Skip to main content

Endosialidases: Versatile Tools for the Study of Polysialic Acid

  • Chapter
  • First Online:
SialoGlyco Chemistry and Biology II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 367))

Abstract

Polysialic acid is an α2,8-linked N-acetylneuraminic acid polymer found on the surface of both bacterial and eukaryotic cells. Endosialidases are bacteriophage-borne glycosyl hydrolases that specifically cleave polysialic acid. The crystal structure of an endosialidase reveals a trimeric mushroom-shaped molecule which, in addition to the active site, harbors two additional polysialic acid binding sites. Folding of the protein crucially depends on an intramolecular C-terminal chaperone domain that is proteolytically released in an intramolecular reaction. Based on structural data and previous considerations, an updated catalytic mechanism is discussed. Endosialidases degrade polysialic acid in a processive mode of action, and a model for its mechanism is suggested. The review summarizes the structural and biochemical elucidations of the last decade and the importance of endosialidases in biochemical and medical applications. Active endosialidases are important tools in studies on the biological roles of polysialic acid, such as the pathogenesis of septicemia and meningitis by polysialic acid-encapsulated bacteria, or its role as a modulator of the adhesion and interactions of neural and other cells. Endosialidase mutants that have lost their polysialic acid cleaving activity while retaining their polysialic acid binding capability have been fused to green fluorescent protein to provide an efficient tool for the specific detection of polysialic acid.

This work has been supported by grants from the Academy of Finland and the Deutsche Forschungsgemeinschaft.

Elina Jakobsson and David Schwarzer have contributed equally to this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CTD:

C-terminal chaperone domain

endoN:

Endosialidase (endo-N-acylneuraminidase)

NCAM:

Neural cell adhesion molecule

Neu5Ac:

N-Acetylneuraminic acid

Neu5Gc:

N-Glycolylneuraminic acid

Sia:

Sialic acid

References

  1. Barry GT (1958) Colominic acid, a polymer of N-acetylneuraminic acid. J Exp Med 107:507–521

    CAS  Google Scholar 

  2. Reglero A, Rodríguez-Aparicio LB, Luengo JM (1993) Polysialic acids. Int J Biochem 25:1517–1527

    CAS  Google Scholar 

  3. Drake PM, Nathan JK, Stock CM, Chang PV, Muench MO, Nakata D, Reader JR, Gip P, Golden KPK, Weinhold B, Gerardy-Schahn R, Troy FA, Bertozzi CR (2008) Polysialic acid, a glycan with highly restricted expression, is found on human and murine leukocytes and modulates immune responses. J Immunol 181:6850–6858

    CAS  Google Scholar 

  4. Finne J, Finne U, Deagostini-Bazin H, Goridis C (1983) Occurrence of alpha 2–8 linked polysialosyl units in a neural cell adhesion molecule. Biochem Biophys Res Commun 112:482–487

    CAS  Google Scholar 

  5. Rutishauser U (1998) Polysialic acid at the cell surface: biophysics in service of cell interactions and tissue plasticity. J Cell Biochem 70:304–312

    CAS  Google Scholar 

  6. Tanaka F, Otake Y, Nakagawa T, Kawano Y, Miyahara R, Li M, Yanagihara K, Nakayama J, Fujimoto I, Ikenaka K, Wada H (2000) Expression of polysialic acid and STX, a human polysialyltransferase, is correlated with tumor progression in non-small cell lung cancer. Cancer Res 60:3072–3080

    CAS  Google Scholar 

  7. Seidenfaden R, Krauter A, Schertzinger F, Gerardy-Schahn R, Hildebrandt H (2003) Polysialic acid directs tumor cell growth by controlling heterophilic neural cell adhesion molecule interactions. Mol Cell Biol 23:5908–5918

    CAS  Google Scholar 

  8. Cheung IY, Vickers A, Cheung NKV (2006) Sialyltransferase STX (ST8SiaII): a novel molecular marker of metastatic neuroblastoma. Int J Cancer 119:152–156

    CAS  Google Scholar 

  9. Jann K, Jann B (1987) Polysaccharide antigens of Escherichia coli. Rev Infect Dis 9(Suppl 5):S517–S526

    CAS  Google Scholar 

  10. Wyle FA, Artenstein MS, Brandt BL, Tramont EC, Kasper DL, Altieri PL, Berman SL, Lowenthal JP (1972) Immunologic response of man to group B meningococcal polysaccharide vaccines. J Infect Dis 126:514–521

    CAS  Google Scholar 

  11. Sundar MM, Nagananda GS, Das A, Bhattacharya S, Suryan S (2009) Isolation of host-specific bacteriophages from sewage against human pathogens. Asian J Biotechnol 1:163–170

    Google Scholar 

  12. Stummeyer K, Dickmanns A, Mühlenhoff M, Gerardy-Schahn R, Ficner R (2005) Crystal structure of the polysialic acid-degrading endosialidase of bacteriophage K1F. Nat Struct Mol Biol 12:90–96

    CAS  Google Scholar 

  13. Leiman PG, Battisti AJ, Bowman VD, Stummeyer K, Mühlenhoff M, Gerardy-Schahn R, Scholl D, Molineux IJ (2007) The structures of bacteriophages K1E and K1-5 explain processive degradation of polysaccharide capsules and evolution of new host specificities. J Mol Biol 371:836–849

    CAS  Google Scholar 

  14. Mühlenhoff M, Stummeyer K, Grove M, Sauerborn M, Gerardy-Schahn R (2003) Proteolytic processing and oligomerization of bacteriophage-derived endosialidases. J Biol Chem 278:12634–12644

    Google Scholar 

  15. Pelkonen S, Aalto J, Finne J (1992) Differential activities of bacteriophage depolymerase on bacterial polysaccharide: binding is essential but degradation is inhibitory in phage infection of K1-defective Escherichia coli. J Bacteriol 174:7757–7761

    CAS  Google Scholar 

  16. Twort FW (1915) An investigation on the nature of ultramicroscopic viruses. Lancet 186:1241–1243

    Google Scholar 

  17. d’Herelle F (1917) Sur un microbe invisible antagoniste des bacilles dysentériques. Comptes Rendus de 1’ Académie des Sciences (Paris) 165:373–375

    Google Scholar 

  18. Bergh O, Børsheim KY, Bratbak G, Heldal M (1989) High abundance of viruses found in aquatic environments. Nature 340:467–468

    CAS  Google Scholar 

  19. Chibani-Chennoufi S, Canchaya C, Bruttin A, Brüssow H (2004) Comparative genomics of the T4-like Escherichia coli phage JS98: implications for the evolution of T4 phages. J Bacteriol 186:8276–8286

    CAS  Google Scholar 

  20. Brüssow H, Canchaya C, Hardt WD (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602

    Google Scholar 

  21. Ackermann HW (2007) 5500 Phages examined in the electron microscope. Arch Virol 152:227–243

    CAS  Google Scholar 

  22. Ackermann HW (2006) Classification of bacteriophages. In: Calendar R, Abedon ST (eds) The bacteriophages, 2nd edn. Oxford University Press, New York, pp 8–16

