr:

Propyl

r.t.:

Room temperature

s-Bu:

sec-Butyl

THF:

Tetrahydrofuran

t-Bu:

tert-Butyl

vic.:

Vicinal

References

  1. Lewis GN (1923) Valence and The Structure of Atoms and Molecules. Chemical Catalogue Company, New York

    Google Scholar 

  2. Brønsted JN (1923) Einige Bemerkungen über den Begriff der Säuren und Basen. Recl Trav Chim Pays-Bas 42:718–728

    Google Scholar 

  3. Stephens FH, Pons V, Baker TR (2007) Ammonia–borane: the hydrogen source par excellence? Dalton Trans 2613–2626

    Google Scholar 

  4. Hamilton CW, Baker TR, Staubitz A, Manners I (2009) B–N compounds for chemical hydrogen storage. Chem Soc Rev 38:279–293

    CAS  Google Scholar 

  5. Welch GC, San Juan RR, Masuda JD, Stephan DW (2006) Reversible, Metal-Free Hydrogen Activation. Science 314:1124–1126

    CAS  Google Scholar 

  6. Welch GC, Stephan DW (2006) Facile Heterolytic Cleavage of Dihydrogen by Phosphines and Boranes. J Am Chem Soc 129:1880–1881

    Google Scholar 

  7. McCahill JSJ, Welch GC, Stephan DW (2007) Reactivity of “Frustrated Lewis Pairs”: Three-Component Reactions of Phosphines, a Borane, and Olefins. Angew Chem Int Ed 46:4968–4971 (Angew Chem 119:5056–5059)

    CAS  Google Scholar 

  8. Welch GC, Cabrera L, Chase PA, Hollink E, Masuda JD, Wel P, Stephan DW (2007) Tuning Lewis acidity using the reactivity of “frustrated Lewis pairs”: facile formation of phosphine-boranes and cationic phosphonium-boranes. Dalton Trans 3407–3414

    Google Scholar 

  9. Stephan DW, Erker G (2010) Frustrated Lewis-Pairs: Metal-free Hydrogen Activation and More. Angew Chem Int Ed 49:46–76 (Angew Chem 122:50–81)

    CAS  Google Scholar 

  10. Stephan DW (2008) “Frustrated Lewis pairs”: a concept for new reactivity and catalysis. Org Biomol Chem 6:1535–1539

    CAS  Google Scholar 

  11. Stephan DW (2009) Frustrated Lewis pairs: a new strategy to small molecule activation and hydrogenation catalysis. Dalton Trans 3129–3136

    Google Scholar 

  12. Stephan DW (2010) Activation of dihydrogen by non-metal systems. Chem Commun 46:8526–8533

    CAS  Google Scholar 

  13. Erker G (2011) Frustrated Lewis pairs: Reactions with dihydrogen and other “small molecules”. C R Chim 4:831–841

    Google Scholar 

  14. Erker G (2011) Organometallic frustrated Lewis pair chemistry. Dalton Trans 40:7475–7483

    CAS  Google Scholar 

  15. Erker G (2011) Bio-Organometallic Chemistry, ansa-Metallocenes and Frustrated Lewis Pairs: Functional Group Chemistry at the Group 4 Bent Metallocenes. Organometallics 30:358–368

    CAS  Google Scholar 

  16. Stephan DW (2012) “Frustrated Lewis pair” hydrogenations. Org Biomol Chem 10:5740–5746

    CAS  Google Scholar 

  17. Parks DJ, Spence REH, Piers WE (1995) Bis(pentafluorophenyl)borane: Synthesis, Properties, and Hydroboration Chemistry of a Highly Electrophilic Borane Reagent. Angew Chem Int Ed Engl 34:809–811 (Angew Chem 107:895–897)

    CAS  Google Scholar 

  18. Piers WE, Chivers T (1997) Pentafluorophenylboranes: from obscurity to applications. Chem Soc Rev 26:345–354

    CAS  Google Scholar 

  19. Parks DJ, Piers WE, Yap GPA (1998) Synthesis, Properties, and Hydroboration Activity of the Highly Electrophilic Borane Bis(pentafluorophenyl)borane, HB(C6F5)2. Organometallics 17:5492–5503

