Skip to main content

Paramagnetic Solid-State Magic-Angle Spinning NMR Spectroscopy

  • Chapter
  • First Online:
Modern NMR Methodology

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 335))

Abstract

A number of technical improvements have recently opened up solid-state NMR to the analysis of new classes of substrates with wide ranging implications for molecular and biological sciences, with an immediate impact on a large community of researchers. A wealth of information can be extracted from the analysis of solid-state NMR signals of paramagnetic compounds, as the changes induced by the paramagnetic center depend in a well-defined way on the structure of the molecule. Solid-state NMR is in a position to allow direct, straightforward experimental access to the fine details of the molecular electronic configuration, which is in turn a sensible reporter of the molecular geometry in small catalysts as well as in larger biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mehring M (1983) Principles of high-resolution NMR in solids. Springer, Berlin

    Google Scholar 

  2. Schmidt-Rohr K, Spiess H (1994) Multidimensional solid-state NMR and polymers. Academic, London

    Google Scholar 

  3. Tycko R, Grey C (2009) Solid-state NMR in biological and materials physics. Phys Today 62:44–49

    Google Scholar 

  4. Blanc F, Coperet C, Lesage A, Emsley L (2008) High resolution solid state NMR spectroscopy in surface organometallic chemistry: access to molecular understanding of active sites of well-defined heterogeneous catalysts. Chem Soc Rev 37:518–526

    CAS  Google Scholar 

  5. McDermott AE (2009) Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Annu Rev Biophys 38:385–403

    CAS  Google Scholar 

  6. Bertini I, Luchinat C, Parigi G (2001) Solution NMR of paramagnetic molecules; application to metallobiomolecules and models. Elsevier, London

    Google Scholar 

  7. Köhler FH (2001) Probing spin density by using NMR spectroscopy. In: Magnetism: molecules to materials. Wiley VCH, New York, pp 379–430

    Google Scholar 

  8. Bertini I, Luchinat C, Parigi G (2002) Paramagnetic constraints: an aid for quick solution structure determination of paramagnetic metalloproteins. Concepts Magn Reson 14:259–286

    CAS  Google Scholar 

  9. Otting G (2010) Protein NMR using paramagnetic ions. Annu Rev Biophys 39:387–405

    CAS  Google Scholar 

  10. Slichter C (1996) Principles of magnetic resonance. Springer, Berlin

    Google Scholar 

  11. Ganapathy S, Chacko V, Bryant R, Etter M (1986) Carbon CP-MASS NMR and X-ray crystal structure of paramagnetic lanthanide acetates. J Am Chem Soc 108:3159–3165

    CAS  Google Scholar 

  12. Haw JF, Campbell GC (1986) Temperature-dependent chemical shifts in 13C CP/MAS spectra of paramagnetic solids. J Magn Reson 66:558–561

    CAS  Google Scholar 

  13. Campbell GC, Crosby RC, Haw JF (1986) 13C chemical shifts which obey the Curie law in CP/MAS NMR spectra. The first CP/MAS NMR chemical-shift thermometer. J Magn Reson 69:191–195

    CAS  Google Scholar 

  14. Cheetham AK, Dobson CM, Grey CP, Jakeman RJB (1987) Paramagnetic shift probes in high-resolution solid-state NMR. Nature 328:706–707

    CAS  Google Scholar 

  15. Grey CP, Dobson CM, Cheetham AK, Jakeman RJB (1989) Studies of rare-earth stannates by 119Sn MAS NMR. The use of paramagnetic shift probes in the solid-state. J Am Chem Soc 111:505–511

    CAS  Google Scholar 

  16. Grey CP, Smith ME, Cheetham AK, Dobson CM, Dupree R (1990) 89Y MAS NMR study of rare-earth pyrochores: paramagnetic shifts in the solid state. J Am Chem Soc 112:4670–4675

    CAS  Google Scholar 

  17. Moon S, Patchkovskii S (2004) First-principles calculations of paramagnetic NMR shifts. In: Kaupp M, Bühl M, Malkin VG (eds) Calculation of NMR and EPR parameters. Theory and applications. Wiley-VCH, Mannheim, pp 325–338

    Google Scholar 

  18. Hrobarik P, Reviakine R, Arbuznikov AV, Malkina OL, Malkin VG, Köhler FH, Kaupp M (2007) Density functional calculations of NMR shielding tensors for paramagnetic systems with arbitrary spin multiplicity: validation on 3d metallocenes. J Chem Phys 126:024107

    Google Scholar 

  19. Repisky M, Komorovsky S, Malkin E, Malkina OL, Malkin VG (2010) Effects of finite size nuclei in relativistic four-component calculations of hyperfine structure. Chem Phys Lett 488:94

    CAS  Google Scholar 

  20. Pennanen TO, Vaara J (2008) Nuclear magnetic resonance chemical shift in an arbitrary electronic spin state. Chem Phys Lett 100:133002

