Advertisement

NMR Spectroscopy for Chemical Analysis at Low Magnetic Fields

  • Stefan Glöggler
  • Bernhard BlümichEmail author
  • Stephan Appelt
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 335)

Abstract

This chapter addresses the limits of low-field NMR spectroscopy for chemical analysis and will answer the question of whether high-resolution NMR spectroscopy for chemical analysis of solutions can be achieved with magnetic fields much lower than 0.1 T without losing the chemical information which at high field is derived from the chemical shift and the indirect spin–spin or J-coupling. The focus is on two major issues. First, the thermal spin population differences given by the Boltzmann distribution are small at low field and so is the signal-to-noise-ratio when starting measurements from thermal equilibrium. Second, the possibility of identifying chemical groups is explored at low magnetic fields where the chemical shift can usually no longer be resolved.

Keywords

Hyper-polarization Low-field NMR NMR spectroscopy Strong coupling 

Abbreviations

ALTADENA

Adiabatic longitudinal transport after dissociation engenders net alignment

DNP

Dynamic nuclear polarization

PASADENA

Parahydrogen and synthesis allow dramatically enhanced nuclear alignment

PHIP

Para-hydrogen induced polarization

SABRE

Signal amplification by reversible exchange

SEOP

Spin exchange optical pumping

SPINOE

Spin polarization induced nuclear Overhauser effect

SQUID

Superconducting quantum interference device

References

  1. 1.
    Perlo J, Demas V, Casanova F, Meriles C, Reimer J, Pines A, Blümich B (2005) High-resolution NMR spectroscopy with a portable single-sided sensor. Science 308:1279CrossRefGoogle Scholar
  2. 2.
    Perlo J, Casanova F, Blümich B (2007) Ex situ NMR in highly homogeneous fields: 1H spectroscopy. Science 315:1110–1112CrossRefGoogle Scholar
  3. 3.
    McDermott R, Trabesinger AH, Mück M, Hahn EL, Pines A, Clarke J (2002) Liquid-state NMR and scalar couplings in microtesla magnetic fields. Science 295:2247–2249CrossRefGoogle Scholar
  4. 4.
    Appelt S, Häsing FW, Kühn H, Perlo J, Blümich B (2005) Mobile high resolution xenon nuclear magnetic resonance spectroscopy in the earth’s magnetic field. Phys Rev Lett 94:197602CrossRefGoogle Scholar
  5. 5.
    Appelt S, Kühn H, Häsing FW, Blümich B (2006) Chemical analysis by ultrahigh-resolution nuclear magnetic resonance in the Earth’s magnetic field. Nat Phys 2:105–109CrossRefGoogle Scholar
  6. 6.
    Robinson JN, Coy A, Dykstra R, Eccles CD, Hunter MW, Callaghan PT (2006) Two-dimensional NMR spectroscopy in Earth’s magnetic field. J Magn Reson 182:343–347CrossRefGoogle Scholar
  7. 7.
    Savukov IM, Romalis MV (2005) NMR detection with an atomic magnetometer. Phys Rev Lett 94:123001CrossRefGoogle Scholar
  8. 8.
    Ledbetter MP, Crawford CW, Pines A, Wemmer DE, Knappe S, Kitching J, Budker D (2009) Optical detection of NMR J-spectra at zero magnetic field. J Magn Reson 199:25–29CrossRefGoogle Scholar
  9. 9.
    Packard M, Varian R (1954) Free nuclear induction in the Earth’s magnetic field. Phys Rev 93:941Google Scholar
  10. 10.
    Benoit H, Hennequin J, Ottavi H (1962) Les applications spectroscopiques de la méthode de prépolarisation en R.M.N. (champs faibles). Chim Anal 44:471–477Google Scholar
  11. 11.
    Béné GJ (1980) Nuclear magnetism of liquid systems in the Earth field range. Phys Rep 58:213–267CrossRefGoogle Scholar
  12. 12.
    Matlachov AN, Volegov PL, Espy MA, George JS, Kraus RH Jr (2004) SQUID detected NMR in microtesla magnetic fields. J Magn Reson 170:1–7CrossRefGoogle Scholar
  13. 13.
    Burghoff M, Hartwig S, Trahms L, Bernarding J (2005) Nuclear magnetic resonance in the nano tesla range. Appl Phys Lett 87:054103CrossRefGoogle Scholar
  14. 14.