    CAS  Google Scholar 

  20. Spence REH, Piers WE, Sun Y, Parvez M, MacGillivray LR, Zaworotko MJ (1998) Mechanistic Aspects of the Reactions of Bis(pentafluorophenyl)borane with the Dialkyl Zirconocenes Cp2ZrR2 (R = CH3, CH2SiMe3, and CH2C6H5). Organometallics 17:2459–2469

    CAS  Google Scholar 

  21. Piers WE, Sun Y, Lee WM (1999) Zwitterionic metallocenes via reactions of organozirconocenes with highly electrophilic perfluorophenyl substituted boranes. Top Catal 7:133–143

    CAS  Google Scholar 

  22. Spies P, Erker G, Kehr G, Bergander K, Fröhlich R, Grimme S, Stephan DW (2007) Rapid intramolecular heterolytic dihydrogen activation by a four-membered heterocyclic phosphane–borane adduct. Chem Commun 43:5072–5074

    Google Scholar 

  23. Wiegand T, Eckert H, Ekkert O, Fröhlich R, Kehr G, Erker G, Grimme S (2012) New Insights into Frustrated Lewis Pairs: Structural Investigations of Intramolecular Phosphane–Borane Adducts by Using Modern Solid-State NMR Techniques and DFT Calculations. J Am Chem Soc 134:4236–4249

    CAS  Google Scholar 

  24. Spies P, Schwendemann S, Lange S, Kehr G, Fröhlich R, Erker G (2008) Metal-Free Catalytic Hydrogenation of Enamines, Imines and Conjugated Phosphinoalkenylboranes. Angew Chem Int Ed 47:7543–7546 (Angew Chem 120:7654–7657)

    CAS  Google Scholar 

  25. Schwendemann S, Tumay TA, Axenov KV, Peuser I, Kehr G, Fröhlich R, Erker G (2010) Metal-Free Frustrated Lewis Pair Catalyzed 1,4-Hydrogenation of Conjugated Metallocene Dienamines. Organometallics 29:1067–1069

    CAS  Google Scholar 

  26. Wang H, Fröhlich R, Kehr G, Erker G (2008) Heterolytic dihydrogen activation with the 1,8-bis(diphenylphosphino)naphthalene/B(C6F5)3 pair and its application for metal-free catalytic hydrogenation of silyl enol ethers. Chem Commun 5966–5968

    Google Scholar 

  27. Chase PA, Jurca T, Stephan DW (2008) Lewis acid-catalyzed hydrogenation: B(C6F5)3-mediated reduction of imines and nitriles with H2. Chem Commun 1701–1703

    Google Scholar 

  28. Chen D, Wang Y, Klankermayer J (2010) Enantioselective Hydrogenation with Chiral Frustrated Lewis Pairs. Angew Chem Int Ed 49:9475–9478 (Angew Chem 122:9665–9668)

    CAS  Google Scholar 

  29. Geier SJ, Chase PA, Stephan DW (2010) Metal-free reductions of N-heterocycles via Lewis acid catalyzed hydrogenation. Chem Commun 46:4884–4886

    CAS  Google Scholar 

  30. Heiden ZM, Stephan DW (2011) Metal-free diastereoselective catalytic hydrogenations of imines using B(C6F5)3. Chem Commun 47:5729–5731

    CAS  Google Scholar 

  31. Ghattas G, Chen D, Pan F, Klankermayer J (2012) Asymmetric hydrogenation of imines with a recyclable chiral frustrated Lewis pair catalyst. Dalton Trans 41:9026–9028

    CAS  Google Scholar 

  32. Chase PA, Welch GC, Jurca T, Stephan DW (2007) Metal-Free Catalytic Hydrogenation. Angew Chem Int Ed 46:8050–8053, [9136] (Angew Chem 119:8196–8199 [9296])

    CAS  Google Scholar 

  33. Mahdi T, Heiden ZM, Grimme S, Stephan DW (2012) Metal-Free Aromatic Hydrogenation: Aniline to Cyclohexyl-amine Derivatives. J Am Chem Soc 134:4088–4091

    CAS  Google Scholar 

  34. Axenov KV, Kehr G, Fröhlich R, Erker G (2009) Catalytic Hydrogenation of Sensitive Organometallic Compounds by Antagonistic N/B Lewis Pair Catalyst Systems. J Am Chem Soc 131:3454–3455

    CAS  Google Scholar 

  35. Axenov KV, Kehr G, Fröhlich R, Erker G (2009) Functional Group Chemistry at the Group 4 Bent Metallocene Frameworks: Formation and “Metal-Free” Catalytic Hydrogenation of Bis(imino-Cp)zirconium Complexes. Organometallics 28:5148–5158