    Google Scholar 

  21. Samoson A, Tuherm T, Gan Z (2001) High-field high-speed MAS resolution enhancement in H1 NMR spectroscopy of solids. Solid State Nucl Magn Reson 20:130–136

    CAS  Google Scholar 

  22. Alla M, Lippmaa E (1982) Resolution limits in magic-angle rotation NMR-spectra of polycrystalline solids. Chem Phys Lett 87:30–33

    CAS  Google Scholar 

  23. Brough A, Grey C, Dobson C (1993) Paramagnetic ions as structural probes in solid-state NMR: distance measurements in crystalline lanthnide acetates. J Am Chem Soc 115:7318–7327

    CAS  Google Scholar 

  24. Solomon I (1955) Relaxation processes in a system of 2 spins. Phys Rev 99:559–565

    CAS  Google Scholar 

  25. Gueron M (1975) Nuclear-relaxation in macromolecules by paramagnetic-ions – novel mechanism. J Magn Reson 19:58–66

    CAS  Google Scholar 

  26. Kervern G, Steuernagel S, Engelke F, Pintacuda G, Emsley L (2007) Absence of curie relaxation in paramagnetic solids yields long H1 coherence lifetimes. J Am Chem Soc 129:14118–14119

    CAS  Google Scholar 

  27. Kervern G, Pintacuda G, Zhang Y, Oldfield E, Roukoss C, Kuntz E, Herdtweck E, Basset JM, Cadars S, Emsley L (2006) Solid-state NMR of a paramagnetic DIAD-Fe-II catalyst: sensitivity, resolution enhancement, and structure-based assignments. J Am Chem Soc 128:13545–13552

    CAS  Google Scholar 

  28. Clayton AN, Dobson CM, Grey CP (1990) High-resolution C-13 MAS NMR spectra of paramagnetic lanthanide complexes. J Chem Soc Chem Comm 72–74

    Google Scholar 

  29. Liu K, Ryan D, Nakanishi K, McDermott A (1995) Solid-state NMR-studies of paramagnetic coordination-complexes – a comparison of protons and deuterons in detection and decoupling. J Am Chem Soc 117:6897–6906

    CAS  Google Scholar 

  30. Ishii Y, Wickramasinghe NP, Chimon S (2003) A new approach in 1D and 2D C13 high-resolution solid-state NMR spectroscopy of paramagnetic organometallic complexes by very fast magic-angle spinning. J Am Chem Soc 125:3438–3439

    CAS  Google Scholar 

  31. Wickramasinghe NP, Shaibat M, Ishii Y (2005) Enhanced sensitivity and resolution in H1 solid-state NMR spectroscopy of paramagnetic complexes under very fast magic angle spinning. J Am Chem Soc 127:5796–5797

    CAS  Google Scholar 

  32. Wickramasinghe NP, Ishii Y (2006) Sensitivity enhancement, assignement and distance measurement in 13C solid-state NMR spectroscopy for paramagnetic systems under fast magic angle spinning. J Magn Reson 181:233–243

    CAS  Google Scholar 

  33. Laage S, Sachleben JR, Steuernagel S, Pierattelli R, Pintacuda G, Emsley L (2009) Fast acquisition of multidimensional NMR experiments enabled by ultra-fast MAS. J Magn Reson 196:133–141

    CAS  Google Scholar 

  34. Laage S, Marchetti A, Sein J, Pierattelli R, Sass HJ, Grzesiek S, Lesage A, Pintacuda G, Emsley L (2008) Band-selective 1H-13C cross-polarization in ultra-fast biomolecular MAS solid-state NMR. J Am Chem Soc 130:17216–17217

    CAS  Google Scholar 

  35. Verel R, Ernst M, Meier BH (2001) Adiabatic dipolar recoupling in solid-state NMR: the DREAM scheme. J Magn Reson 150:81–99

    CAS  Google Scholar 

  36. Bertini I, Emsley L, Lelli M, Luchinat C, Mao J, Pintacuda G (2010) Ultra-fast MAS solid-state NMR permits extensive 13C and 1H detection in paramagnetic metalloproteins. J Am Chem Soc 132:5558–5559

    CAS  Google Scholar 

  37. Wickramasinghe NP, Shaibat MA, Jones CR, Casabianca LB, de Dios AC, Harwood JS, Ishii Y (2008) Progress in C13 and H1 solid-state nuclear magnetic resonance for paramagnetic systems under very fast magic angle spinning. J Chem Phys 128:52210

    Google Scholar 

  38. Garwood M, DelaBarre L (2001) The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson 153:155–177

    CAS  Google Scholar 

  39. Kervern G, Pintacuda G, Emsey L (2007) Fast adiabatic pulses for solid-state NMR of paramagnetic systems. Chem Phys Lett 435:157–162