    Google Scholar 

  23. Bradley DE (1967) Ultrastructure of bacteriophage and bacteriocins. Bacteriol Rev 31:230–314

    CAS  Google Scholar 

  24. Ackermann HW (1998) Tailed bacteriophages: the order Caudovirales. Adv Virus Res 51:135–201

    CAS  Google Scholar 

  25. Leiman PG, Kanamaru S, Mesyanzhinov VV, Arisaka F, Rossmann MG (2003) Structure and morphogenesis of bacteriophage T4. Cell Mol Life Sci 60:2356–2370

    CAS  Google Scholar 

  26. Mesyanzhinov VV, Leiman PG, Kostyuchenko VA, Kurochkina LP, Miroshnikov KA, Sykilinda NN, Shneider MM (2004) Molecular architecture of bacteriophage T4. Biochemistry (Mosc) 69:1190–1202

    CAS  Google Scholar 

  27. Rossmann MG, Mesyanzhinov VV, Arisaka F, Leiman PG (2004) The bacteriophage T4 DNA injection machine. Curr Opin Struct Biol 14:171–180

    CAS  Google Scholar 

  28. Sayers JR (2006) Bacteriophage T5. In: Calendar R, Abedon ST (eds) The bacteriophages, 2nd edn. Oxford University Press, New York, pp 268–276

    Google Scholar 

  29. Molineux IJ (2006) The T7 group. In: Calendar R, Abedon ST (eds) The bacteriophages, 2nd edn. Oxford University Press, New York, pp 277–301

    Google Scholar 

  30. Steinbacher S, Seckler R, Miller S, Steipe B, Huber R, Reinemer P (1994) Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer. Science 265:383–386

    CAS  Google Scholar 

  31. van Raaij MJ, Schoehn G, Burda MR, Miller S (2001) Crystal structure of a heat and protease-stable part of the bacteriophage T4 short tail fibre. J Mol Biol 314:1137–1146

    Google Scholar 

  32. Kanamaru S, Leiman PG, Kostyuchenko VA, Chipman PR, Mesyanzhinov VV, Arisaka F, Rossmann MG (2002) Structure of the cell-puncturing device of bacteriophage T4. Nature 415:553–557

    CAS  Google Scholar 

  33. Freiberg A, Morona R, den Bosch LV, Jung C, Behlke J, Carlin N, Seckler R, Baxa U (2003) The tailspike protein of Shigella phage Sf6. A structural homolog of salmonella phage P22 tailspike protein without sequence similarity in the beta-helix domain. J Biol Chem 278:1542–1548

    CAS  Google Scholar 

  34. Weigele PR, Scanlon E, King J (2003) Homotrimeric, beta-stranded viral adhesins and tail proteins. J Bacteriol 185:4022–4030

    CAS  Google Scholar 

  35. Stirm S, Freund-Mölbert E (1971) Escherichia coli capsule bacteriophages. II. Morphology. J Virol 8:330–342

    CAS  Google Scholar 

  36. Lindberg AA (1977) Bacterial surface carbohydrates and bacteriophage adsorption. In: Sutherland IW (ed) Surface carbohydrates of the procaryotic cell. Academic, New York, pp 289–356

    Google Scholar 

  37. Sutherland IW (1977) Enzymes acting on bacterial surface carbohydrates. In: Sutherland IW (ed) Surface carbohydrates of the procaryotic cell. Academic, New York, pp 209–245

    Google Scholar 

  38. Scholl D, Adhya S, Merril C (2005) Escherichia coli K1’s capsule is a barrier to bacteriophage T7. Appl Environ Microbiol 71:4872–4874

    CAS  Google Scholar 

  39. Cross AS (1990) The biologic significance of bacterial encapsulation. Curr Top Microbiol Immunol 150:87–95

    CAS  Google Scholar 

  40. Moxon ER, Kroll JS (1990) The role of bacterial polysaccharide capsules as virulence factors. Curr Top Microbiol Immunol 150:65–85

    CAS  Google Scholar 

  41. Taylor CM, Roberts IS (2005) Capsular polysaccharides and their role in virulence. Contrib Microbiol 12:55–66

    CAS  Google Scholar 

  42. Johnson JR (1991) Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev 4:80–128

    CAS  Google Scholar 

  43. Goller CC, Seed PC (2010) Revisiting the Escherichia coli polysaccharide capsule as a virulence factor during urinary tract infection: contribution to intracellular biofilm development. Virulence 1:333–337

    Google Scholar 

  44. Robbins JB, McCracken JGH, Gotschlich EC, Orskov F, Orskov I, Hanson LA (1974) Escherichia coli K1 capsular polysaccharide associated with neonatal meningitis. N Engl J Med 290:1216–1220

    CAS  Google Scholar 

  45. Sarff LD, McCracken GH, Schiffer MS, Glode MP, Robbins JB, Orskov I, Orskov F (1975) Epidemiology of Escherichia coli K1 in healthy and diseased newborns. Lancet 1:1099–1104

    CAS  Google Scholar 

  46. Varki NM, Varki A (2007) Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab Invest 87:851–857

    CAS  Google Scholar 

  47. Barry GT, Goebel WF (1957) Colominic acid, a substance of bacterial origin related to sialic acid. Nature 179:206

    CAS  Google Scholar 

  48. McGuire EJ, Binkley SB (1964) The structure and chemistry of colominic acid. Biochemistry 3:247–251

    CAS  Google Scholar 

  49. Bhattacharjee AK, Jennings HJ, Kenny CP, Martin A, Smith IC (1975) Structural determination of the sialic acid polysaccharide antigens of Neisseria meningitidis serogroups B and C with carbon 13 nuclear magnetic resonance. J Biol Chem 250:1926–1932

    CAS  Google Scholar 

  50. Devi SJN, Schneerson R, Egan W, Vann WF, Robbins JB, Shiloach J (1991) Identity between polysaccharide antigens of Moraxella nonliquefaciens, group B Neisseria meningitidis, and Escherichia coli K1 (non-O acetylated). Infect Immun 59:732–736

    CAS  Google Scholar 

  51. Adlam C, Knights JM, Mugridge A, Williams JM, Lindon JC (1987) Production of colominic acid by Pasteurella haemolytica serotype A2 organism. FEMS Microbiol Lett 42:23–26

    CAS  Google Scholar 

  52. Furowicz AJ, Ørskov F (1972) Two new Escherichia coli O antigens, O150 and O157, and one new K antigen, K92, in strains isolated from veterinary diseases. Acta Pathol Microbiol Scand B Microbiol Immunol 80:441–444

    CAS  Google Scholar 

  53. Zhang Y, Inoue Y, Inoue S, Lee YC (1997) Separation of oligo/polymers of 5-N-acetylneuraminic acid, 5-N-glycolylneuraminic acid, and 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid by high-performance anion-exchange chromatography with pulsed amperometric detector. Anal Biochem 250:245–251