    CAS  Google Scholar 

  36. Sortais J-B, Voss T, Kehr G, Fröhlich R, Erker G (2009) 1,2-Olefin addition of a frustrated amine–borane Lewis pair. Chem Commun 7417–7418

    Google Scholar 

  37. Unverhau K, Lübbe G, Wibbeling B, Fröhlich R, Kehr G, Erker G (2010) Frustrated Lewis Pair Reactions at the [3]Ferrocenophane Framework. Organometallics 29:5320–5329

    CAS  Google Scholar 

  38. Voss T, Sortais J-B, Fröhlich R, Kehr G, Erker G (2011) Alkene Addition of Frustrated P/B and N/B Lewis Pairs at the [3]Ferrocenophane Framework. Organometallics 30:584–594

    CAS  Google Scholar 

  39. Xu B-H, Kehr G, Fröhlich R, Wibbeling B, Schirmer B, Grimme S, Erker G (2011) Reaction of Frustrated Lewis Pairs with Conjugated Ynones–Selective Hydrogenation of the Carbon-Carbon Triple Bond. Angew Chem Int Ed 50:7183–7186 (Angew Chem 123:7321–7324)

    CAS  Google Scholar 

  40. Axenov K, Mömming CM, Kehr G, Fröhlich R, Erker G (2010) Structure and Dynamic Features of an Intramolecular Frustrated Lewis Pair. Chem Eur J 16:14069–14073

    CAS  Google Scholar 

  41. Jacobsen H, Berke H, Döring S, Kehr G, Erker G, Fröhlich R, Meyer O (1999) Lewis Acid Properties of Tris(pentafluorophenyl)borane. Structure and Bonding in L-B(C6F5)3 Complexes. Organometallics 18:1724–1735

    CAS  Google Scholar 

  42. Spies P, Fröhlich R, Kehr G, Erker G, Grimme S (2008) Structural Importance of Secondary Interactions in Molecules: Origin of Unconventional Conformations of Phosphine-Borane Adducts. Chem Eur J 14:333–343

    CAS  Google Scholar 

  43. Bradley DC, Hursthouse MB, Motevalli M, Zheng DH (1991) The Preparation of 1:1 Phosphine: Triarylboron Complexes. The X-ray Crystal Structure of (C6F5)3B-PH3. Chem Commun 7–8

    Google Scholar 

  44. Lancaster SJ, Mountford AJ, Hughes DL, Schormann M, Bochmann M (2003) Ansa-metallocenes with B-N and B-P linkages: the importance of N-H···F-C hydrogen bonding in pentafluorophenyl boron compounds. J Organomet Chem 680:193–205

    CAS  Google Scholar 

  45. Denis J-M, Forintos H, Szelke H, Toupet L, Pham T-N, Madec P-J, Gaumont A-C (2003) B(C6F5)3-catalyzed formation of B-P bonds by dehydrocoupling of phosphine-boranes. Chem Commun 54–55

    Google Scholar 

  46. Chase PA, Parvez M, Piers WE (2006) Trimethylphosphine-tris(pentafluorophenyl)borane. Acta Cryst E 62:o5181–o5183

    Google Scholar 

  47. Welch GC, Holtrichter-Roessmann T, Stephan DW (2008) Thermal Rearrangement of Phosphine-B(C6F5)3 Adducts. Inorg Chem 47:1904–1906

    CAS  Google Scholar 

  48. Spies P, Kehr G, Bergander K, Wibbeling B, Fröhlich R, Erker G (2009) Metal-free dihydrogen activation chemistry: structural and dynamic features of intramolecular P/B pairs. Dalton Trans 1534–1541

    Google Scholar 

  49. Spies P (2008) Von P-substituierten Zirconocenen zu metallfreier Wasserstoffaktivierung. Dissertation, Münster

    Google Scholar 

  50. Schwendemann S (2008) Hydrierungsreaktionen mit sterisch gehinderten Phosphan-Boran-Addukten. Diplomarbeit, Münster

    Google Scholar 

  51. Binger P, Köster R (1974) Organo-1,2-phosphaboretene. J Organomet Chem 73:205–210

    CAS  Google Scholar 

  52. Hagelee LA, Köster R (1977) Boron compounds XLIV: The influence of silicon on the formation of (Z/E)-tetrasubstituted ethylenes via 1-alkynylborates. Synth React Inorg Met Org Chem 7:53–67