    CAS  Google Scholar 

  40. Pell AJ, Kervern G, Emsley L, Deschamps M, Massiot D, Grandinetti PJ, Pintacuda G (2011) Broadband inversion for MAS NMR with single-sideband-selective adiabatic pulses. J Chem Phys 134:024117

    Google Scholar 

  41. Siegel R, Nakashima TT, Wasylishen RE (2007) Sensitivity enhancement of NMR spectra of half-integer spin quadrupolar nuclei in solids using hyperbolic secant pulses. J Magn Reson 184:85–100

    CAS  Google Scholar 

  42. Nakashima TT, Wasylishen RE, Siegel R, Ooms KJ (2008) Sensitivity enhancement of solid-state NMR spectra of half-integer spin quadrupolar nuclei: double- or single-frequency sweeps? Insights from the hyperbolic secant experiment. Chem Phys Lett 450:417–421

    CAS  Google Scholar 

  43. Nakashima TT, Teymoori R, Wasylishen RE (2009) Using hyperbolic secant pulses to assist characterization of chemical shift tensors for half-integer spin quadrupolar nuclei in MAS powder samples. Magn Reson Chem 47:465–471

    CAS  Google Scholar 

  44. Dey KK, Prasad S, Ash JT, Deschamps M, Grandinetti PJ (2007) Spectral editing in solid-state MAS NMR of quadrupolar nuclei using selective satellite inversion. J Magn Reson 185:326–330

    CAS  Google Scholar 

  45. Kervern G, D’Aleo A, Maury O, Emsley L, Pintacuda G (2009) Crystal structure determination of powdered paramagnetic lanthanide complexes by proton NMR. Angew Chem Int Ed Engl 48:3082–3086

    CAS  Google Scholar 

  46. Coronado E, Delhaes P, Gatteschi D, Miller JS (eds) (1996) Molecular magnetism: from molecular sssemblies to the devices. Kluwer, Dordrecht

    Google Scholar 

  47. Campbell GC, Haw JF (1988) Determination of magnetic and structural properties in solids containing antiferromagnetically coupled metal centers using NMR methods. magneto-structural correlations in anhydrous copper(II) n-butyrate. Inorg Chem 27:3706–3709

    CAS  Google Scholar 

  48. Campbell GC, Reibenspies JH, Haw JF (1991) Solid-state NMR studies of magneto-structural correlations in anhydrous copper(II) carboxylates. Inorg Chem 30:171–176

    CAS  Google Scholar 

  49. Köhler FH, Lescouëzec R (2004) Highly resolved spin-density distribution in the Prussian-blue precursors Cs2K[Fe(CN)6] and Cs2K[Mn(CN)6]. Angew Chem Int Ed Engl 43:2571–2573

    Google Scholar 

  50. Köhler FH, Lescouëzec R (2009) Revisiting prussian blue analogues with MAS NMR spectroscopy: spin density and local structure in Cd3[Fe(CN)6] I5H2O. Angew Chem Int Ed Engl 48:1673–1676

    Google Scholar 

  51. Heise H, Köhler FH, Mota F, Novoa JJ, Veciana J (1999) Determination of the spin distribution in nitronylnitroxides by solid-state H-1, H-2, and C-13 NMR spectroscopy. J Am Chem Soc 121:9659–9667

    CAS  Google Scholar 

  52. Sporer C, Heise H, Wurst K, Ruiz-Molina D, Kopacka H, Jaitner P, Köhler F, Novoa JJ, Veciana J (2004) Magneto-structural characterization of metallocene-bridged nitronyl nitroxide diradicals by X-ray, magnetic measurements, solid-state NMR spectroscopy, and ab initio calculations. Chem Eur J 10:1355–1365

    CAS  Google Scholar 

  53. Ziessel R, Stroh C, Heise H, Köhler FH, Turek P, Claiser N, Souhassou M, Lecomte C (2004) Strong exchange interactions between two radicals attached to nonaromatic spacers deduced from magnetic, EPR, NMR, and electron density measurements. J Am Chem Soc 126:12604–12613

    CAS  Google Scholar 

  54. Mao JH, Zhang Y, Oldfield E (2002) Nuclear magnetic resonance shifts in paramagnetic metalloporphyrins and metalloproteins. J Am Chem Soc 124:13911–13920

    CAS  Google Scholar 

  55. Zhang Y, Sun HH, Oldfield E (2005) Solid-state NMR fermi contact and dipolar shifts in organometallic complexes and metalloporphyrins. J Am Chem Soc 127:3652–3653

    CAS  Google Scholar 

  56. Crozet M, Chaussade M, Bardet M, Emsley L, Lamotte B, Mouesca JM (2000) Carbon-13 solid-state NMR studies on synthetic model compounds of [4Fe-4S] clusters in the 2(+) state. J Phys Chem A 104:9990–10000