    CAS  Google Scholar 

  54. Egan W, Liu TY, Dorow D, Cohen JS, Robbins JD, Gotschlich EC, Robbins JB (1977) Structural studies on the sialic acid polysaccharide antigen of Escherichia coli strain Bos-12. Biochemistry 16:3687–3692

    CAS  Google Scholar 

  55. Steenbergen SM, Lee YC, Vann WF, Vionnet J, Wright LF, Vimr ER (2006) Separate pathways for O acetylation of polymeric and monomeric sialic acids and identification of sialyl O-acetyl esterase in Escherichia coli K1. J Bacteriol 188:6195–6206

    CAS  Google Scholar 

  56. Bergfeld AK, Claus H, Vogel U, Mühlenhoff M (2007) Biochemical characterization of the polysialic acid-specific O-acetyltransferase NeuO of Escherichia coli K1. J Biol Chem 282:22217–22227

    CAS  Google Scholar 

  57. Bergfeld AK, Claus H, Lorenzen NK, Spielmann F, Vogel U, Mühlenhoff M (2009) The polysialic acid-specific O-acetyltransferase OatC from Neisseria meningitidis serogroup C evolved apart from other bacterial sialate O-acetyltransferases. J Biol Chem 284:6–16

    CAS  Google Scholar 

  58. Finne J (1982) Occurrence of unique polysialosyl carbohydrate units in glycoproteins of developing brain. J Biol Chem 257:11966–11970

    CAS  Google Scholar 

  59. Zuber C, Lackie PM, Catterall WA, Roth J (1992) Polysialic acid is associated with sodium channels and the neural cell adhesion molecule N-CAM in adult rat brain. J Biol Chem 267:9965–9971

    CAS  Google Scholar 

  60. Yabe U, Sato C, Matsuda T, Kitajima K (2003) Polysialic acid in human milk. CD36 is a new member of mammalian polysialic acid-containing glycoprotein. J Biol Chem 278:13875–13880

    CAS  Google Scholar 

  61. Moebius JM, Widera D, Schmitz J, Kaltschmidt C, Piechaczek C (2007) Impact of polysialylated CD56 on natural killer cell cytotoxicity. BMC Immunol 8:13

    Google Scholar 

  62. Curreli S, Arany Z, Gerardy-Schahn R, Mann D, Stamatos NM (2007) Polysialylated neuropilin-2 is expressed on the surface of human dendritic cells and modulates dendritic cell-T lymphocyte interactions. J Biol Chem 282:30346–30356

    CAS  Google Scholar 

  63. Galuska SP, Rollenhagen M, Kaup M, Eggers K, Oltmann-Norden I, Schiff M, Hartmann M, Weinhold B, Hildebrandt H, Geyer R, Mühlenhoff M, Geyer H (2010) Synaptic cell adhesion molecule SynCAM 1 is a target for polysialylation in postnatal mouse brain. Proc Natl Acad Sci USA 107:10250–10255

    CAS  Google Scholar 

  64. Finne J, Leinonen M, Mäkelä PH (1983) Antigenic similarities between brain components and bacteria causing meningitis. Implications for vaccine development and pathogenesis. Lancet 322:355–357

    Google Scholar 

  65. Frosch M, Roberts I, Görgen I, Metzger S, Boulnois GJ, Bitter-Suermann D (1987) Serotyping and genotyping of encapsulated Escherichia coli K1 sepsis isolates with a monoclonal IgG anti K1 antibody and K1 gene probes. Microb Pathog 2:319–326

    CAS  Google Scholar 

  66. Prasadarao NV, Wass CA, Weiser JN, Stins MF, Huang SH, Kim KS (1996) Outer membrane protein A of Escherichia coli contributes to invasion of brain microvascular endothelial cells. Infect Immun 64:146–153

    CAS  Google Scholar 

  67. Jódar L, Feavers IM, Salisbury D, Granoff DM (2002) Development of vaccines against meningococcal disease. Lancet 359:1499–1508

    Google Scholar 

  68. Gross RJ, Cheasty T, Rowe B (1977) Isolation of bacteriophages specific for the K1 polysaccharide antigen of Escherichia coli. J Clin Microbiol 6:548–550

    CAS  Google Scholar 

  69. Jakobsson E, Jokilammi A, Aalto J, Ollikka P, Lehtonen JV, Hirvonen H, Finne J (2007) Identification of amino acid residues at the active site of endosialidase that dissociate the polysialic acid binding and cleaving activities in Escherichia coli K1 bacteriophages. Biochem J 405:465–472

    CAS  Google Scholar 

  70. Long GS, Bryant JM, Taylor PW, Luzio JP (1995) Complete nucleotide sequence of the gene encoding bacteriophage E endosialidase: implication for K1E endosialidase structure and function. Biochem J 309:543–550

    CAS  Google Scholar 

  71. Gerardy-Schahn R, Bethe A, Brennecke T, Mühlenhoff M, Eckhardt M, Ziesing S, Lottspeich F, Frosch M (1995) Molecular cloning and functional expression of bacteriophage PK1E-encoded endoneuraminidase Endo NE. Mol Microbiol 16:441–450

    CAS  Google Scholar 

  72. Kwiatkowski B, Boschek B, Thiele H, Stirm S (1982) Endo-N-acetylneuraminidase associated with bacteriophage particles. J Virol 43:697–704

    CAS  Google Scholar 

  73. Smith HW, Huggins MB (1982) Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. J Gen Microbiol 128:307–318

    CAS  Google Scholar 

  74. Kwiatkowski B, Boschek B, Thiele H, Stirm S (1983) Substrate specificity of two bacteriophage-associated endo-N-acetylneuraminidases. J Virol 45:367–374

    CAS  Google Scholar 

  75. Vimr ER, McCoy RD, Vollger HF, Wilkison NC, Troy FA (1984) Use of prokaryotic-derived probes to identify poly(sialic acid) in neonatal neuronal membranes. Proc Natl Acad Sci USA 81:1971–1975

    CAS  Google Scholar 

  76. Petter JG, Vimr ER (1993) Complete nucleotide sequence of the bacteriophage K1F tail gene encoding endo-N-acylneuraminidase (endo-N) and comparison to an endo-N homolog in bacteriophage PK1E. J Bacteriol 175:4354–4363

    CAS  Google Scholar 

  77. Miyake K, Muraki T, Hattori K, Machida Y, Watanabe M, Kawase M, Yoshida Y, Iijima S (1997) Screening of bacteriophages producing endo-N-acetylneuraminidase. J Ferment Bioeng 84:90–93

    CAS  Google Scholar 

  78. Machida Y, Hattori K, Miyake K, Kawase Y, Kawase M, Iijima S (2000) Molecular cloning and characterization of a novel bacteriophage-associated sialidase. J Biosci Bioeng 90:62–68

    CAS  Google Scholar 

  79. Scholl D, Rogers S, Adhya S, Merril CR (2001) Bacteriophage K1-5 encodes two different tail fiber proteins, allowing it to infect and replicate on both K1 and K5 strains of Escherichia coli. J Virol 75:2509–2515

