Skip to main content

The Solid-State Photo-CIDNP Effect and Its Analytical Application

Photo-CIDNP MAS NMR to Study Radical Pairs

  • Chapter
  • First Online:
Hyperpolarization Methods in NMR Spectroscopy

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 338))

Abstract

Photochemically induced dynamic nuclear polarization (photo-CIDNP) is an effect that produces non-Boltzmann nuclear spin polarization which can be observed as modification of signal intensity in NMR spectroscopy. The effect is well known in liquid-state NMR where it is explained most generally by the classical radical pair mechanism (RPM). In the solid-state, other mechanisms are operative in the spin-dynamics of radical pairs such as three-spin mixing (TSM) and differential decay (DD). Initially the solid-state photo-CIDNP effect has been solely observed on natural photosynthetic reaction centers (RCs). Therefore the analytical capacity of the method has been explored in experiments on reaction centers (RCs) of the purple bacterium of Rhodobacter (R.) sphaeroides. Here we will provide an account on phenomenology, theory, and analytical capacity of the solid-state photo-CIDNP effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zysmilich MG, McDermott AE (1994) Photochemically induced dynamic nuclear polarization in the solid-state 15N spectra of reaction centers from photosynthetic bacteria Rhodobacter sphaeroides R-26. J Am Chem Soc 116:8362–8363

    Article  CAS  Google Scholar 

  2. Prakash S, Alia, Gast P, de Groot HJM, Jeschke G, Matysik J (2005) Magnetic field dependence of photo-CIDNP MAS NMR on photosynthetic reaction centers of Rhodobacter sphaeroides WT. J Am Chem Soc 127:14290–14298

    Article  CAS  Google Scholar 

  3. Prakash S, Alia, Gast P, de Groot HJM, Matysik J, Jeschke G (2006) Photo-CIDNP MAS NMR in intact cells of Rhodobacter sphaeroides R26: molecular and atomic resolution at nanomolar concentration. J Am Chem Soc 128:12794–12799

    Article  CAS  Google Scholar 

  4. Janssen GJ, Daviso E, van Son M, de Groot H, Alia A, Matysik J (2010) Observation of the solid-state photo-CIDNP effect in entire cells of cyanobacteria Synechocystis. Photosynth Res 104:275–282

    Article  CAS  Google Scholar 

  5. Roy E, Alia A, Gast P, van Gorkom HJ, de Groot HJM, Jeschke G, Matysik J (2007) Photochemically induced dynamic nuclear polarisation observed in the reaction center of the green sulphur bacteria Chlorobium tepidum by 13C MAS NMR. Biochem Biophys Acta 1767:610–615

    CAS  Google Scholar 

  6. Diller A, Roy E, Gast P, van Gorkom HJ, de Groot HJM, Glaubitz C, Jeschke G, Matysik J, Alia A (2007) 15N-photo-CIDNP MAS NMR analysis of the electron donor of photosystem II. Proc Natl Acad Sci USA 104:12843–12848

    Article  Google Scholar 

  7. Prakash S, Alia A, Gast P, de Groot HJM, Jeschke G, Matysik J (2007) 13C chemical shift map of the active cofactors in photosynthetic reaction centers of Rhodobacter sphaeroides revealed by photo-CIDNP MAS NMR. Biochemistry 46:8953–8960

    Article  CAS  Google Scholar 

  8. Roy E, Rohmer T, Gast P, Jeschke G, Alia A, Matysik J (2008) Characterization of the primary electron pair in reaction centers of Heliobacillus mobilis by 13C photo-CIDNP MAS NMR. Biochemistry 47:4629–4635

    Article  CAS  Google Scholar 

  9. Matysik J, Diller A, Roy E, Alia A (2009) The solid-state photo-CIDNP effect. Photosynth Res 102:427–435

    Article  CAS  Google Scholar 

  10. Thamarath SS, Heberle J, Hore P, Kottke T, Matysik J (2010) Solid-state photo-CIDNP effect observed in phototropin LOV1-C57S by 13C magic-angle spinning NMR spectroscopy. J Am Chem Soc 132:15542–15543

    Article  CAS  Google Scholar 

  11. Hoff AJ, Deisenhofer J (1997) Photophysics of photosynthesis. Structure and spectroscopy of reaction centers of purple bacteria. Phys Rep 287:2–247

    Article  Google Scholar 

  12. Hunter CN, Daldal F, Thurnauer MC, Beatty JT (2008) The phototropic purple bacteria. Springer, Dordrecht, The Netherlands

    Google Scholar 

  13. Thamarath SS, Bode BE, Prakash S, Sai Sankar Gupta KB, Alia A, Jeschke G, Matysik J (2012) Electron spin density distribution in the special pair triplet of Rhodobacter sphaeroides R26 revealed by magnetic field dependence of the solid-state photo-CIDNP effect. J Am Chem Soc 134:5921–5930

    Article  CAS  Google Scholar 

  14. Wirtz AC, van Hemert MC, Lugtenburg J, Frank HA, Groenen EJJ (2007) Two stereoisomers of spheroidene in the Rhodobacter sphaeroides R26 reaction center: a DFT analysis of resonance Raman spectra. Biophys J 93:981–991