    CAS  Google Scholar 

  57. Rancurel C, Heise H, Köhler FH, Schatzschneider U, Rentschler E, Vidal-Gancedo J, Veciana J, Sutter JP (2004) Spin transfer and magnetic interaction via phosphorus in nitronyl nitroxide radical-substituted triphenylphosphine derivatives. J Phys Chem A 108:5903–5914

    CAS  Google Scholar 

  58. Grey CP, Dupré N (2004) NMR studies of cathode materials for lithium-ion rechargeable batteries. Chem Rev 104:4493–4512

    CAS  Google Scholar 

  59. Kim J, Middlemiss DS, Chernova NA, Zhu BYX, Masquelier C, Grey CP (2010) Linking local andvironments and hyperfine shifts: a combined experimental and theoretical 31P and 7Li solid-state NMR study of paramagnetic Fe(III) phosphates. J Am Chem Soc 132:16825–16840

    CAS  Google Scholar 

  60. Grey CP, Lee YJ (2003) Lithium MAS NMR studies of cathode materials for lithium-ion batteries. Solid State Sci 5:883–894

    CAS  Google Scholar 

  61. Koder RL, Walsh JD, Pometum MS, Dutton PL, Wittebort RJ, Miller AF (2006) 15N solid-state NMR provides a sensitive probe of oxidized flavin reactive sites. J Am Chem Soc 128:15200–15208

    CAS  Google Scholar 

  62. Blümel J, Herker M, Hiller W, Köhler FH (1996) Study of paramagnetic chromocenes by solid-state NMR spectroscopy. Organometallics 15:3474–3476

    Google Scholar 

  63. Xing Q, Milius W, Krauss HL, Blümel J, Hilbig H, Köhler FH, Strauss W, Bayreuther G (1999) Darstellung und Eigenschaften von Chromorganylen aus Phillips-Katalysatoren und Ethylen. Z Anorg Allg Chem 625:521–529

    CAS  Google Scholar 

  64. Schnellbach M, Köhler FH, Blümel J (1996) The union carbide catalyst (Cp2Cr + SiO2), studied by solid-state NMR. J Organomet Chem 250:227–230

    Google Scholar 

  65. Estephane J, Groppo E, Vitillo JG, Damin A, Gianolio D, Lamberti C, Bordiga S, Quadrelli EA, Basset JM, Kervern G, Emsley L, Pintacuda G, Zecchina A (2010) A multi-technique approach to spin-flips for cp2Cr(II) chemistry in confined state. J Phys Chem C 114:4451–4458

    CAS  Google Scholar 

  66. Shaibat MA, Casabianca LB, Wickramasinghe NP, Guggenheim S, de Dios AC, Ishii Y (2007) Characterization of polymorphs and solid-state reactions for paramagnetic systems by 13C solid-state NMR and ab initio calculations. J Am Chem Soc 129:10968–10969

    CAS  Google Scholar 

  67. Bleaney B (1972) Nuclear magnetic-resonance shifts in solution due to lanthanide ions. J Magn Reson 8:91

    CAS  Google Scholar 

  68. Golding RM, Halton MP (1972) Paramagnetic lanthanide induced shifts. Aust J Chem 25:2577–2581

    CAS  Google Scholar 

  69. Jovanovic T, Farid R, Friesner RA, McDermott AE (2005) Thermal equilibrium of high- and low-spin forms of cytochrome P450BM-3: repositioning of the substrate? J Am Chem Soc 127:13548–13552

    Google Scholar 

  70. Jovanovic T, McDermott AE (2005) Observation of ligand binding to cytochrome P450 BM-3 by means of solid-state NMR spectroscopy. J Am Chem Soc 127:13816–13821

    CAS  Google Scholar 

  71. Kubo A, Spaniol TP, Terao T (1998) The effect of bulk magnetic susceptibility on solid state NMR spectra of paramagnetic compounds. J Magn Reson 133:330–340

    CAS  Google Scholar 

  72. Spaniol TP, Kubo A, Terao T (1999) Resolution enhancement of magic-angle spinning NMR spectra for paramagnetic solids by zero-quantum NMR. Mol Phys 96:827–834

    CAS  Google Scholar 

  73. Balayssac S, Bertini I, Lelli M, Luchinat C, Maletta M (2007) Paramagnetic ions provide structural restraints in solid-state NMR of proteins. J Am Chem Soc 129:2218–2219

    CAS  Google Scholar 

  74. Balayssac S, Bertini I, Falber K, Fragai M, Jehle S, Lelli M, Luchinat C, Oschkinat H, Yeo KJ (2007) Solid-state NMR of matrix metalloproteinase 12: an approach complementary to solution NMR. Chembiochem 8:486–489

    CAS  Google Scholar 

  75. Balayssac S, Bertini I, Bhaumik A, Lelli M, Luchinat C (2008) Paramagnetic shifts in solid-state NMR of proteins to elicit structural information. Proc Natl Acad Sci USA 45:17284–17289

