Skip to main content

Parahydrogen-Induced Polarization in Heterogeneous Catalytic Processes

  • Chapter
  • First Online:
Hyperpolarization Methods in NMR Spectroscopy

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 338))

Abstract

Abstract

Parahydrogen-induced polarization of nuclear spins provides enhancements of NMR signals for various nuclei of up to four to five orders of magnitude in magnetic fields of modern NMR spectrometers and even higher enhancements in low and ultra-low magnetic fields. It is based on the use of parahydrogen in catalytic hydrogenation reactions which, upon pairwise addition of the two H atoms of parahydrogen, can strongly enhance the NMR signals of reaction intermediates and products in solution. A recent advance in this field is the demonstration that PHIP can be observed not only in homogeneous hydrogenations but also in heterogeneous catalytic reactions. The use of heterogeneous catalysts for generating PHIP provides a number of significant advantages over the homogeneous processes, including the possibility to produce hyperpolarized gases, better control over the hydrogenation process, and the ease of separation of hyperpolarized fluids from the catalyst. The latter advantage is of paramount importance in light of the recent tendency toward utilization of hyperpolarized substances in in vivo spectroscopic and imaging applications of NMR. In addition, PHIP demonstrates the potential to become a useful tool for studying mechanisms of heterogeneous catalytic processes and for in situ studies of operating catalytic reactors. Here, the known examples of PHIP observations in heterogeneous reactions over immobilized transition metal complexes, supported metals, and some other types of heterogeneous catalysts are discussed and the applications of the technique for hypersensitive NMR imaging studies are presented.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALTADENA:

Adiabatic longitudinal transport after dissociation engenders nuclear alignment

BMPY:

N-butyl-4-methylpyridinium

COD:

1,4-Cyclooctadiene

DPPB:

1,4-Bis(diphenylphosphino)butane

HET-PHIP:

Parahydrogen-induced polarization in heterogeneous processes

ID:

Inside diameter

IL:

Ionic liquid

MOF:

Metal-organic framework

MRI:

Magnetic resonance imaging

NMR:

Nuclear magnetic resonance

PASADENA:

Parahydrogen and synthesis allow dramatically enhanced nuclear alignment

PCy3 :

Tricyclohexylphosphine

PHIP:

Parahydrogen-induced polarization

Py:

Pyridine

RD:

Remote detection

RF:

Radiofrequency

RT:

Room temperature

SABRE:

Signal amplification by reversible exchange

SILP:

Supported ionic liquid phase

SNR:

Signal-to-noise ratio

Tf2N:

Bis(trifluoromethylsulfonyl)amide

TOF:

Turnover frequency

XPS:

X-ray photoelectron spectroscopy

References

  1. Seidler PF, Bryndza HE, Frommer JE, Stuhl LS, Bergman RG (1983) Synthesis of trinuclear alkylidyne complexes from dinuclear alkyne complexes and metal hydrides. CIDNP evidence for vinyl radical intermediates in the hydrogenolysis of these clusters. Organometallics 2:1701–1705

    CAS  Google Scholar 

  2. Bowers CR, Weitekamp DP (1986) Transformation of symmetrization order to nuclear spin magnetization by chemical reaction and nuclear magnetic resonance. Phys Rev Lett 57:2645–2648

    CAS  Google Scholar 

  3. Bowers CR, Weitekamp DP (1987) Parahydrogen and synthesis allow dramatically enhanced nuclear alignment. J Am Chem Soc 109:5541–5542

    CAS  Google Scholar 

  4. Duckett SB, Wood NJ (2008) Parahydrogen-based NMR methods as a mechanistic probe in inorganic chemistry. Coord Chem Rev 252:2278–2291

    CAS  Google Scholar 

  5. Blazina D, Duckett SB, Dunne JP, Godard C (2004) Applications of the parahydrogen phenomenon in inorganic chemistry. Dalton Trans 2601–2609

    Google Scholar 

  6. Duckett SB, Sleigh CJ (1999) Applications of the para hydrogen phenomenon: a chemical perspective. Prog Nucl Magn Reson Spectrosc 34:71–92