    CAS  Google Scholar 

  53. Balueva AS, Erastov OA (1988) Synthesis of 3,4,6-borataoxaphosphoniacyclohexenes. Russ Chem Bull 37:151–153 (Izv Akad Nauk SSSR Ser Khim 163–165)

    Google Scholar 

  54. Grobe J, Martin R (1992) Alternativ-Liganden. XXIV Rhodium(I)-Komplexe mit P-Donor- und Sn- bzw. B-Akzeptor-Liganden. Z Anorg Allg Chem 607:146–152

    CAS  Google Scholar 

  55. Balueva AS, Nikonov GN (1993) Synthesis and properties of 1-diphenylboryl-2-diphenylphosphino-1,2-diphenylethene. Russ Chem Bull 42:341–343 (Izv Akad Nauk Ser Khim 378–380)

    Google Scholar 

  56. Wrackmeyer B (1995) 1,1-Organoboration of alkynylsilicon, -germanium, -tin and -lead compounds. Coord Chem Rev 145:125–156

    CAS  Google Scholar 

  57. Wrackmeyer B (2006) Metallacyclopentadienes and Related Heterocycles via 1,1-Organoboration of Alkyn-1-ylmetal Compounds. Heteroat Chem 17:188–208

    CAS  Google Scholar 

  58. Grobe J, Lütke-Brochtrup K, Krebs B, Läge M, Niemeyer H-H, Würthwein E-U (2006) Alternativ-Liganden, XXXVII. Phosphanliganden mit Bor als Lewis-acidem Zentrum: Synthese und Koordinationseigenschaften. Z Naturforsch 61b:882–895

    Google Scholar 

  59. Balueva AS, Nikonov GN, Arbuzov BA, Musin RZ, Efremov YY (1991) Synthesis and some properties of o-borylphenylphosphine. Russ Chem Bull 40:2103–2105 (Izv Akad Nauk SSSR Ser Khim 2397–2399)

    Google Scholar 

  60. Bontemps S, Bouhadir G, Miqueu K, Bourissou D (2006) On the Versatile and Unusual Coordination Behavior of Ambiphilic Ligands o-R2P(Ph)BR’2. J Am Chem Soc 128:12056–12057

    CAS  Google Scholar 

  61. Fontaine F-G, Boudreau J, Thibault M-H (2008) Coordination Chemistry of Neutral (Ln)–Z Amphoteric and Ambiphilic Ligands. Eur J Inorg Chem 5439–5454

    Google Scholar 

  62. Bouhadir G, Amgoune A, Bourissou D (2010) Phosphine-Boranes and Related Ambiphilic Compounds: Synthesis, Structure, and Coordination to Transition Metals. Adv Organomet Chem 58:1–107

    CAS  Google Scholar 

  63. Kehr G, Erker G (2012) 1,1-Carboboration. Chem Commun 48:1839–1850

    CAS  Google Scholar 

  64. Chen C, Eweiner F, Wibbeling B, Fröhlich R, Senda S, Ohki Y, Tatsumi K, Grimme S, Kehr G, Erker G (2010) Exploring the Limits of Frustrated Lewis Pair Chemistry with Alkynes: Detection of a System that Favors 1,1-Carboboration over Cooperative 1,2-P/B-Addition. Chem Asian J 5:2199–2208

    CAS  Google Scholar 

  65. Chen C, Kehr G, Fröhlich R, Erker G (2010) Carbon–Carbon Bond Activation by 1,1-Carboboration of Internal Alkynes. J Am Chem Soc 132:13594–13595

    CAS  Google Scholar 

  66. Jiang C, Blacque O, Berke H (2010) Activation of Terminal Alkynes by Frustrated Lewis Pairs. Organometallics 29:125–133

    CAS  Google Scholar 

  67. Fan C, Piers WE, Parvez M, McDonald R (2010) Divergent Reactivity of Perfluoropentaphenylborole with Alkynes. Organometallics 29:5132–5139

    CAS  Google Scholar 

  68. Chen C, Voss T, Fröhlich R, Kehr G, Erker G (2011) 1,1-Carboboration of 1-Alkynes: A Conceptional Alternative to the Hydroboration Reaction. Org Lett 13:62–65