    CAS  Google Scholar 

  80. Deszo EL, Steenbergen SM, Freedberg DI, Vimr ER (2005) Escherichia coli K1 polysialic acid O-acetyltransferase gene, neuO, and the mechanism of capsule form variation involving a mobile contingency locus. Proc Natl Acad Sci USA 102:5564–5569

    CAS  Google Scholar 

  81. Stummeyer K, Schwarzer D, Claus H, Vogel U, Gerardy-Schahn R, Mühlenhoff M (2006) Evolution of bacteriophages infecting encapsulated bacteria: lessons from Escherichia coli K1-specific phages. Mol Microbiol 60:1123–1135

    CAS  Google Scholar 

  82. Chen SL, Hung CS, Xu J, Reigstad CS, Magrini V, Sabo A, Blasiar D, Bieri T, Meyer RR, Ozersky P, Armstrong JR, Fulton RS, Latreille JP, Spieth J, Hooton TM, Mardis ER, Hultgren SJ, Gordon JI (2006) Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: a comparative genomics approach. Proc Natl Acad Sci USA 103:5977–5982

    CAS  Google Scholar 

  83. Johnson TJ, Kariyawasam S, Wannemuehler Y, Mangiamele P, Johnson SJ, Doetkott C, Skyberg JA, Lynne AM, Johnson JR, Nolan LK (2007) The genome sequence of avian pathogenic Escherichia coli strain O1:K1:H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. J Bacteriol 189:3228–3236

    CAS  Google Scholar 

  84. Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, Bingen E, Bonacorsi S, Bouchier C, Bouvet O, Calteau A, Chiapello H, Clermont O, Cruveiller S, Danchin A, Diard M, Dossat C, Karoui ME, Frapy E, Garry L, Ghigo JM, Gilles AM, Johnson J, Bouguénec CL, Lescat M, Mangenot S, Martinez-Jéhanne V, Matic I, Nassif X, Oztas S, Petit MA, Pichon C, Rouy Z, Ruf CS, Schneider D, Tourret J, Vacherie B, Vallenet D, Médigue C, Rocha EPC, Denamur E (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5:e1000344

    Google Scholar 

  85. Moriel DG, Bertoldi I, Spagnuolo A, Marchi S, Rosini R, Nesta B, Pastorello I, Corea VAM, Torricelli G, Cartocci E, Savino S, Scarselli M, Dobrindt U, Hacker J, Tettelin H, Tallon LJ, Sullivan S, Wieler LH, Ewers C, Pickard D, Dougan G, Fontana MR, Rappuoli R, Pizza M, Serino L (2010) Identification of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic Escherichia coli. Proc Natl Acad Sci USA 107:9072–9077

    CAS  Google Scholar 

  86. Bull JJ, Vimr ER, Molineux IJ (2010) A tale of tails: sialidase is key to success in a model of phage therapy against K1-capsulated Escherichia coli. Virology 398:79–86

    CAS  Google Scholar 

  87. Krause DO, Little AC, Dowd SE, Bernstein CN (2011) Complete genome sequence of adherent invasive Escherichia coli UM146 isolated from ileal Crohn’s disease biopsy tissue. J Bacteriol 193:583

    CAS  Google Scholar 

  88. Steinbacher S, Baxa U, Miller S, Weintraub A, Seckler R, Huber R (1996) Crystal structure of phage P22 tailspike protein complexed with Salmonella sp. O-antigen receptors. Proc Natl Acad Sci USA 93:10584–10588

    CAS  Google Scholar 

  89. Müller JJ, Barbirz S, Heinle K, Freiberg A, Seckler R, Heinemann U (2008) An intersubunit active site between supercoiled parallel beta helices in the trimeric tailspike endorhamnosidase of Shigella flexneri Phage Sf6. Structure 16:766–775

    Google Scholar 

  90. Barbirz S, Müller JJ, Uetrecht C, Clark AJ, Heinemann U, Seckler R (2008) Crystal structure of Escherichia coli phage HK620 tailspike: podoviral tailspike endoglycosidase modules are evolutionarily related. Mol Microbiol 69:303–316

    CAS  Google Scholar 

  91. Li YT, Nakagawa H, Ross SA, Hansson GC, Li SC (1990) A novel sialidase which releases 2,7-anhydro-alpha-N-acetylneuraminic acid from sialoglycoconjugates. J Biol Chem 265:21629–21633

    CAS  Google Scholar 

  92. Hirst GK (1942) Adsorption of influenza hemagglutinins and virus by red blood cells. J Exp Med 76:195–209

    CAS  Google Scholar 

  93. Stirm S (1968) Escherichia coli K bacteriophages. I. Isolation and introductory characterization of five Escherichia coli K bacteriophages. J Virol 2:1107–1114

    CAS  Google Scholar 

  94. Stirm S, Bessler W, Fehmel F, Freund-Mölbert E (1971) Bacteriophage particles with endo-glycosidase activity. J Virol 8:343–346

    CAS  Google Scholar 

  95. Cabezas JA (1991) Some questions and suggestions on the type references of the official nomenclature (IUB) for sialidase (s) and endosialidase. Biochem J 278(Pt 1):311–312

    CAS  Google Scholar 

  96. Kitajima K, Inoue S, Inoue Y, Troy FA (1988) Use of a bacteriophage-derived endo-N-acetylneuraminidase and an equine antipolysialyl antibody to characterize the polysialyl residues in salmonid fish egg polysialoglycoproteins. Substrate and immunospecificity studies. J Biol Chem 263:18269–18276

    CAS  Google Scholar 

  97. Uchida Y, Tsukada Y, Sugimori T (1979) Enzymatic properties of neuraminidases from Arthrobacter ureafaciens. J Biochem 86:1573–1585

    CAS  Google Scholar 

  98. Cheng MC, Lin CH, Lin HJ, Yu YP, Wu SH (2004) Hydrolysis, lactonization, and identification of alpha(2 –>8)/alpha(2 –>9) alternatively linked tri-, tetra-, and polysialic acids. Glycobiology 14:147–155

    CAS  Google Scholar 

  99. Kwiatkowski B, Stirm S (1987) Polysialic acid depolymerase. Methods Enzymol 138:786–792

    CAS  Google Scholar 

  100. Orskov F, Orskov I, Sutton A, Schneerson R, Lin W, Egan W, Hoff GE, Robbins JB (1979) Form variation in Escherichia coli K1: determined by O-acetylation of the capsular polysaccharide. J Exp Med 149:669–685

    CAS  Google Scholar 

  101. Tomlinson S, Taylor PW (1985) Neuraminidase associated with coliphage E that specifically depolymerizes the Escherichia coli K1 capsular polysaccharide. J Virol 55:374–378

    CAS  Google Scholar 

  102. Finne J, Mäkelä PH (1985) Cleavage of the polysialosyl units of brain glycoproteins by a bacteriophage endosialidase. Involvement of a long oligosaccharide segment in molecular interactions of polysialic acid. J Biol Chem 260:1265–1270