    CAS  Google Scholar 

  7. Natterer J, Bargon J (1997) Parahydrogen induced polarization. Prog Nucl Magn Reson Spectrosc 31:293–315

    Google Scholar 

  8. Eisenberg R (1991) Parahydrogen-induced polarization: a new spin on reactions with H2. Acc Chem Res 24:110–116

    CAS  Google Scholar 

  9. Canet D, Aroulanda C, Mutzenhardt P, Aime S, Gobetto R, Reineri F (2006) Para-hydrogen enrichment and hyperpolarization. Concepts Magn Reson 28A:321–330

    CAS  Google Scholar 

  10. Green RA, Adams RW, Duckett SB, Mewis RE, Williamson DC, Green GGR (2012) The theory and practice of hyperpolarization in magnetic resonance using parahydrogen. Prog Nucl Magn Reson Spectrosc. http://dx.doi.org/10.1016/j.pnmrs.2012.03.001

  11. Golman K, Axelsson O, Johannesson H, Mansson S, Olofsson C, Petersson JS (2001) Parahydrogen-induced polarization in imaging: subsecond 13C angiography. Magn Reson Med 46:1–5

    CAS  Google Scholar 

  12. Bhattacharya P, Chekmenev EY, Perman WH, Harris KC, Lin AP, Norton VA, Tan CT, Ross BD, Weitekamp DP (2007) Towards hyperpolarized 13C-succinate imaging of brain cancer. J Magn Reson 186:150–155

    CAS  Google Scholar 

  13. Bhattacharya P, Harris K, Lin AP, Mansson M, Norton VA, Perman WH, Weitekamp DP, Ross BD (2005) Ultra-fast three dimensional imaging of hyperpolarized 13C in vivo. MAGMA 18:245–256

    CAS  Google Scholar 

  14. Mansson S, Johansson E, Magnusson P, Chai C-M, Hansson G, Petersson JS, Stahlberg F, Golman K (2006) 13C imaging – a new diagnostic platform. Eur Radiol 16:57–67

    Google Scholar 

  15. Adams RW, Aguilar JA, Atkinson KD, Cowley MJ, Elliott PIP, Duckett SB, Green GGR, Khazal IG, Lopez-Serrano J, Williamson DC (2009) Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer. Science 323:1708–1711

    CAS  Google Scholar 

  16. Dumesic JA, Huber GW, Boudart M (2008) Principles of heterogeneous catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  17. Permin AB, Eisenberg R (2002) One-hydrogen polarization in hydroformylation promoted by platinum-tin and iridium carbonyl complexes: a new type of parahydrogen-induced effect. J Am Chem Soc 124:12406–12407

    CAS  Google Scholar 

  18. Fox DJ, Duckett SB, Flaschenriem C, Brennessel WW, Schneider J, Gunay A, Eisenberg R (2006) A model iridium hydroformylation system with the large bite angle ligand xantphos: reactivity with parahydrogen and implications for hydroformylation catalysis. Inorg Chem 45:7197–7209

    CAS  Google Scholar 

  19. Koptyug IV, Kovtunov KV, Burt SR, Anwar MS, Hilty C, Han S, Pines A, Sagdeev RZ (2007) para-Hydrogen-induced polarization in heterogeneous hydrogenation reactions. J Am Chem Soc 129:5580–5586

    CAS  Google Scholar 

  20. Kovtunov KV, Beck IE, Bukhtiyarov VI, Koptyug IV (2008) Observation of parahydrogen-induced polarization in heterogeneous hydrogenation on supported metal catalysts. Angew Chem Int Ed 47:1492–1495

    CAS  Google Scholar 

  21. Kovtunov KV, Koptyug IV (2008) Parahydrogen-induced polarization in heterogeneous catalytic hydrogenations. In: Codd S, Seymour JD (eds) Magnetic resonance microscopy. Spatially resolved NMR techniques and applications. Wiley-VCH, Weinheim

    Google Scholar 

  22. Kovtunov KV, Zhivonitko VV, Corma A, Koptyug IV (2010) Parahydrogen-induced polarization in heterogeneous hydrogenations catalyzed by an immobilized Au(III) complex. J Phys Chem Lett 1:1705–1708

    CAS  Google Scholar 

  23. Kovtunov KV, Zhivonitko VV, Kiwi-Minsker L, Koptyug IV (2010) Parahydrogen-induced polarization in alkyne hydrogenation catalyzed by Pd nanoparticles embedded in a supported ionic liquid phase. Chem Commun 46:5764–5766