    Google Scholar 

  69. Massey AG, Park AJ, Stone FGA (1963) Tris(pentafluorophenyl)boron. Proc Chem Soc 212

    Google Scholar 

  70. Massey AG, Park AJ (1964) Perfluorophenyl derivatives of the elements I. Tris(pentafluorophenyl)boron. J Organomet Chem 2:245–250

    CAS  Google Scholar 

  71. Ekkert O, Kehr G, Fröhlich R, Erker G (2011) Phosphirenium-borate zwitterion: formation in the 1,1-carboboration reaction of phosphinylalkynes. Chem Commun 47:10482–10484

    CAS  Google Scholar 

  72. Möbus J, Bonnin Q, Ueda K, Fröhlich R, Itami K, Kehr G, Erker G (2012) The 1,1-Carboboration of Bis(alkynyl)phosphanes as a Route to Phosphole Compounds. Angew Chem Int Ed 51:1954–1957 (Angew Chem 124:1990–1993)

    Google Scholar 

  73. Ekkert O, Kehr G, Fröhlich R, Erker G (2011) P-C Bond Activation Chemistry: Evidence for 1,1-Carboboration Reactions Proceeding with Phosphorus-Carbon Bond Cleavage. J Am Chem Soc 133:4610–4616

    CAS  Google Scholar 

  74. Sumerin V, Schulz F, Atsumi M, Wang C, Nieger M, Leskelä M, Repo T, Pyykkö P, Rieger B (2008) Molecular Tweezers for Hydrogen: Synthesis, Characterization, and Reactivity. J Am Chem Soc 130:14117–14119

    CAS  Google Scholar 

  75. Sumerin V, Schulz F, Nieger M, Atsumi M, Wang C, Leskelä M, Pyykkö P, Repo T, Rieger B (2009) Experimental and theoretical treatment of hydrogen splitting and storage in boron–nitrogen systems. J Organomet Chem 694:2654–2660

    CAS  Google Scholar 

  76. Herrigton TJ, Thom AJW, White AJP, Ashley AE (2012) Novel H2 activation by a tris[3,5-bis(trifluoromethyl)phenyl]borane frustrated Lewis pair. Dalton Trans 41:9019–9022

    Google Scholar 

  77. Schulz F, Sumerin V, Heikkinen S, Pedersen B, Wang C, Atsumi M, Leskelä M, Repo T, Pyykkö P, Petry W, Rieger B (2011) Molecular Hydrogen Tweezers: Structure and Mechanism by Neutron Diffraction, NMR, and Deuterium Labeling Studies in Solid and Solution. J Am Chem Soc 133:20245–20257

    CAS  Google Scholar 

  78. Schwendemann S, Fröhlich R, Kehr G, Erker G (2011) Intramolecular frustrated N/B Lewis pairs by enamine hydroboration. Chem Sci 2:1842–1849

    CAS  Google Scholar 

  79. Millot N, Santini CC, Fenet B, Basset JM (2002) Formation and Characterization of Zwitterionic Stereoisomers from the Reaction of B(C6F5)3 and NEt2Ph: (E)- and (Z)-[EtPhN+=CHCH2-B(C6F5)3]. Eur J Inorg Chem 3328–3335

    Google Scholar 

  80. Liptau P, Neumann M, Erker G, Kehr G, Fröhlich R, Grimme S (2004) Responsive Iron Neighboring Group Participation in Amino-Substituent-Stabilized [3]ferrocenophane α-Carbenium Ions: A Combined Theoretical and Experimental Study. Organometallics 23:21–25

    CAS  Google Scholar 

  81. Piers WE (2004) The Chemistry of Perfluoroaryl Boranes. Adv Organomet Chem 52:1–76

    Google Scholar 

  82. Focante F, Mercandelli P, Sironi A, Resconi L (2006) Complexes of tris(pentafluorophenyl)-boron with nitrogen-containing compounds: Synthesis, reactivity and metallocene activation. Coord Chem Rev 250:170–188

    CAS  Google Scholar 

  83. Sumerin V, Schulz F, Nieger M, Leskelä M, Repo T, Rieger B (2008) Facile Heterolytic H2 Activation by Amines and B(C6F5)3. Angew Chem Int Ed 47:6001–6003 (Angew Chem 120:6090–6092)

    CAS  Google Scholar 

  84. Farrell JM, Heiden ZM, Stephan DW (2011) Metal-Free Transfer Hydrogenation Catalysis by B(C6F5)3. Organometallics 30:4497–4500