    CAS  Google Scholar 

  103. Pelkonen S, Pelkonen J, Finne J (1989) Common cleavage pattern of polysialic acid by bacteriophage endosialidases of different properties and origins. J Virol 63:4409–4416

    CAS  Google Scholar 

  104. Hallenbeck PC, Vimr ER, Yu F, Bassler B, Troy FA (1987) Purification and properties of a bacteriophage-induced endo-N-acetylneuraminidase specific for poly-alpha-2,8-sialosyl carbohydrate units. J Biol Chem 262:3553–3561

    CAS  Google Scholar 

  105. Schwarzer D, Stummeyer K, Haselhorst T, Freiberger F, Rode B, Grove M, Scheper T, von Itzstein M, Mühlenhoff M, Gerardy-Schahn R (2009) Proteolytic release of the intramolecular chaperone domain confers processivity to endosialidase F. J Biol Chem 284:9465–9474

    CAS  Google Scholar 

  106. Schulz EC, Schwarzer D, Frank M, Stummeyer K, Mühlenhoff M, Dickmanns A, Gerardy-Schahn R, Ficner R (2010) Structural basis for the recognition and cleavage of polysialic acid by the bacteriophage K1F tailspike protein EndoNF. J Mol Biol 397:341–351

    CAS  Google Scholar 

  107. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Google Scholar 

  108. Vimr ER, Aaronson W, Silver RP (1989) Genetic analysis of chromosomal mutations in the polysialic acid gene cluster of Escherichia coli K1. J Bacteriol 171:1106–1117

    CAS  Google Scholar 

  109. Schulz EC, Dickmanns A, Urlaub H, Schmitt A, Mühlenhoff M, Stummeyer K, Schwarzer D, Gerardy-Schahn R, Ficner R (2010) Crystal structure of an intramolecular chaperone mediating triple-beta-helix folding. Nat Struct Mol Biol 17:210–215

    CAS  Google Scholar 

  110. Schwarzer D (2008) Characterisation of bacteriophage-derived tailspike and tail fibre proteins. Ph.D. thesis. Leibniz University Hannover. Hannover. (http://edok01.tib.uni-hannover.de/edoks/e01dh08/564826944.pdf)

  111. Pajunen M, Kiljunen S, Skurnik M (2000) Bacteriophage phiYeO3-12, specific for Yersinia enterocolitica serotype O:3, is related to coliphages T3 and T7. J Bacteriol 182:5114–5120

    CAS  Google Scholar 

  112. Schwarzer D, Stummeyer K, Gerardy-Schahn R, Mühlenhoff M (2007) Characterization of a novel intramolecular chaperone domain conserved in endosialidases and other bacteriophage tail spike and fiber proteins. J Biol Chem 282:2821–2831

    CAS  Google Scholar 

  113. Schulz EC, Neumann P, Gerardy-Schahn R, Sheldrick GM, Ficner R (2010) Structure analysis of endosialidase NF at 0.98 A resolution. Acta Crystallogr D Biol Crystallogr 66:176–180

    CAS  Google Scholar 

  114. Crennell SJ, Garman EF, Laver WG, Vimr ER, Taylor GL (1993) Crystal structure of a bacterial sialidase (from Salmonella typhimurium LT2) shows the same fold as an influenza virus neuraminidase. Proc Natl Acad Sci USA 90:9852–9856

    CAS  Google Scholar 

  115. Newstead SL, Potter JA, Wilson JC, Xu G, Chien CH, Watts AG, Withers SG, Taylor GL (2008) The structure of Clostridium perfringens NanI sialidase and its catalytic intermediates. J Biol Chem 283:9080–9088

    CAS  Google Scholar 

  116. Gaskell A, Crennell S, Taylor G (1995) The three domains of a bacterial sialidase: a beta-propeller, an immunoglobulin module and a galactose-binding jelly-roll. Structure 3:1197–1205

    CAS  Google Scholar 

  117. Luo Y, Li SC, Chou MY, Li YT, Luo M (1998) The crystal structure of an intramolecular trans-sialidase with a NeuAc alpha2–>3 Gal specificity. Structure 6:521–530

    CAS  Google Scholar 

  118. Moustafa I, Connaris H, Taylor M, Zaitsev V, Wilson JC, Kiefel MJ, von Itzstein M, Taylor G (2004) Sialic acid recognition by Vibrio cholerae neuraminidase. J Biol Chem 279:40819–40826

    CAS  Google Scholar 

  119. Buschiazzo A, Tavares GA, Campetella O, Spinelli S, Cremona ML, Paris G, Amaya MF, Frasch AC, Alzari PM (2000) Structural basis of sialyltransferase activity in trypanosomal sialidases. EMBO J 19:16–24

    CAS  Google Scholar 

  120. Buschiazzo A, Amaya MF, Cremona ML, Frasch AC, Alzari PM (2002) The crystal structure and mode of action of trans-sialidase, a key enzyme in Trypanosoma cruzi pathogenesis. Mol Cell 10:757–768

    CAS  Google Scholar 

  121. Thobhani S, Ember B, Siriwardena A, Boons GJ (2003) Multivalency and the mode of action of bacterial sialidases. J Am Chem Soc 125:7154–7155

    CAS  Google Scholar 

  122. Olia AS, Casjens S, Cingolani G (2007) Structure of phage P22 cell envelope-penetrating needle. Nat Struct Mol Biol 14:1221–1226

    CAS  Google Scholar 

  123. Manning M, Colón W (2004) Structural basis of protein kinetic stability: resistance to sodium dodecyl sulfate suggests a central role for rigidity and a bias toward beta-sheet structure. Biochemistry 43:11248–11254

    CAS  Google Scholar 

  124. Weigele PR, Haase-Pettingell C, Campbell PG, Gossard DC, King J (2005) Stalled folding mutants in the triple beta-helix domain of the phage P22 tailspike adhesion. J Mol Biol 354:1103–1117

    CAS  Google Scholar 

  125. Botstein D (1980) A theory of modular evolution for bacteriophages. Ann N Y Acad Sci 354:484–490

    CAS  Google Scholar 

  126. Casjens SR (2005) Comparative genomics and evolution of the tailed-bacteriophages. Curr Opin Microbiol 8:451–458

    CAS  Google Scholar 

  127. Morley TJ, Willis LM, Whitfield C, Wakarchuk WW, Withers SG (2009) A new sialidase mechanism: bacteriophage K1F endo-sialidase is an inverting glycosidase. J Biol Chem 284:17404–17410

    CAS  Google Scholar 

  128. Friebolin H, Brossmer R, Keilich G, Ziegler D, Supp M (1980) 1H-NMR-Spectroscopic evidence for the release of N-acetyl-alpha-D-neuraminic acid as the first product of neuraminidase action (author’s transl). Hoppe Seylers Z Physiol Chem 361:697–702

    CAS  Google Scholar 

  129. Todeschini AR, Mendonça-Previato L, Previato JO, Varki A, van Halbeek H (2000) Trans-sialidase from Trypanosoma cruzi catalyzes sialoside hydrolysis with retention of configuration. Glycobiology 10:213–221