    CAS  Google Scholar 

  24. Eichhorn A, Koch A, Bargon J (2001) In situ PHIP NMR – a new tool to investigate hydrogenation mediated by colloidal catalysts. J Mol Catal A Chem 174:293–295

    CAS  Google Scholar 

  25. Crabtree RH (2012) Resolving heterogeneity problems and impurity artifacts in operationally homogeneous transition metal catalysts. Chem Rev 112:1536

    CAS  Google Scholar 

  26. Barbaro P, Bianchini C (2002) Recent aspects of asymmetric catalysis by immobilized transition metal complexes. Top Catal 19:17–32

    Google Scholar 

  27. Cole-Hamilton DJ, Tooze RP (eds) (2006) Catalyst separation, recovery and recycling: chemistry and process design, vol 30, Catalysis by metal complexes. Springer, Dordrecht

    Google Scholar 

  28. End N, Schoning K-U (2004) Immobilized catalysts in industrial research and application. Top Curr Chem 242:241–271

    CAS  Google Scholar 

  29. Merckle C, Blumel J (2005) Improved rhodium hydrogenation catalysts immobilized on silica. Top Catal 34:5–15

    CAS  Google Scholar 

  30. Wegener SL, Marks TJ, Stair PC (2012) Design strategies for the molecular level synthesis of supported catalysts. Acc Chem Res 45:206–214

    CAS  Google Scholar 

  31. Skovpin IV, Zhivonitko VV, Koptyug IV (2011) Parahydrogen-induced polarization in heterogeneous hydrogenations over silica-immobilized Rh complexes. Appl Magn Reson 41:393–410

    CAS  Google Scholar 

  32. Gutmann T, Ratajczyk T, Xu Y, Breitzke H, Grunberg A, Dillenberger S, Bommerich U, Trantzschel T, Bernarding J, Buntkowsky G (2010) Understanding the leaching properties of heterogenized catalysts: a combined solid-state and PHIP NMR study. Solid State Nucl Magn Reson Spectrosc 38:90–96

    CAS  Google Scholar 

  33. Gordon B, Butler JS, Harrison IR (1987) Rhodium(I) catalyst supported on polymer crystal surfaces: further hydrogenation studies. J Polym Sci Part A: Polym Chem 25:2139–2142

    CAS  Google Scholar 

  34. Kuhn LT, Bommerich U, Bargon J (2006) Transfer of parahydrogen-induced hyperpolarization to 19F. J Phys Chem A 110:3521–3526

    CAS  Google Scholar 

  35. Kirss RU, Eisenberg R (1989) Di(phosphine)-bridged complexes of palladium. Parahydrogen-induced polarization in hydrogenation reactions and structure determination of tris(μ-bis(diphenylphosphino)methane)dipalladium, Pd2(dppm)3. Inorg Chem 28:3372

    CAS  Google Scholar 

  36. Schleyer D, Niessen HG, Bargon J (2001) In situ 1H-PHIP-NMR studies of the stereoselective hydrogenation of alkynes to (E)-alkenes catalyzed by a homogeneous [Cp*Ru]+ catalyst. New J Chem 25:423–426

    CAS  Google Scholar 

  37. Lopez-Serrano J, Duckett SB, Aiken S, Lenro KQA, Drent E, Dunne JP, Konya D, Whitwood NC (2007) A para-hydrogen investigation of palladium-catalyzed alkyne hydrogenation. J Am Chem Soc 129:6513–6527

    CAS  Google Scholar 

  38. Osborn JA, Jardine FH, Young JF, Wilkinson G (1966) The preparation and properties of tris(triphenylphosphine)halogenorhodium(I) and some reactions thereof including catalytic homogeneous hydrogenation of olefins and acetylenes and their derivatives. J Chem Soc A 12:1711–1732

    Google Scholar 

  39. Goodson BM (2002) Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials, and organisms. J Magn Reson 155:157–216

    CAS  Google Scholar 

  40. Brunner E, Haake M, Kaiser L, Pines A, Reimer JA (1999) Gas flow MRI using circulating laser-polarized 129Xe. J Magn Reson 138:155–159