    Google Scholar 

  76. Bloembergen N (1950) Fine structure of the magnetic resonance line of protons in CuSO4 5H2O. Physica 16:95–112

    CAS  Google Scholar 

  77. Rundle RE (2002) Antiferromagnetic ordering and electronic structure of CuCl2-2H2O as determined from nuclear magnetic resonancel. J Am Chem Soc 79:3372–3374

    Google Scholar 

  78. Poulis NJ, Hardeman GEG (1952) Physica 18:201

    CAS  Google Scholar 

  79. McGarvey BR, Nagy S (1987) Evidence for an anisotropic contact shift, proton NMR study of line shapes in uranocenes and (C5H5)3 UCl powders. Inorg Chem 26:4198–4203

    CAS  Google Scholar 

  80. McGarvey BR, Nagy S (1987) Anisotropy in the proton NMR paramagnetic shift of cyclooctatetraene and cyclopentadiene anions coordinated to U(IV). Inorg Chim Acta 139:319–321

    CAS  Google Scholar 

  81. Nayeem A, Yesinowski JP (1988) Calculation of magic-angle spinning nuclear magnetic-resonance spectra of paramagnetic solids. J Chem Phys 89:4600–4608

    CAS  Google Scholar 

  82. Brough AR, Grey CP, Dobson CM (1992) Structural information from NMR-studies of paramagnetic solids – Na-23 MAS spectra of sodium lanthanide salts of ethylenediaminetetraacetic acid. J Chem Soc Chem Comm 742–743

    Google Scholar 

  83. Lee YJ, Grey CP (2002) Determining the lithium local environments in the lithium manganates LiZn0.5Mn1.5O4 and Li2MnO3 by analysis of the 6Li MAS NMR spinning sideband manifolds. J Phys Chem B 106:3576–3582

    CAS  Google Scholar 

  84. Huang WL, Schopfer M, Zhang C, Howell RC, Gee BA, Francesconi LC, Polenova T (2006) Probing local environments in paramagnetic Europium-substituted Keggin solids by P-31 magic angle spinning NMR spectroscopy. J Phys Chem B 110:12340–12350

    CAS  Google Scholar 

  85. Huang W, Schopfer M, Zhang C, Howell R, Todaro L, Gee B, Francesconi L, Polenova T (2008) 31P magic angle spinning NMR spectroscopy of paramagnetic rare-earth-substituted Keggin and Wells–Dawson solids. J Am Chem Soc 130:481–490

    CAS  Google Scholar 

  86. Lin TH, Dinatale JA, Void RR (1994) Determination of molecular-reorientation rates and electron-nuclear coupling in paramagnetic materials by deuterium solid echo NMR-spectroscopy. J Am Chem Soc 116:2133–2134

    CAS  Google Scholar 

  87. Liu K, Williams J, Lee HR, Fitzgerald MM, Jensen GM, Goodin DB, McDermott AE (1998) Solid-state deuterium NMR of imidazole ligands in cytochrome c peroxidase. J Am Chem Soc 120:10199–10202

    CAS  Google Scholar 

  88. Spaniol TP, Kubo A, Terao T (1997) Two-dimensional deuterium magic-angle-spinning nuclear magnetic resonance of paramagnetic compounds: separation of para-magnetic and quadrupole interactions. J Chem Phys 106:5393–5405

    CAS  Google Scholar 

  89. Antonijevic S, Wimperis S (2005) Separation of quadrupolar and chemical/paramagnetic shift interactions in two-dimensional 2H (I = 1) nuclear magnetic resonance spectroscopy. J Chem Phys 122:044312

    Google Scholar 

  90. Lee H, Polenova T, Beer R, McDermott A (1999) Line-shape fitting of deuterium magic angle spinning spectra of paramagnetic compounds in slow and fast limit motion regimes. J Am Chem Soc 121:6884–6894

    CAS  Google Scholar 

  91. Lee H, Ortiz de Montellano PR, McDermott A (1999) Deuterium magic angle spinning studies of substrates bound to cytochrome P450. Biochemistry 38:10808–10813

    CAS  Google Scholar 

  92. Wickramasinghe NP, Shaibat MA, Ishii Y (2007) Elucidating connectivity and metal-binding structures of unlabeled paramagnetic complexes by 13C and 1H solid-state NMR under fast magic angle spinning. J Phys Chem B 111:9693–9696

    CAS  Google Scholar 

  93. Heise H, Köhler FH, Xie XL (2001) Solid-state NMR spectroscopy of paramagnetic metallocenes. J Magn Reson 150:198–206

    CAS  Google Scholar 

  94. Heise H, Köhler FH, Herker M, Hiller W (2002) Inter-and intramolecular spin transfer in molecular magnetic materials. solid-state NMR spectroscopy of paramagnetic metallocenium ions. J Am Chem Soc 124:10823–10832