    CAS  Google Scholar 

  130. Manzi AE, Higa HH, Diaz S, Varki A (1994) Intramolecular self-cleavage of polysialic acid. J Biol Chem 269:23617–23624

    CAS  Google Scholar 

  131. Yamasaki R, Bacon B (1991) Three-dimensional structural analysis of the group B polysaccharide of Neisseria meningitides 6275 by two-dimensional NMR: the polysaccharide is suggested to exist in helical conformations in solution. Biochemistry 30:851–857

    CAS  Google Scholar 

  132. Brisson JR, Baumann H, Imberty A, Pérez S, Jennings HJ (1992) Helical epitope of the group B meningococcal alpha(2–8)-linked sialic acid polysaccharide. Biochemistry 31:4996–5004

    CAS  Google Scholar 

  133. Azurmendi HF, Vionnet J, Wrightson L, Trinh LB, Shiloach J, Freedberg DI (2007) Extracellular structure of polysialic acid explored by on cell solution NMR. Proc Natl Acad Sci USA 104:11557–11561

    CAS  Google Scholar 

  134. Michon F, Brisson JR, Jennings HJ (1987) Conformational differences between linear alpha (2–8)-linked homosialooligosaccharides and the epitope of the group B meningococcal polysaccharide. Biochemistry 26:8399–8405

    CAS  Google Scholar 

  135. Haselhorst T, Stummeyer K, Mühlenhoff M, Schaper W, Gerardy-Schahn R, von Itzstein M (2006) Endosialidase NF appears to bind polySia DP5 in a helical conformation. Chembiochem 7:1875–1877

    CAS  Google Scholar 

  136. Schulz EC, Ficner R (2011) Knitting and snipping: chaperones in β-helix folding. Curr Opin Struct Biol 21:232–239

    CAS  Google Scholar 

  137. Xiang Y, Leiman PG, Li L, Grimes S, Anderson DL, Rossmann MG (2009) Crystallographic insights into the autocatalytic assembly mechanism of a bacteriophage tail spike. Mol Cell 34:375–386

    Google Scholar 

  138. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  Google Scholar 

  139. Marvik OJ, Jacobsen E, Dokland T, Lindqvist BH (1994) Bacteriophage P2 and P4 morphogenesis: assembly precedes proteolytic processing of the capsid proteins. Virology 205:51–65

    CAS  Google Scholar 

  140. Conway JF, Duda RL, Cheng N, Hendrix RW, Steven AC (1995) Proteolytic and conformational control of virus capsid maturation: the bacteriophage HK97 system. J Mol Biol 253:86–99

    CAS  Google Scholar 

  141. Wang S, Chandramouli P, Butcher S, Dokland T (2003) Cleavage leads to expansion of bacteriophage P4 procapsids in vitro. Virology 314:1–8

    CAS  Google Scholar 

  142. Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W (2003) Bacteriophage T4 genome. Microbiol Mol Biol Rev 67:86–156, table of contents

    CAS  Google Scholar 

  143. Cunningham EL, Jaswal SS, Sohl JL, Agard DA (1999) Kinetic stability as a mechanism for protease longevity. Proc Natl Acad Sci USA 96:11008–11014

    CAS  Google Scholar 

  144. Bayer ME, Thurow H, Bayer MH (1979) Penetration of the polysaccharide capsule of Escherichia coli (Bi161/42) by bacteriophage K29. Virology 94:95–118

    CAS  Google Scholar 

  145. Leiman PG, Molineux IJ (2008) Evolution of a new enzyme activity from the same motif fold. Mol Microbiol 69:287–290

    CAS  Google Scholar 

  146. Koivula A, Kinnari T, Harjunpää V, Ruohonen L, Teleman A, Drakenberg T, Rouvinen J, Jones TA, Teeri TT (1998) Tryptophan 272: an essential determinant of crystalline cellulose degradation by Trichoderma reesei cellobiohydrolase Cel6A. FEBS Lett 429:341–346

    CAS  Google Scholar 

  147. Zhang S, Irwin DC, Wilson DB (2000) Site-directed mutation of noncatalytic residues of Thermobifida fusca exocellulase Ce16B. Eur J Biochem 267:3101–3115

    CAS  Google Scholar 

  148. Watanabe T, Ariga Y, Sato U, Toratani T, Hashimoto M, Nikaidou N, Kezuka Y, Nonaka T, Sugiyama J (2003) Aromatic residues within the substrate-binding cleft of Bacillus circulans chitinase A1 are essential for hydrolysis of crystalline chitin. Biochem J 376:237–244

    CAS  Google Scholar 

  149. Katouno F, Taguchi M, Sakurai K, Uchiyama T, Nikaidou N, Nonaka T, Sugiyama J, Watanabe T (2004) Importance of exposed aromatic residues in chitinase B from Serratia marcescens 2170 for crystalline chitin hydrolysis. J Biochem 136:163–168

    CAS  Google Scholar 

  150. Eijsink VGH, Vaaje-Kolstad G, Vårum KM, Horn SJ (2008) Towards new enzymes for biofuels: lessons from chitinase research. Trends Biotechnol 26:228–235

    CAS  Google Scholar 

  151. Horn SJ, Sikorski P, Cederkvist JB, Vaaje-Kolstad G, Sørlie M, Synstad B, Vriend G, Vårum KM, Eijsink VGH (2006) Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides. Proc Natl Acad Sci USA 103:18089–18094

    CAS  Google Scholar 

  152. Nimmich W, Zingler G (1984) Biochemical characteristics, phage patterns, and O1 factor analysis of Escherichia coli O1:K1:H7:F11 and O1:K1:H-:F9 strains isolated from patients with urinary tract infections. Med Microbiol Immunol 173:75–85

    CAS  Google Scholar 

  153. Rutishauser U, Watanabe M, Silver J, Troy FA, Vimr ER (1985) Specific alteration of NCAM-mediated cell adhesion by an endoneuraminidase. J Cell Biol 101:1842–1849

    CAS  Google Scholar 

  154. Leggate DR, Bryant JM, Redpath MB, Head D, Taylor PW, Luzio JP (2002) Expression, mutagenesis and kinetic analysis of recombinant K1E endosialidase to define the site of proteolytic processing and requirements for catalysis. Mol Microbiol 44:749–760

    CAS  Google Scholar 

  155. Pelkonen S, Häyrinen J, Finne J (1988) Polyacrylamide gel electrophoresis of the capsular polysaccharides of Escherichia coli K1 and other bacteria. J Bacteriol 170:2646–2653

    CAS  Google Scholar 

  156. Sato C, Inoue S, Matsuda T, Kitajima K (1998) Development of a highly sensitive chemical method for detecting alpha2–>8-linked oligo/polysialic acid residues in glycoproteins blotted on the membrane. Anal Biochem 261:191–197

    CAS  Google Scholar 

  157. Liedtke S, Geyer H, Wuhrer M, Geyer R, Frank G, Gerardy-Schahn R, Zähringer U, Schachner M (2001) Characterization of N-glycans from mouse brain neural cell adhesion molecule. Glycobiology 11:373–384