    CAS  Google Scholar 

  41. Ruppert K, Mata JF, Brookeman JR, Hagspiel KD, Mugler JP (2004) Exploring lung function with hyperpolarized 129Xe nuclear magnetic resonance. Magn Reson Med 51:676–687

    Google Scholar 

  42. Mair RW, Hrovat MI, Patz S, Rosen MS, Ruset IC, Topulos GP, Tsai LL, Butler JP, Hersman FW, Walsworth RL (2005) 3He lung imaging in an open access, very-low-field human magnetic resonance imaging system. Magn Reson Med 53:745–749

    CAS  Google Scholar 

  43. Pavlovskaya GE, Cleveland ZI, Stupic KF, Basaraba RJ, Meersmann T (2005) Hyperpolarized krypton-83 as a contrast agent for magnetic resonance imaging. Proc Nat Acad Sci USA 102:18275–18279

    CAS  Google Scholar 

  44. Bouchard L-S, Kovtunov KV, Burt SR, Anwar MS, Koptyug IV, Sagdeev RZ, Pines A (2007) Parahydrogen-enhanced hyperpolarized gas-phase magnetic resonance imaging. Angew Chem Int Ed 46:4064–4068

    CAS  Google Scholar 

  45. Bouchard L-S, Burt SR, Anwar MS, Kovtunov KV, Koptyug IV, Pines A (2008) NMR imaging of catalytic hydrogenation in microreactors with the use of para-hydrogen. Science 319:442–445

    CAS  Google Scholar 

  46. Telkki V-V, Zhivonitko VV, Ahola S, Kovtunov KV, Jokisaari J, Koptyug IV (2010) Microfluidic gas-flow imaging utilizing parahydrogen-induced polarization and remote-detection NMR. Angew Chem Int Ed 49:8363–8366

    CAS  Google Scholar 

  47. Harthun A, Giernoth R, Elsevier CJ, Bargon J (1996) Rhodium- and palladium-catalysed proton exchange in styrene detected in situ by para-hydrogen induced polarization. Chem Commun 2483–2484

    Google Scholar 

  48. Niessen HG, Schleyer D, Wiemann S, Bargon J, Steiner S, Driessen-Holscher B (2000) In situ PHIP-NMR studies during the stereoselective hydrogenation of sorbic acid with a [Cp*Ru]+ catalyst. Magn Reson Chem 38:747–750

    CAS  Google Scholar 

  49. Gutmann T, Sellin M, Breitzke H, Stark A, Buntkowsky G (2009) Para-hydrogen induced polarization in homogeneous phase – an example of how ionic liquids affect homogenization and thus activation of catalysts. Phys Chem Chem Phys 11:9170–9175

    CAS  Google Scholar 

  50. Mehnert CP, Mozeleski EJ, Cook RA (2002) Supported ionic liquid catalysis investigated for hydrogenation reactions. Chem Commun 3010–3011

    Google Scholar 

  51. Virtanen P, Salmi T, Mikkola J-P (2009) Kinetics of cinnamaldehyde hydrogenation by supported ionic liquid catalysts (SILCA). Ind Eng Chem Res 48:10335–10342

    CAS  Google Scholar 

  52. Gong Q, Klankermayer J, Blumich B (2011) Organometallic complexes in supported ionic-liquid phase (SILP) catalysts: a PHIP NMR spectroscopy study. Chem Eur J 17:13795–13799

    CAS  Google Scholar 

  53. Zhang X, Llabres i Xamena FX, Corma A (2009) Gold(III) – metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts. J Catal 265:155–160

    CAS  Google Scholar 

  54. Cremer PS, Su X, Shen YR, Somorjai GA (1996) Hydrogenation and dehydrogenation of propylene on Pt(111) studied by sum frequency generation from UHV to atmospheric pressure. J Phys Chem 100:16302–16309

    CAS  Google Scholar 

  55. Wasylenko W, Frei H (2007) Dynamics of propane in silica mesopores formed upon propylene hydrogenation over Pt nanoparticles by time-resolved FT-IR spectroscopy. J Phys Chem C 111:9884–9890