    CAS  Google Scholar 

  85. Roesler R, Piers WE, Parvez M (2003) Synthesis, structural characterization and reactivity of the amino borane 1-(NPh2)-2-[B(C6F5)2]C6H4. J Organomet Chem 680:218–222

    CAS  Google Scholar 

  86. Moebs-Sanchez S, Saffon N, Bouhadir G, Maron L, Bourissou D (2010) Hydrogen fluoride adduct of an ambiphilic phosphine–borane: NMR characterization and theoretical analysis of the bonding situation. Dalton Trans 39:4417–4420

    CAS  Google Scholar 

  87. Geier SJ, Gilbert TM, Stephan DW (2008) Activation of H2 by Phosphinoboranes R2PB(C6F5)2. J Am Chem Soc 130:12632–12633

    CAS  Google Scholar 

  88. Geier SJ, Gilbert TM, Stephan DW (2011) Synthesis and Reactivity of the Phosphinoboranes R2PB(C6F5)2. Inorg Chem 50:336–344

    CAS  Google Scholar 

  89. Dureen MA, Stephan DW (2010) Reactions of Boron Amidinates with CO2 and CO and Other Small Molecules. J Am Chem Soc 132:13559–13568

    CAS  Google Scholar 

  90. Mömming CM, Frömel S, Kehr G, Fröhlich R, Grimme S, Erker G (2009) Reactions of an Intramolecular Frustrated Lewis Pair with Unsaturated Substrates: Evidence for a Concerted Olefin Addition Reaction. J Am Chem Soc 131:12280–12289

    Google Scholar 

  91. Ullrich M, Seto KS-H, Lough AJ, Stephan DW (2009) 1,4-Addition reactions of frustrated Lewis pairs to 1,3-dienes. Chem Commun 2335–2337

    Google Scholar 

  92. Voss T, Chen C, Kehr G, Nauha E, Erker G, Stephan DW (2010) Cyclizations via Frustrated Lewis Pairs: Lewis Acid Induced Intramolecular Additions of Amines to Olefins and Alkynes. Chem Eur J 16:3005–3008

    CAS  Google Scholar 

  93. Mömming CM (2010) Reaktivität intramolekularer frustrierter LEWIS Paare: Fixierung kleiner Moleküle. Dissertation, Münster

    Google Scholar 

  94. Mömming CM, Kehr G, Fröhlich R, Erker G (2011) The frustrated Lewis pair induced formation of a pentafulvene [6+4] cycloaddition product. Chem Commun 47:2006–2007

    Google Scholar 

  95. Xu B-H, Mömming CM, Kehr G, Fröhlich R, Erker G (2012) Reaction of a 6-Dimethylaminopentafulvene with the Mes2PCH2CH2B(C6F5)2 Frustrated Lewis Pair. Chem Eur J 18:1826–1830

    CAS  Google Scholar 

  96. Xu B-H, Adler Yanez RA, Nakatsuka H, Kitamura M, Fröhlich R, Kehr G, Erker G (2012) Reaction of Frustrated Lewis Pairs with Ketones and Esters. Chem Asian J 7:1347–1356

    CAS  Google Scholar 

  97. Mömming CM, Kehr G, Wibbeling B, Fröhlich R, Erker G (2010) Addition reactions to the intramolecular mesityl2P-CH2-CH2-B(C6F5)2 frustrated Lewis pair. Dalton Trans 39:7556–7564

    Google Scholar 

  98. Mömming CM, Kehr G, Wibbeling B, Fröhlich R, Schirmer B, Grimme S, Erker G (2010) Formation of Cyclic Allene and Cumulene by Cooperative Addition of Frustrated Lewis Pairs to Conjugated Enynes and Diynes. Angew Chem Int Ed 49:2414–2417 (Angew Chem 122:2464–2467)

    Google Scholar 

  99. Feldhaus P, Schirmer B, Wibbeling B, Daniliuc CG, Fröhlich R, Grimme S, Kehr G, Erker G (2012) Frustrated Lewis pair addition to conjugated diynes: Formation of zwitterionic 1,2,3-butatriene derivatives. Dalton Trans 41:9135–9142

    CAS  Google Scholar 

  100. Moebs-Sanchez S, Bouhadir G, Saffon N, Maron L, Bourissou D (2008) Tracking reactive intermediates in phosphine-promoted reactions with ambiphilic phosphino-boranes. Chem Commun 3435–3437