    CAS  Google Scholar 

  158. Calandreau L, Márquez C, Bisaz R, Fantin M, Sandi C (2010) Differential impact of polysialyltransferase ST8SiaII and ST8SiaIV knockout on social interaction and aggression. Genes Brain Behav 9:958–967

    CAS  Google Scholar 

  159. Galuska SP, Geyer R, Gerardy-Schahn R, Mühlenhoff M, Geyer H (2008) Enzyme-dependent variations in the polysialylation of the neural cell adhesion molecule (NCAM) in vivo. J Biol Chem 283:17–28

    CAS  Google Scholar 

  160. Frosch M, Görgen I, Boulnois GJ, Timmis KN, Bitter-Suermann D (1985) NZB mouse system for production of monoclonal antibodies to weak bacterial antigens: isolation of an IgG antibody to the polysaccharide capsules of Escherichia coli K1 and group B meningococci. Proc Natl Acad Sci USA 82:1194–1198

    CAS  Google Scholar 

  161. Brusés JL, Rutishauser U (2000) Polysialic acid in neural cell development: roles, regulation and mechanism. In: Fukuda M, Hindsgaul O (eds) Molecular and cellular glycobiology. Oxford University Press, New York, pp 116–132

    Google Scholar 

  162. Daston MM, Bastmeyer M, Rutishauser U, O’Leary DD (1996) Spatially restricted increase in polysialic acid enhances corticospinal axon branching related to target recognition and innervation. J Neurosci 16:5488–5497

    CAS  Google Scholar 

  163. Seki T, Rutishauser U (1998) Removal of polysialic acid-neural cell adhesion molecule induces aberrant mossy fiber innervation and ectopic synaptogenesis in the hippocampus. J Neurosci 18:3757–3766

    CAS  Google Scholar 

  164. Becker CG, Artola A, Gerardy-Schahn R, Becker T, Welzl H, Schachner M (1996) The polysialic acid modification of the neural cell adhesion molecule is involved in spatial learning and hippocampal long-term potentiation. J Neurosci Res 45:143–152

    CAS  Google Scholar 

  165. Dityatev A, Dityateva G, Schachner M (2000) Synaptic strength as a function of post- versus presynaptic expression of the neural cell adhesion molecule NCAM. Neuron 26:207–217

    CAS  Google Scholar 

  166. Aalto J, Pelkonen S, Kalimo H, Finne J (2001) Mutant bacteriophage with non-catalytic endosialidase binds to both bacterial and eukaryotic polysialic acid and can be used as probe for its detection. Glycoconj J 18:751–758

    CAS  Google Scholar 

  167. Durbec P, Cremer H (2001) Revisiting the function of PSA-NCAM in the nervous system. Mol Neurobiol 24:53–64

    CAS  Google Scholar 

  168. Jokilammi A, Ollikka P, Korja M, Jakobsson E, Loimaranta V, Haataja S, Hirvonen H, Finne J (2004) Construction of antibody mimics from a noncatalytic enzyme-detection of polysialic acid. J Immunol Methods 295:149–160

    CAS  Google Scholar 

  169. Dityatev A, Dityateva G, Sytnyk V, Delling M, Toni N, Nikonenko I, Muller D, Schachner M (2004) Polysialylated neural cell adhesion molecule promotes remodeling and formation of hippocampal synapses. J Neurosci 24:9372–9382

    CAS  Google Scholar 

  170. Weinhold B, Seidenfaden R, Röckle I, Mühlenhoff M, Schertzinger F, Conzelmann S, Marth JD, Gerardy-Schahn R, Hildebrandt H (2005) Genetic ablation of polysialic acid causes severe neurodevelopmental defects rescued by deletion of the neural cell adhesion molecule. J Biol Chem 280:42971–42977

    CAS  Google Scholar 

  171. Burgess A, Weng YQ, Ypsilanti AR, Cui X, Caines G, Aubert I (2007) Polysialic acid limits septal neurite outgrowth on laminin. Brain Res 1144:52–58

    CAS  Google Scholar 

  172. Freiberger F, Claus H, Günzel A, Oltmann-Norden I, Vionnet J, Mühlenhoff M, Vogel U, Vann WF, Gerardy-Schahn R, Stummeyer K (2007) Bio-chemical characterization of a Neisseria meningitidis polysialyltransferase reveals novel functional motifs in bacterial sialyltransferases. Mol Microbiol 65:1258–1275

    CAS  Google Scholar 

  173. Oltmann-Norden I, Galuska SP, Hildebrandt H, Geyer R, Gerardy-Schahn R, Geyer H, Mühlenhoff M (2008) Impact of the polysialyltransferases ST8SiaII and ST8SiaIV on polysialic acid synthesis during postnatal mouse brain development. J Biol Chem 283:1463–1471

    CAS  Google Scholar 

  174. Hildebrandt H, Mühlenhoff M, Gerardy-Schahn R (2010) Polysialylation of NCAM. Adv Exp Med Biol 663:95–109

    CAS  Google Scholar 

  175. Kiss JZ, Wang C, Olive S, Rougon G, Lang J, Baetens D, Harry D, Pralong WF (1994) Activity-dependent mobilization of the adhesion molecule polysialic NCAM to the cell surface of neurons and endocrine cells. EMBO J 13:5284–5292

    CAS  Google Scholar 

  176. Garcia-Segura LM, Cañas B, Parducz A, Rougon G, Theodosis D, Naftolin F, Torres-Aleman I (1995) Estradiol promotion of changes in the morphology of astroglia growing in culture depends on the expression of polysialic acid of neural membranes. Glia 13:209–216

    CAS  Google Scholar 

  177. Wang C, Rougon G, Kiss JZ (1994) Requirement of polysialic acid for the migration of the O-2A glial progenitor cell from neurohypophyseal explants. J Neurosci 14:4446–4457

    CAS  Google Scholar 

  178. Meyer-Franke A, Shen S, Barres BA (1999) Astrocytes induce oligodendrocyte processes to align with and adhere to axons. Mol Cell Neurosci 14:385–397

    CAS  Google Scholar 

  179. Berski S, van Bergeijk J, Schwarzer D, Stark Y, Kasper C, Scheper T, Grothe C, Gerardy-Schahn R, Kirschning A, Dräger G (2008) Synthesis and biological evaluation of a polysialic acid-based hydrogel as enzymatically degradable scaffold material for tissue engineering. Biomacromolecules 9:2353–2359

    CAS  Google Scholar 

  180. Haile Y, Berski S, Dräger G, Nobre A, Stummeyer K, Gerardy-Schahn R, Grothe C (2008) The effect of modified polysialic acid based hydrogels on the adhesion and viability of primary neurons and glial cells. Biomaterials 29:1880–1891

    CAS  Google Scholar 

  181. Haastert-Talini K, Schaper-Rinkel J, Schmitte R, Bastian R, Mühlenhoff M, Schwarzer D, Draeger G, Su Y, Scheper T, Gerardy-Schahn R, Grothe C (2010) In vivo evaluation of polysialic acid as part of tissue-engineered nerve transplants. Tissue Eng Part A 16:3085–3098