    CAS  Google Scholar 

  56. Wasylenko W, Frei H (2005) Direct observation of surface ethyl to ethane interconversion upon C2H4 hydrogenation over Pt/Al2O3 catalyst by time-resolved FT-IR spectroscopy. J Phys Chem B 109:16873–16878

    CAS  Google Scholar 

  57. Cremer PS, Su X, Shen YR, Somorjai GA (1996) Ethylene hydrogenation on Pt(111) monitored in situ at high pressures using sum frequency generation. J Am Chem Soc 118:2942–2949

    CAS  Google Scholar 

  58. Haug KL, Burgi T, Trautman TR, Ceyer ST (1998) Distinctive reactivities of surface-bound H and bulk H for the catalytic hydrogenation of acetylene. J Am Chem Soc 120:8885–8886

    CAS  Google Scholar 

  59. Teschner D, Vass E, Havecker M, Zafeiratos S, Schnorch P, Sauer H, Knop-Gericke A, Schlogl R, Chamam M, Wootsch A, Canning AS, Gamman JJ, Jackson SD, McGregor J, Gladden LF (2006) Alkyne hydrogenation over Pd catalysts: a new paradigm. J Catal 242:26–37

    CAS  Google Scholar 

  60. Rayhel LH, Corey RL, Shane DT, Cowgill DF, Conradi MS (2011) Hydrogen NMR of palladium hydride: measuring the hydride-gas exchange rate. J Phys Chem C 115:4966–4970

    CAS  Google Scholar 

  61. Renouprez A, Fouilloux P, Stockmeyer R, Conrad HM, Goeltz G (1977) Diffusion of chemisorbed hydrogen on a nickel catalyst. Ber Bunsenges Phys Chem 81:429–432

    CAS  Google Scholar 

  62. Farkas A, Farkas L (1938) The catalytic interaction of ethylene and heavy hydrogen on platinum. J Am Chem Soc 60:22–28

    CAS  Google Scholar 

  63. Farkas A, Farkas L (1942) The mechanism of the catalytic conversion of para-hydrogen on nickel, platinum and palladium. J Am Chem Soc 64:1594–1599

    CAS  Google Scholar 

  64. Scholten JJF, Konvalinka JA (1966) Hydrogen-deuterium equilibration and parahydrogen and orthodeuterium conversion over palladium: kinetics and mechanism. J Catal 5:1–17

    CAS  Google Scholar 

  65. Somorjai GA, Zaera F (1982) Heterogeneous catalysis on the molecular scale. J Phys Chem 86:3070–3078

    CAS  Google Scholar 

  66. Bond GC (1997) The role of carbon deposits in metal-catalysed reactions of hydrocarbons. Appl Catal A 149:3–25

    CAS  Google Scholar 

  67. Zhivonitko VV, Kovtunov KV, Beck IE, Ayupov AB, Bukhtiyarov VI, Koptyug IV (2011) Role of different active sites in heterogeneous alkene hydrogenation on platinum catalysts revealed by means of parahydrogen-induced polarization. J Phys Chem C 115:13386–13391

    CAS  Google Scholar 

  68. Farin D, Avnir D (1988) The reaction dimension in catalysis on dispersed metals. J Am Chem Soc 110:2039–2045

    CAS  Google Scholar 

  69. McLeod AS (2004) The influence of catalyst geometry and topology on the kinetics of hydrocarbon reactions. Chem Eng Res Des 82:945–951

    CAS  Google Scholar 

  70. Borodzinski A (2001) The effect of palladium particle size on the kinetics of hydrogenation of acetylene-ethylene mixtures over Pd/SiO2 catalysts. Catal Lett 71:169–175

    CAS  Google Scholar 

  71. Rioux RM, Hsu BB, Grass ME, Song H, Somorjai GA (2008) Influence of particle size on reaction selectivity in cyclohexene hydrogenation and dehydrogenation over silica-supported monodisperse Pt particles. Catal Lett 126:10–19

    CAS  Google Scholar 

  72. Norskov JK, Bligaard T, Hvolbaek B, Abild-Pedersen F, Christensen CH (2008) The nature of the active site in heterogeneous metal catalysis. Chem Soc Rev 37:2163–2171

    CAS  Google Scholar 

  73. Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J Am Chem Soc 100:170–175