    Article  CAS  Google Scholar 

  15. Daviso E, Alia A, Prakash S, Diller A, Gast P, Lugtenburg J, Matysik J, Jeschke G (2009) Electron-nuclear spin dynamics in a bacterial photosynthetic reaction center. J Phys Chem C 113:10269–10278

    Article  CAS  Google Scholar 

  16. Jeschke G (1997) Electron–electron-nuclear three-spin mixing in spin-correlated radical pairs. J Chem Phys 106:10072–10086

    Article  CAS  Google Scholar 

  17. Jeschke G (1998) A new mechanism for chemically induced dynamic nuclear polarization in the solid state. J Am Chem Soc 120:4425–4429

    Article  CAS  Google Scholar 

  18. Polenova T, McDermott AE (1999) A coherent mixing mechanism explains the photoinduced nuclear polarization in photosynthetic reaction centers. J Phys Chem B 103:535–548

    Article  CAS  Google Scholar 

  19. Diller A, Prakash S, Alia, Gast P, Matysik J, Jeschke G (2007) Signals in solid-state photochemically induced dynamic nuclear polarization recover faster than with the longitudinal relaxation time. J Phys Chem B 111:10606–10614

    Article  CAS  Google Scholar 

  20. Jeschke G, Matysik J (2003) A reassessment of the origin of photochemically induced dynamic nuclear polarization effects in solids. Chem Phys 294:239–255

    Article  CAS  Google Scholar 

  21. McDermott A, Zysmilich MG, Polenova T (1998) Solid state NMR studies of photoinduced polarization in photosynthetic reaction centers: mechanism and simulations. Sol State Nuc Magn Reson 11:21–47

    Article  CAS  Google Scholar 

  22. Closs GL (1975) On the overhauser mechanism of chemically induced nuclear polarization as suggested by Adrian. Chem Phys Lett 32:277–278

    Article  CAS  Google Scholar 

  23. Goldstein RA, Boxer SG (1987) Effects of nuclear spin polarization on reaction dynamics in photosynthetic bacterial reaction centers. Biophys J 51:937–946

    Article  CAS  Google Scholar 

  24. Hore PJ, Broadhurst RW (1993) Photo-CIDNP of biopolymers. Prog Nucl Magn Reson Spectrosc 25:345–402

    Article  CAS  Google Scholar 

  25. Daviso E, Prakash S, Alia A, Gast P, Neugebauer P, Jeschke G, Matysik J (2009) The electronic structure of the primary electron donor of reaction centers of purple bacteria at the atomic resolution as observed by photo-CIDNP 13C MAS NMR. Proc Natl Acad Sci USA 106:22281–22286

    Article  CAS  Google Scholar 

  26. Jeschke G, Anger BC, Bode BE, Matysik J (2011) Theory of solid-state photo-CIDNP in the Earth’s magnetic field. J Phys Chem A 115:9919–9928

    Article  CAS  Google Scholar 

  27. Sai Sankar Gupta KB (2011) Spin-torch experiments on reaction centers of Rhodobacter sphaeroides. PhD Thesis, Leiden University

    Google Scholar 

  28. Schulten EAM, Matysik J, Alia, Kiihne S, Raap J, Lugtenburg J, Gast P, Hoff AJ, de Groot HJM (2002) 13C MAS NMR and photo-CIDNP reveal a pronounced asymmetry in the electronic ground state of the special pair of Rhodobacter sphaeroides reaction centres. Biochemistry 41:8708–8717

    Article  CAS  Google Scholar 

  29. Kaptein R (1971) Simple rules for chemically induced dynamic nuclear polarization II: relation with anomalous ESR spectra. Chem Commun 732–733

    Google Scholar 

  30. Kaptein R, Dijkstra K, Nicolay K (1978) Laser photo-CIDNP as a surface probe for proteins in solution. Nature 274:293–294

    Article  CAS  Google Scholar 

  31. Richter G, Weber S, Römisch W, Bacher A, Fischer M, Eisenreich W (2005) Photochemically induced dynamic nuclear polarization in a C450A mutant of the LOV2 domain of the Avena sativa blue-light receptor phototropin. J Am Chem Soc 127:17245–17252

    Article  CAS  Google Scholar 

  32. Eisenreich W, Joshi M, Weber S, Bacher A, Fischer MJ (2008) Natural abundance solution 13C NMR studies of a phototropin with photoinduced polarization. J Am Chem Soc 130:13544–13545

    Article  CAS  Google Scholar 

  33. Salomon M, Christie JM, Knieb E, Lempert U, Briggs WR (2000) Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry 39:9401–9410

    Article  CAS  Google Scholar 

  34. Kottke T, Dick B, Fedorov R, Schlichting I, Deutzmann R, Hegemann P (2003) Irreversible photoreduction of flavin in a mutated phot-LOV1 domain. Biochemistry 42:9854–9862

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Matysik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bode, B.E., Thamarath, S.S., Gupta, K.B.S.S., Alia, A., Jeschke, G., Matysik, J. (2012). The Solid-State Photo-CIDNP Effect and Its Analytical Application. In: Kuhn, L. (eds) Hyperpolarization Methods in NMR Spectroscopy. Topics in Current Chemistry, vol 338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_357

Download citation

Publish with us

Policies and ethics