    CAS  Google Scholar 

  182. Steinhaus S, Stark Y, Bruns S, Haile Y, Scheper T, Grothe C, Behrens P (2010) Polysialic acid immobilized on silanized glass surfaces: a test case for its use as a biomaterial for nerve regeneration. J Mater Sci Mater Med 21:1371–1378

    CAS  Google Scholar 

  183. Franz CK, Rutishauser U, Rafuse VF (2008) Intrinsic neuronal properties control selective targeting of regenerating motoneurons. Brain 131:1492–1505

    Google Scholar 

  184. James WM, Agnew WS (1987) Multiple oligosaccharide chains in the voltage-sensitive Na channel from electrophorus electricus: evidence for alpha-2,8-linked polysialic acid. Biochem Biophys Res Commun 148:817–826

    CAS  Google Scholar 

  185. Lanier LL, Testi R, Bindl J, Phillips JH (1989) Identity of Leu-19 (CD56) leukocyte differentiation antigen and neural cell adhesion molecule. J Exp Med 169:2233–2238

    CAS  Google Scholar 

  186. Avril T, North SJ, Haslam SM, Willison HJ, Crocker PR (2006) Probing the cis interactions of the inhibitory receptor Siglec-7 with alpha2,8-disialyated ligands on natural killer cells and other leukocytes using glycan-specific antibodies and by analysis of alpha2,8-sialytransferase gene expression. J Leukoc Biol 80:787–796

    CAS  Google Scholar 

  187. Rey-Gallardo A, Delgado-Martí C, Gerardy-Schahn R, Rodríguez-Fernández JL, Vega MA (2011) Polysialic acid is required for neuropilin2a/b-mediated control of CCL21-driven chemotaxis of mature dendritic cells and for their migration in vivo. Glycobiology 21:655–662

    CAS  Google Scholar 

  188. Rey-Gallardo A, Escribano C, Delgado-Martín C, Rodriguez-Fernández JL, Gerardy-Schahn R, Rutishauser U, Corbi AL, Vega MA (2010) Polysialylated neuropilin-2 enhances human dendritic cell migration through the basic C-terminal region of CCL21. Glycobiology 20:1139–1146

    CAS  Google Scholar 

  189. Hildebrandt H, Becker C, Mürau M, Gerardy-Schahn R, Rahmann H (1998) Heterogeneous expression of the polysialytransferases ST8Sia II and ST8Sia IV during postnatal rat brain development. J Neurochem 71:2339–2348

    CAS  Google Scholar 

  190. Lantuejoul S, Moro D, Michalides RJ, Brambilla C, Brambilla E (1998) Neural cell adhesion molecues (NCAM) and NCAM-PSA expression in neuroendocrine lung tumors. Am J Surg Pathol 22:1267–1276

    CAS  Google Scholar 

  191. Roth J, Zuber C, Wagner P, Taatjes DJ, Weisgerber C, Heitz PU, Goridis C, Bitter-Suermann D (1988) Reexpression of poly(sialic acid) units of the neural cell adhesion molecule in Wilms tumor. Proc Natl Acad Sci USA 85:2999–3003

    CAS  Google Scholar 

  192. Roesler J, Srivatsan E, Moetamed F, Peters J, Livingston EH (1997) Tumor suppressor activity of neural cell adhension molecule in colon carcinoma. Am J Surg 174:251–257

    CAS  Google Scholar 

  193. Tezel E, Kawase Y, Takeda S, Oshima K, Nakao A (2001) Expression of neural cell adhesion molecule in pancreatic cancer. Pancreas 22:122–125

    CAS  Google Scholar 

  194. Daniel L, Durbec P, Gautherot E, Rouvier E, Rougon G, Figarella-Branger D (2001) A nude mice model of human rhabdomyosarcoma lung metastases for evaluating the role of polysialic acids in the metastatic process. Oncogene 20:997–1004

    CAS  Google Scholar 

  195. Mushtaq N, Redpath MB, Luzio JP, Taylor PW (2005) Treatment of experimental Escherichia coli infection with recombinant bacteriophage-derived capsule depolymerase. J Antimicrob Chemother 56:160–165

    CAS  Google Scholar 

  196. Mushtaq N, Redpath MB, Jp L, Taylor PW (2004) Prevention and cure of systemic Escherichia coli K1 infection by modification of the bacterial phenotype. Antimicrob Agents Chemother 48:1503–1508

    CAS  Google Scholar 

  197. Pelkonen S (1990) Capsular sialyl chains of Escherichia coli K1 mutants resistant to K1 phage. Curr Microbiol 21:23–28

    CAS  Google Scholar 

  198. Colman PM, Hoyne PA, Lawrence MC (1993) Sequence and structure alignment of paramyxovirus hemagglutinin-neuraminidase with influenza virus neuraminidase. J Virol 67:2972–2980

    CAS  Google Scholar 

  199. Hoiczyk E, Roggenkamp A, Reichenbecher M, Lupas A, Heesemann J (2000) Structure and sequence analysis of Yersinia YadA and Moraxella UspAs reveal a novel class of adhesins. EMBO J 19:5989–5999

    CAS  Google Scholar 

  200. Pellequer JL, Van Regenmortel MH (1993) Affinity of monoclonal antibodies to large multivalent antigens: influence of steric hindrance on antibody affinity constants calculated from Scatchard plots. Mol Immunol 30:955–958

    CAS  Google Scholar 

  201. Häyrinen J, Haseley S, Talaga P, Mühlenhoff M, Finne J, Vliegenthart JFG (2002) High affinity binding of long-chain polysialic acid to antibody, and modulation by divalent cations and polyamines. Mol Immunol 39:399–411

    Google Scholar 

  202. Romano P, Manniello A, Aresu O, Armento M, Cesaro M, Parodi B (2009) Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines. Nucleic Acids Res 37:D925–D932

    CAS  Google Scholar 

  203. Korja M, Jokilammi A, Salmi TT, Kalimo H, Pelliniemi TT, Isola J, Rantala I, Haapasalo H, Finne J (2009) Absence of polysialylated NCAM is an unfavorable prognostic phenotype for advanced stage neuroblastoma. BMC Cancer 9:57

    Google Scholar 

  204. Zelmer A, Bowen M, Jokilammi A, Finne J, Luzio JP, Taylor PW (2008) Differential expression of the polysialyl capsule during blood-to-brain transit of neuropathogenic Escherichia coli K1. Microbiology 154:2522–2532

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jukka Finne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jakobsson, E., Schwarzer, D., Jokilammi, A., Finne, J. (2012). Endosialidases: Versatile Tools for the Study of Polysialic Acid. In: Gerardy-Schahn, R., Delannoy, P., von Itzstein, M. (eds) SialoGlyco Chemistry and Biology II. Topics in Current Chemistry, vol 367. Springer, Cham. https://doi.org/10.1007/128_2012_349

Download citation

Publish with us

Policies and ethics