    CAS  Google Scholar 

  74. Arnold H, Döbert F, Gaube J (2008) Selective hydrogenation of hydrocarbons. In: Ertl G, Knözinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley, Weinheim

    Google Scholar 

  75. Bond GC (2005) Metal-catalysed reactions of hydrocarbons (fundamental and applied catalysis). Springer, New York

    Google Scholar 

  76. Olah GA, Molnar A (2003) Hydrocarbon chemistry. Wiley, New York

    Google Scholar 

  77. Rideal EK (1939) A note on a simple molecular mechanism for heterogeneous catalytic reactions. Proc Cambridge Philos Soc 35:130–132

    CAS  Google Scholar 

  78. Eley DD, Rideal EK (1940) Parahydrogen conversion on tungsten. Nature 146:401–402

    CAS  Google Scholar 

  79. Maetz P, Touroude R (1994) Mechanism of but-1-yne hydrogenation on platinum catalysts: deuterium tracer study. J Mol Catal 91:259–275

    CAS  Google Scholar 

  80. Bos ANR, Westerterp KR (1993) Mechanism and kinetics of the selective hydrogenation of ethyne and ethane. Chem Eng Process 32:1–7

    CAS  Google Scholar 

  81. Jackson SD, Casey NJ (1995) Hydrogenation of propyne over palladium catalysts. J Chem Soc Faraday Trans 91:3269–3274

    CAS  Google Scholar 

  82. Kennedy DR, Webb G, Jackson SD, Lennon D (2004) Propyne hydrogenation over alumina-supported palladium and platinum catalysts. Appl Catal A 259:109–120

    CAS  Google Scholar 

  83. Dupont J, Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR (2002) Transition-metal nanoparticles in imidazolium ionic liquids: recycable catalysts for biphasic hydrogenation reactions. J Am Chem Soc 124:4228–4229

    CAS  Google Scholar 

  84. Ruta M, Laurenczy G, Dyson PJ, Kiwi-Minsker L (2008) Pd nanoparticles in a supported ionic liquid phase: highly stable catalysts for selective acetylene hydrogenation under continuous-flow conditions. J Phys Chem C 112:17814–17819

    CAS  Google Scholar 

  85. Koptyug IV, Zhivonitko VV, Kovtunov KV (2010) New perspectives for parahydrogen-induced polarization in liquid phase heterogeneous hydrogenation: an aqueous phase and ALTADENA study. Chemphyschem 11:3086–3088

    CAS  Google Scholar 

  86. Balu AM, Duckett SB, Luque R (2009) Para-hydrogen induced polarisation effects in liquid phase hydrogenations catalysed by supported metal nanoparticles. Dalton Trans 5074–5076

    Google Scholar 

  87. Hovener J-B, Chekmenev EY, Harris KC, Perman WH, Robertson LW, Ross BD, Bhattacharya P (2009) PASADENA hyperpolarization of 13C biomolecules: equipment design and installation. MAGMA 22:111–121

    CAS  Google Scholar 

  88. Waddell KW, Coffey AM, Chekmenev EY (2011) In situ detection of PHIP at 48 mT: demonstration using a centrally controlled polarizer. J Am Chem Soc 133:97–101

    CAS  Google Scholar 

  89. Roth M, Kindervater P, Raich H-P, Bargon J, Spiess HW, Munnemann K (2010) Continuous 1H and 13C signal enhancement in NMR and MRI using parahydrogen and hollow-fiber membranes. Angew Chem Int Ed 49:8358–8362

    CAS  Google Scholar 

  90. Callaghan PT (1991) Principles of nuclear magnetic resonance microscopy. Clarendon, Oxford

    Google Scholar 

  91. Moule AJ, Spence MM, Han S, Seeley JA, Pierce KL, Saxena S, Pines A (2003) Amplification of xenon NMR and MRI by remote detection. Proc Natl Acad Sci USA 100:9122–9127

    CAS  Google Scholar 

  92. Seeley JA, Han S, Pines A (2004) Remotely detected high-field MRI of porous samples. J Magn Reson 167:282–290

    CAS  Google Scholar 

  93. Granwehr J, Harel E, Han S, Garcia S, Pines A (2005) Time-of-flight flow imaging using NMR remote detection. Phys Rev Lett 95:075503