    Google Scholar 

  101. Arbuzov BA, Nikonov GN, Balueva AS, Kamalov RM, Pudovik MA, Shagidullin RR, Plyamovatyi AK, Khadiullin RS (1991) Reaction of 1,2-borylphosphinoethene with phenyl isocyanate and the structure of the reaction products. Russ Chem Bull 40:2099–2102 (Izv Akad Nauk SSSR Ser Khim 2393–2396)

    Google Scholar 

  102. Cardenas AJP, Culotta BJ, Warren TH, Grimme S, Stute A, Fröhlich R, Kehr G, Erker G (2011) Capture of NO by a Frustrated Lewis Pair: A New Type of Persistent N-Oxyl Radical. Angew Chem Int Ed 50:7567–7571 (Angew Chem 123:7709–7713)

    CAS  Google Scholar 

  103. Sajid M, Stute A, Cardenas AJP, Culotta BJ, Hepperle JAM, Warren TH, Schirmer B, Grimme S, Studer A, Daniliuc CG, Fröhlich R, Petersen JL, Kehr G, Erker G (2012) N,N-Addition of Frustrated Lewis Pairs to Nitric Oxide: An Easy Entry to a Unique Family of Aminoxyl Radicals. J Am Chem Soc 134:10156–10168

    CAS  Google Scholar 

  104. Ashley AE, Thompson AL, O’Hare D (2009) Non-Metal-Mediated Homogeneous Hydrogenation of CO2 to CH3OH. Angew Chem Int Ed 48:9839–9843 (Angew Chem 121:10023–10027)

    CAS  Google Scholar 

  105. Ménard G, Stephan DW (2010) Room Temperature Reduction of CO2 to Methanol by Al-Based Frustrated Lewis Pairs and Ammonia Borane. J Am Chem Soc 132:1796–1797

    Google Scholar 

  106. Mömming CM, Otten E, Kehr G, Fröhlich R, Grimme S, Stephan DW, Erker G (2009) Reversible Metal-Free Carbon Dioxide Binding by Frustrated Lewis Pairs. Angew Chem Int Ed 48:6643–6646 (Angew Chem 121:6770–6773)

    Google Scholar 

  107. Gloaguen Y, Alcaraz G, Pécharman A-F, Clot E, Vendier L, Sabo-Etienne S (2009) Phosphinoborane and Sulfidoborohydride as Chelating Ligands in Polyhydride Ruthenium Complexes: Agostic σ-Borane versus Dihydroborate Coordination. Angew Chem Int Ed 48:2964–2968 (Angew Chem 121:3008–3012)

    CAS  Google Scholar 

  108. Walker JM, Cox AM, Wang R, Spivak GJ (2010) Synthesis and Reactivity of [(PhB(CH2PPh2)33 P)Ru(NCMe)3]PF6 and Its Potential as a Transfer Hydrogenation Catalyst. Organometallics 29:6121–6124

    CAS  Google Scholar 

  109. Miller AJM, Labinger JA, Bercaw JE (2010) Homogeneous CO Hydrogenation: Ligand Effects on the Lewis Acid-Assisted Reductive Coupling of Carbon Monoxide. Organometallics 29:4499–4516

    CAS  Google Scholar 

  110. Schnurr A, Vitze H, Bolte M, Lerner H-W, Wagner M (2010) Rigid, Fluoroarene-Containing Phosphonium Borates and Boranes: Syntheses and Reactivity Studies. Organometallics 29:6012–6019

    CAS  Google Scholar 

  111. Schnurr A, Bolte M, Lerner H-W, Wagner M (2012) Cyclic Phosphonium Bis(fluoroaryl)boranes – Trends in Lewis Acidities and Application in Diels-Alder Catalysis. Eur J Inorg Chem 112120

    Google Scholar 

  112. Stute A, Kehr G, Fröhlich R, Erker G (2011) Chemistry of a geminal frustrated Lewis pair featuring electron withdrawing C6F5 substituents at both phosphorus and boron. Chem Commun 47:4288–4290

    CAS  Google Scholar 

  113. Bebbington MWP, Bontemps S, Bouhadir G, Bourissou D (2007) Photoisomerizable Heterodienes Derived from a Phosphine Borane. Angew Chem Int Ed 46:3333–3336 (Angew Chem 119:3397–3400)