    CAS  Google Scholar 

  95. Dobson CM, Goberdhan DGC, Ramsey JDF, Rodger SA (1988) 29Si MAS NMR study of the hydration of tricalcium silicate in the presence of finely divided silica. J Mater Sci 23:4108–4114

    CAS  Google Scholar 

  96. Vijayan V, Demers JP, Biernat J, Mandelkow E, Becker S, Lange A (2009) Low-power solid-state NMR experiments for resonance assignment under magic-angle spinning. Chemphyschem 10:2205–2208

    CAS  Google Scholar 

  97. Wickramasinghe NP, Kotecha M, Samoson A, Past J, Ishii Y (2007) Sensitivity enhancement in 13c solid-state NMR of protein microcrystals by use of paramagnetic metal ions for optimizing 1H T1 relaxation. J Magn Reson 184:350–356

    CAS  Google Scholar 

  98. Wickramasinghe NP, Parthasarathy S, Jones CR, Bhardwaj C, Long F, Kotecha M, Mehboob S, Fung LWM, Past J, Samoson A, Ishii Y (2009) Nanomole-scale protein solid-state NMR by breaking intrinsic 1HT1 boundaries. Nat Meth 6:215–218

    CAS  Google Scholar 

  99. Nadaud PS, Helmus JJ, Sengupta I, Jaroniec CP (2010) Rapid acquisition of multidimensional solid-state NMR spectra of proteins facilitated by covalently bound paramagnetic tags. J Am Chem Soc 132:9561–9563

    CAS  Google Scholar 

  100. Nadaud PS, Helmus JJ, Hofer N, Jaroniec CP (2007) Long-range structural restraints in spin-labeled proteins probed by solid-state nuclear magnetic resonance spectroscopy. J Am Chem Soc 129:7502

    CAS  Google Scholar 

  101. Nadaud PS, Helmus JJ, Kall SL, Jaroniec CP (2009) Paramagnetic ions enable tuning of nuclear relaxation rates and provide long-range structural restraints in solid-state NMR of proteins. J Am Chem Soc 131:8108–8120

    CAS  Google Scholar 

  102. Buffy JJ, Hong T, Yamaguchi S, Waring AJ, Lehrer RI, Hong M (2003) Solid-state NMR investigation of the depth of insertion of protegrin-1 in lipid bilayers using paramagnetic Mn2+. Biophys J 85:2363–2373

    CAS  Google Scholar 

  103. Parthasarathy S, Long F, Miller Y, Xiao Y, McElheny D, Thurber K, Ma B, Nussinov R, Ishii Y (2011) Molecular-level examination of Cu2+ binding structure for amyloid fibrils of 40-residue Alzheimer’s β by solid-state NMR spectroscopy. J Am Chem Soc 133:3390–3400

    CAS  Google Scholar 

  104. Carver TR, Slichter CP (1953) Polarization of nuclear spins in metals. Phys Rev 92:212–213

    CAS  Google Scholar 

  105. Carver TR, Slichter CP (1956) Experimental verification of the Overhauser nuclear polarization effect. Phys Rev 102:975–980

    CAS  Google Scholar 

  106. Slichter CP (2010) The discovery and demonstration of dynamic nuclear polarization – a personal and historical account. Phys Chem Chem Phys 12:5741–5751

    CAS  Google Scholar 

  107. Rosay M, Tometich L, Pawsey S, Bader R, Schauwecker R, Blank M, Borchard PM, Cauffman SR, Felch KL, Weber RT, Temkin RJ, Griffin RG, Maas WE (2010) Solid-state dynamic nuclear polarization at 263 Ghz: spectrometer design and experimental results. Phys Chem Chem Phys 12:5850–5855

    CAS  Google Scholar 

  108. Griffin GR, Prisner TF (2010) High field dynamic nuclear polarization – the renaissance. Phys Chem Chem Phys 12:5737–5743

    CAS  Google Scholar 

  109. Debelouchina GT, Bayro MJ, van der Wel PCA, Caporini MA, Barnes AB, Rosay M, Maas WE, Griffin RG (2010) Dynamic nuclear polarization-enhanced solid-state NMR spectroscopy of GNNQQNY nanocrystals and amyloid fibrils. Phys Chem Chem Phys 12:5911–5919

    CAS  Google Scholar 

  110. Bajaj VS, Mak-Jurkauskas ML, Belenky M, Herzfeld J, Griffin RG (2010) DNP enhanced frequency-selective TEDOR experiments in bacteriorhodopsin. J Magn Reson 202:9–13

    CAS  Google Scholar 

  111. Salnikov E, Rosay M, Pawsey S, Ouari O, Tordo P, Bechinger B (2010) Solid-state NMR spectroscopy of oriented membranepolypeptides at 100 K with signal enhancement by dynamic nuclear polarization. J Am Chem Soc 132:5940–5941