    CAS  Google Scholar 

  94. Hilty C, McDonnell EE, Granwehr J, Pierce KL, Han S, Pines A (2005) Microfluidic gas-flow profiling using remote-detection NMR. Proc Natl Acad Sci USA 102:14960–14963

    CAS  Google Scholar 

  95. McDonnell EE, Han S-I, Hilty C, Pierce KL, Pines A (2005) NMR analysis on microfluidic devices by remote detection. Anal Chem 77:8109–8114

    CAS  Google Scholar 

  96. Telkki V-V, Zhivonitko VV (2011) Analysis of remote detection travel time curves measured from microfluidic channels. J Magn Reson 210:238–245

    CAS  Google Scholar 

  97. Zhivonitko V, Telkki V-V, Koptyug IV (2012) Characterization of microfluidic gas reactors using remote-detection MRI and parahydrogen-induced polarization. Angew Chem Int Ed 51:8054–8058

    Google Scholar 

  98. Carravetta M, Johannessen OG, Levitt MH (2004) Beyond the T1 limit: singlet nuclear spin states in low magnetic field. Phys Rev Lett 92:153003

    Google Scholar 

  99. Carravetta M, Levitt MH (2004) Long-lived nuclear spin states in high-field solution NMR. J Am Chem Soc 126:6228–6229

    CAS  Google Scholar 

  100. Sharma R, Bouchard LS (2012) Strongly hyperpolarized gas from parahydrogen by rational design of ligand-capped nanoparticles. Sci Rep 2:277

    Google Scholar 

  101. Reineri F, Viale A, Dastru W, Gobetto R, Aime S (2011) How to design 13C para-hydrogen-induced polarization experiments for MRI applications. Contrast Media Mol Imaging 6:77–84

    CAS  Google Scholar 

  102. Carson PJ, Bowers CR, Weitekamp DP (2001) The PASADENA effect at a solid surface: high-sensitivity nuclear magnetic resonance of hydrogen chemisorption. J Am Chem Soc 123:11821–11822

    CAS  Google Scholar 

  103. Tayler MCD, Levitt MH (2011) Singlet nuclear magnetic resonance of nearly-equivalent spins. Phys Chem Chem Phys 13:5556–5560

    CAS  Google Scholar 

  104. Tayler MCD, Levitt MH (2011) Paramagnetic relaxation of nuclear singlet states. Phys Chem Chem Phys 13:9128–9130

    CAS  Google Scholar 

  105. Warren WS, Jenista E, Branca RT, Chen X (2009) Increasing hyperpolarized spin lifetimes through true singlet eigenstates. Science 323:1711–1714

    CAS  Google Scholar 

  106. Gloggler S, Muller R, Colell J, Emondts M, Dabrowski M, Blumich B, Appelt S (2011) Para-hydrogen induced polarization of amino acids, peptides and deuterium-hydrogen gas. Phys Chem Chem Phys 13:13759–13764

    Google Scholar 

  107. Reineri F, Santelia D, Viale A, Cerutti E, Poggi L, Tichy T, Premkumar SSD, Gobetto R, Aime S (2010) Para-hydrogenated glucose derivatives as potential 13C-hyperpolarized probes for magnetic resonance imaging. J Am Chem Soc 132:7186–7193

    CAS  Google Scholar 

  108. Chekmenev EY, Hovener J, Norton VA, Harris K, Batchelder LS, Bhattacharya P, Ross BD, Weitekamp DP (2008) PASADENA hyperpolarization of succinic acid for MRI and NMR spectroscopy. J Am Chem Soc 130:4212–4213

    CAS  Google Scholar 

  109. Shchepin RV, Coffey AM, Waddell KW, Chekmenev EY (2012) PASADENA hyperpolarized 13C phospholactate. J Am Chem Soc 134:3957–3960

    CAS  Google Scholar 

  110. Roth M, Koch A, Kindervater P, Bargon J, Spiess HW, Munnemann K (2010) 13C hyperpolarization of a barbituric acid derivative via parahydrogen induced polarization. J Magn Reson 204:50–55

    CAS  Google Scholar 

  111. Aime S, Dastru W, Gobetto R, Viale A (2005) para-Hydrogenation of unsaturated moieties on poly(lysine) derived substrates for the development of novel hyperpolarized MRI contrast agents. Org Biomol Chem 3:3948–3954