    CAS  Google Scholar 

  114. Kim Y, Hudnall TW, Bouhadir G, Bourissou D, Gabbaï FP (2009) Azide ion recognition in water – CHCl3 using a chelating phosphonium borane as a receptor. Chem Commun 3729–3731

    Google Scholar 

  115. Rosorius C, Kehr G, Fröhlich R, Grimme S, Erker G (2011) Electronic Control of Frustrated Lewis Pair Behavior: Chemistry of a Geminal Alkylidene-Bridged Per-pentafluorophenylated P/B Pair. Organometallics 30:4211–4219

    CAS  Google Scholar 

  116. Bertini F, Lyaskovskyy V, Timmer BJJ, de Kanter FJJ, Lutz M, Ehlers AW, Slootweg JC, Lammertsma K (2012) Preorganized Frustrated Lewis Pairs. J Am Chem Soc 134:201–204

    CAS  Google Scholar 

  117. Appelt C, Slootweg C, Lammertsma K, Uhl W (2012) A Phosphorus/Aluminum-Based Frustrated Lewis Pair as an Ion Pair Receptor: Alkali Metal Hydride Adducts and Phase-Transfer Catalysis. Angew Chem Int Ed 51:5911–5914 (Angew Chem 124:6013–6016)

    CAS  Google Scholar 

  118. Grimme S, Kruse H, Goerigk L, Erker G (2010) The Mechanism of Dihydrogen Activation by Frustrated Lewis Pairs Revisited. Angew Chem Int Ed 49:1402–1405 (Angew Chem 122:1444–1447)

    CAS  Google Scholar 

  119. Rokob TA, Hamza A, Stirling A, Soós T, Pápai I (2008) Turning Frustration into Bond Activation: A Theoretical Mechanistic Study on Heterolytic Hydrogen Splitting by Frustrated Lewis Pairs. Angew Chem Int Ed 47:2435–2438 (Angew Chem 123:12435–12439)

    CAS  Google Scholar 

  120. Guo Y, Li S (2008) Unusual Concerted Lewis Acid-Lewis Base Mechanism for Hydrogen Activation by a Phosphine-Borane Compound. Inorg Chem 47:6212–6219

    CAS  Google Scholar 

  121. Hamza A, Stirling A, Rokob TA, Pápai I (2009) Mechanism of Hydrogen Activation by Frustrated Lewis Pairs: A Molecular Orbital Approach. Int J Quantum Chem 109:2416–2425

    CAS  Google Scholar 

  122. Rajeev R, Sunoj RB (2009) On the Origin of Reversible Hydrogen Activation by Phosphine-Boranes. Chem Eur J 15:12846–12855

    CAS  Google Scholar 

  123. Rokob TA, Hamza A, Pápai I (2009) Rationalizing the Reactivity of Frustrated Lewis Pairs: Thermodynamics of H2 Activation and the Role of Acid–Base Properties. J Am Chem Soc 131:10701–10710

    CAS  Google Scholar 

  124. Durfey BL, Gilbert TM (2011) Computational Studies of Lewis Acidities of Tris(fluorophenyl)-Substituted Boranes: An Additive Relationship between Lewis Acidity and Fluorine Position. Inorg Chem 50:7871–7879

    CAS  Google Scholar 

  125. Lu Z, Cheng Z, Chen Z, Weng L, Li ZH, Wang H (2011) Heterolytic Cleavage of Dihydrogen by “Frustrated Lewis Pairs” Comprising Bis(2,4,6-tris(trifluoromethyl)phenyl)borane and Amines: Stepwise versus Concerted Mechanism. Angew Chem Int Ed 50:12227–12231 (Angew Chem 123:12435–12439)

    CAS  Google Scholar 

Download references

Acknowledgment

G. E. thanks his co-workers at Münster for their great contributions to this exciting field. We cordially thank the collaborating groups. For all of us it has been a pleasure to work together and discover new FLP reactions and FLP behavior. G. E. thanks the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, the Alexander von Humboldt-Stiftung, and the European Research Council for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Erker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kehr, G., Schwendemann, S., Erker, G. (2012). Intramolecular Frustrated Lewis Pairs: Formation and Chemical Features. In: Erker, G., Stephan, D. (eds) Frustrated Lewis Pairs I. Topics in Current Chemistry, vol 332. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_373

Download citation

Publish with us

Policies and ethics