    CAS  Google Scholar 

  112. Lesage A, Lelli M, Gajan D, Caporini MA, Vitzthum V, Mieville P, Alauzun J, Roussey A, Thieuleux C, Mehdi A, Bodenhausen G, Coperet C, Emsley L (2010) Surface enhanced NMR spectroscopy by dynamic nuclear polarization. J Am Chem Soc 132:15459–15461

    CAS  Google Scholar 

  113. Lelli M, David G, Lesage A, Caporini M, Vitzthum V, Mieville P, Heroguel F, Rascon F, Roussey A, Thieuleux C, Boualleg M, Veyre L, Bodenhausen G, Coperet C, Emsley L (2011) Fast characterization of functionalized silica materials by Silicon-29 surface-enhanced NMR spectroscopy using dynamic nuclear polarization. J Am Chem Soc 133:2104–2107

    CAS  Google Scholar 

  114. Brink D, Satchler G (1968) Angular momentum. Oxford University Press, London

    Google Scholar 

  115. Rose M (1967) Elementary theory of angular momentum. Wiley, New-York

    Google Scholar 

Download references

Acknowledgments

A big “thanks” to Lyndon Emsley, Anne Lesage, Moreno Lelli, Andrew J. Pell, and Michael J. Knight, as well as to Ivano Bertini, Claudio Luchinat, Roberta Pierattelli, and Isabella C. Felli. The work on paramagnetic NMR in Lyon has been supported by the Agence Nationale de la Recherche (ANR 08-BLAN-0035-01 and 10-BLAN-0713-1) and by Joint Research Activity in the 6th and 7th Framework Program of the EC (EU-NMR and Bio-NMR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Pintacuda .

Editor information

Editors and Affiliations

Appendix A. More Theory

Appendix A. More Theory

The dipolar Hamiltonian of (19) becomes

$$ {\tilde{\mathcal{H}}^{\text{D}}} = \left\{ {\frac{2}{3}{\mathcal{D}_{\text {2,0}}}{\chi_{{2,0}}} - \frac{1}{2}({\mathcal{D}_{\text {2,1}}}{\chi_{{2, - 1}}} + {\mathcal{D}_{\text {2, - 1}}}{\chi_{{2,1}}}) - \frac{{\sqrt {2} }}{3}{\mathcal{D}_{\text {2,0}}}{\chi_{{0,0}}}} \right\}{I_{\text{z}}}{B_0}. $$
(30)

In order to evaluate the transformation properties of the hyperfine Hamiltonian, this sum of products needs to be further simplified. This can be achieved by expressing the pair-wise products of the components \( {\mathcal{D}_{{\text 2,\it m}}}{\chi_{{2, - m}}} \) of two tensors of rank 2 in terms of the components of a product tensor W l,0 of rank l = 0 − 4 by using the Clebsch–Gordan expansion [114, 115]:

$$ {\mathcal{D}_{\text {2,m}}}{\chi_{\text {2, - m}}} = \sum\limits_{{l = 0}}^4 {\left( \begin{array}{lll} 2 2 l \\{ - m} m 0 \\ \end{array} \right){W_{{l,0}}}}, $$
(31)

where the term in parentheses represents the 3j symbols. Similarly, for the last term of (30):

$$ {\mathcal{D}_{\text {2,0}}}{\chi_{{0,0}}} = \left( \begin{array}{lll} \begin{array}{*{20}{c}} 0 & 2 & 2 \\ \end{array} \hfill \\ \begin{array}{*{20}{c}} 0 & 0 & 0 \\ \hfill \\ \end{array}\end{array} \right){W_{{2,0}}}. $$
(32)

When applied to the Hamiltonian of (31), the antisymmetric terms of the expansion (l = 1, 3) do not need to be considered. Therefore, the above formulas give

$$ \begin{array}{ll} {{\tilde{\mathcal{H}}}^{\text{D}}} &= \left\{ {\displaystyle\frac{2}{3}\left( {\frac{1}{{\sqrt {5} }}{W_{{0,0}}} - \sqrt {{\frac{2}{7}}} {W_{{2,0}}} + \sqrt {{\frac{{18}}{{35}}}} {W_{{4,0}}}} \right) + \left( {\frac{1}{{\sqrt {5} }}{W_{{0,0}}} - \frac{1}{{\sqrt {{14}} }}{W_{{2,0}}} - 2\sqrt {{\frac{2}{{35}}}} {W_{{4,0}}}} \right)}\right. \\ & \quad \left. - \frac{{\sqrt {2} }}{3}{W_{{2,0}}} \right\}{I_{\text{z}}}{B_0} { = \left\{ {\frac{{\sqrt {5} }}{3}{W_{{0,0}}} - \sqrt {{\frac{7}{{18}}}} W_{{2,0}}^{{({{\Delta }}\chi )}} - \frac{{\sqrt {2} }}{3}W_{{2,0}}^{{(\chi )}}} \right\}{I_{\text{z}}}{B_0}} \\& = - \left( {{\delta^{\text{PC}}} + \sqrt {{\frac{2}{3}}} {{\Delta }}{\sigma^{{({{\Delta }}\chi )}}}d_{{0,0}}^2({\beta_{\text{XL}}}) + \sqrt {{\frac{2}{3}}} {{\Delta }}{\sigma^{{(\chi )}}}d_{{0,0}}^2({\beta_{\text{DL}}})} \right){{\tilde{T}}_{{1,0}}}, \end{array}$$
(33)