    CAS  Google Scholar 

  112. Trantzschel T, Bernarding J, Plaumann M, Lego D, Gutmann T, Ratajczyk T, Dillenberger S, Buntkowsky G, Bargon J, Bommerich U (2012) Parahydrogen induced polarization in face of keto-enol tautomerism: proof of concept with hyperpolarized ethanol. Phys Chem Chem Phys 14:5601–5604

    CAS  Google Scholar 

  113. Kadlecek S, Emami K, Ishii M, Rizi R (2010) Optimal transfer of spin-order between a singlet nuclear pair and a heteronucleus. J Magn Reson 205:9–13

    CAS  Google Scholar 

  114. Reineri F, Bouguet-Bonnet S, Canet D (2011) Creation and evolution of net proton hyperpolarization arising from para-hydrogenation. J Magn Reson 210:107–112

    CAS  Google Scholar 

  115. Bretschneider C, Karabanov A, Nielsen NC, Kockenberger W (2012) Conversion of parahydrogen induced longitudinal two-spin order to evenly distributed single spin polarisation by optimal control pulse sequences. J Chem Phys 136:094201

    Google Scholar 

  116. Johannesson H, Axelsson O, Karlsson M (2004) Transfer of para-hydrogen spin order into polarization by diabatic field cycling. CR Phys 5:315–324

    CAS  Google Scholar 

  117. Chekmenev EY, Norton VA, Weitekamp DP, Bhattacharya P (2009) Hyperpolarized 1H NMR employing low gamma nucleus for spin polarization storage. J Am Chem Soc 131:3164–3165

    CAS  Google Scholar 

  118. Goldman M, Johannesson H (2005) Conversion of a proton pair para order into 13C polarization by RF irradiation, for use in MRI. CR Phys 6:575–581

    CAS  Google Scholar 

  119. Duckett SB, Newell CL, Eisenberg R (1993) More than INEPT: parahydrogen and INEPT+ give unprecedented resonance enhancement to 13C by direct 1H polarisation transfer. J Am Chem Soc 115:1156–1157

    CAS  Google Scholar 

  120. Haake M, Natterer J, Bargon J (1996) Efficient NMR pulse sequences to transfer the parahydrogen-induced polarization to hetero nuclei. J Am Chem Soc 118:8688–8691

    CAS  Google Scholar 

  121. Aime S, Gobetto R, Reineri F, Canet D (2003) Hyperpolarization transfer from parahydrogen to deuterium via carbon-13. J Chem Phys 119:8890–8896

    CAS  Google Scholar 

  122. Aime S, Gobetto R, Reineri F, Canet D (2006) Polarization transfer from para-hydrogen to heteronuclei: effect of H/D substitution. The case of AA′X and A2A′2X spin systems. J Magn Reson 178:184–192

    CAS  Google Scholar 

  123. Kuhn LT, Bargon J (2007) Transfer of parahydrogen-induced hyperpolarization to heteronuclei. Top Curr Chem 276:25–68

    CAS  Google Scholar 

  124. Bommerich U, Trantzschel T, Mulla-Osman S, Buntkowsky G, Bargond J, Bernarding J (2010) Hyperpolarized 19F-MRI: parahydrogen-induced polarization and field variation enable 19F-MRI at low spin density. Phys Chem Chem Phys 12:10309–10312

    CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the grants from RFBR (## 11-03-93995-CSIC-a, RFBR 11-03-00248-a, RFBR 12-03-00403-a), RAS (# 5.1.1), SB RAS (## 60, 61, 57, 122), the program of support of leading scientific schools (# NSh-2429.2012.3), and the program of the Russian Government to support leading scientists (# 11.G34.31.0045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor V. Koptyug .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kovtunov, K.V., Zhivonitko, V.V., Skovpin, I.V., Barskiy, D.A., Koptyug, I.V. (2012). Parahydrogen-Induced Polarization in Heterogeneous Catalytic Processes. In: Kuhn, L. (eds) Hyperpolarization Methods in NMR Spectroscopy. Topics in Current Chemistry, vol 338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_371

Download citation

Publish with us

Policies and ethics