where the superscripts χ and Δχ denote the contributions to the anisotropy that originate from the isotropic and anisotropic parts of the X tensor, respectively. It is interesting to note that the final form of the hyperfine interaction is again in all respects analogous to that of a diamagnetic chemical shift. Notably, the W 4,0 term vanishes, in contrast to, for example, the second-order quadrupolar effect where the product of two second-rank components contributes to the W 4,0. The rank-zero interaction is the isotropic shift and the rank-two components represent a shift anisotropy analogous to the diamagnetic CSA (the “dipolar shift anisotropy” or DSA).

The rank-zero portion of the dipolar interaction is the PCS δ PC. Its full expression can be obtained expanding back the W 0,0 term as a product of two second-rank tensors according to the inverse of (31):

$$ \begin{array}{lll} {W_{{0,0}}} = \sum\limits_{{m = - 2}}^2 \left( \begin{array}{*{20}{c}} 2 & 2 & 0 \\m & { - m} & 0 \\\end{array} \right){\mathcal{D}_{\text {2,\it m}}}{\chi_{{2, - m}}} \\ \qquad{ = \sum\limits_{{m = - 2}}^2 {\frac{{{{( - 1)}^m}}}{{\sqrt {5} }}{\mathcal{D}_{\text {2,\it m}}}{\chi_{{2, - m}}}}. } \end{array} $$
(34)

After including the transformation Ω DX to move from the PAS of the D tensor to that of the X tensor, we get

$$ {W_{{0,0}}} = \frac{1}{{\sqrt {5} }}{\mathcal{D}_{\text {2,0}}}\sum\limits_{{m^{\prime} = - 2}}^2 {\mathcal{D}_{{0{\it m^{\prime}}}}^{2}{\chi_{{2,{\it m^{\prime}}}}}} $$
(35)

so that we obtain

$$\begin{array}{lll} {{\delta^{\text{PC}}} = \frac{1}{{3\hbar {\gamma_{\text{I}}}}}{\mathcal{D}_{{{2},{0}}}}\sum\limits_{{m^{\prime} = - 2}}^2 {\mathcal{D}_{{0 \it m^{\prime}}}^{2}{\chi_{{2,\it m^{\prime}}}}} } \\ { \qquad= \frac{{\sqrt {6} }}{{12\pi {r^3}}}\left[ {\left( {\frac{{3{{\cos }^2}\theta - 1}}{2}\sqrt {{\frac{2}{3}}} {{\Delta }}{\chi_{\text{ax}}}} \right) + \left( {\sqrt {{\frac{3}{8}}} {{\sin }^2}\theta {{\text{e}}^{{ - {\text{i}}2\varphi }}}\frac{1}{2}{{\Delta }}{\chi_{\text{rh}}}} \right) + \left( {\sqrt {{\frac{3}{8}}} {{\sin }^2}\theta {{\text{e}}^{{{\text{i}}2\varphi }}}\frac{1}{2}{{\Delta }}{\chi_{\text{rh}}}} \right)} \right]} \\ {\qquad = \frac{1}{{12\pi {r^3}}}\left\{ {{{\Delta }}{\chi_{\text{ax}}} (3{{\cos }^2} \theta - 1) + \frac{3}{2}{{\Delta }}{\chi_{\text{rh}}}{{\sin }^2}\theta \cos 2\varphi } \right\}} \\. \end{array} $$
(36)

The first component of the shift anisotropy is

$$ {{\Delta }}{\sigma^{{(\chi )}}} = \frac{1}{{{\mu_0}{\mu_{\text{B}}}{g_{\text{e}}}}}\frac{{\sqrt {2} }}{{3\hbar {\gamma_{\text{I}}}}}{\mathcal{D}_{\text {2,0}}}{\chi_{{0,0}}}, $$
(37)

which, in the PAS of the dipolar interaction, becomes

$$ {{\Delta }}{\sigma^{{(\chi )}}} = \frac{1}{{2\pi {\mu_0}{\mu_{\text{B}}}{g_{\text{e}}}}}\frac{{{\chi_{\text{iso}}}}}{{{r^3}}}. $$
(38)

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pintacuda, G., Kervern, G. (2012). Paramagnetic Solid-State Magic-Angle Spinning NMR Spectroscopy. In: Heise, H., Matthews, S. (eds) Modern NMR Methodology. Topics in Current Chemistry, vol 335. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_312

Download citation

Publish with us

Policies and ethics