    Savukov IM, Lee S-K, Romalis M (2006) Optical detection of liquid-state NMR. Nature 442:1021–1024CrossRefGoogle Scholar
  15. 15.
    Budker D, Romalis M (2007) Optical magnetometry. Nature Phys 3:227–234CrossRefGoogle Scholar
  16. 16.
    Balasubramanian G, Chan IY, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer PR, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F, Wrachtrup J (2008) Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455:648–651CrossRefGoogle Scholar
  17. 17.
    Maze JR, Stanwix PL, Hodges JS, Hong S, Zaylor JM, Cappellaro P, Jiang L, Gurudev Dutt MV, Togan E, Zibrov AS, Yacoby A, Walsworth RL, Lukin MD (2008) Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455:644–647CrossRefGoogle Scholar
  18. 18.
    Kleinberg RL (1996) Well logging. In: Encyclopedia of NMR. Wiley-Liss, New York, pp 4960–4969Google Scholar
  19. 19.
    Coates GR, Xiao L, Prammer MG (1999) NMR logging – principles and applications. Halliburton Energy Services, HoustonGoogle Scholar
  20. 20.
    Kimmich R, Anoardo E (2004) Field-cycling NMR relaxometry. Prog Nucl Magn Reson Spectrosc 44:257–320CrossRefGoogle Scholar
  21. 21.
    Noack F (1986) NMR field-cycling spectroscopy: principles and applications. Prog Nucl Magn Reson Spectrosc 18:171–276CrossRefGoogle Scholar
  22. 22.
    Callaghan PT, Coy A, Dykstra R, Eccles CD, Halse ME, Hunter MW, Mercier OR, Robinson JN (2007) New Zealand developments in Earth’s field NMR. Appl Magn Reson 32:63–74CrossRefGoogle Scholar
  23. 23.
    Thayer AM, Pines A (1987) Zero-field NMR. Acc Chem Res 20:47–53CrossRefGoogle Scholar
  24. 24.
    Ivanov D, Redfield AG (2004) Field-cycling method with central transition readout for pure quadrupole resonance detection in dilute systems. J Magn Reson 166:19–27CrossRefGoogle Scholar
  25. 25.
    Abragam A, Goldman M (1978) Principles of dynamic nuclear polarisation. Rep Prog Phys 41:395–467CrossRefGoogle Scholar
  26. 26.
    Halse ME, Callaghan PT (2008) A dynamic nuclear polarization strategy for multi-dimensional Earth’s field NMR. J Magn Reson 195:162–168CrossRefGoogle Scholar
  27. 27.
    Lingwood MD, Ivanov IA, Cote AR, Han S (2010) Heisenberg spin exchange effect of nitroxide radicals on Overhauser dynamic nuclear polarization in the low field limit at 1.5 mT. J Magn Reson 204:56–63CrossRefGoogle Scholar
  28. 28.
    Happer W (1972) Optical pumping. Rev Mod Phys 44:169–249CrossRefGoogle Scholar
  29. 29.
    Appelt S, Baranga AB, Erickson CJ, Romalis MV, Young AR, Happer W (1998) Theory of spin-exchange optical pumping of 3He and 128Xe. Phys Rev A 58:1412–1439CrossRefGoogle Scholar
  30. 30.
    Navon G, Song YQ, Room T, Appelt S, Taylor RE, Pines A (1996) Enhancement of solution NMR and MRI with laser-polarized xenon. Science 271:1848–1851CrossRefGoogle Scholar
  31. 31.
    Appelt S, Häsing FW, Baer-Lang S, Shah NJ, Blümich B (2001) Proton magnetization enhancement of solvents with hyperpolarized xenon in very low magnetic fields. Chem Phys Lett 348:263–269CrossRefGoogle Scholar
  32. 32.
    Bowers CR, Weitekamp DP (1986) Transformation of symmetrization order to nuclear-spin magnetization by chemical reaction and nuclear magnetic resonance. Phys Rev Lett 57:2645–2648CrossRefGoogle Scholar
  33. 33.
    Natterer J, Bargon J (1997) Parahydrogen induced polarization. Prog Nucl Magn Reson Spectrosc 31:293–315CrossRefGoogle Scholar
  34. 34.
    Hubler P, Giernoth R, Kummerle G, Bargon J (1999) Investigating the kinetics of homogeneous hydrogenation reactions using PHIP NMR spectroscopy. J Am Chem Soc 121:5311–5318CrossRefGoogle Scholar
  35. 35.
    Aime S, Canet D, Dastru W, Gobetto R, Reineri F, Viale A (2001) A novel application of p-H2: the reversible addition/elimination of H2 at a Ru3 cluster revealed by the enhanced NMR emission resonance from molecular hydrogen. J Phys Chem A 105:6305–6310CrossRefGoogle Scholar
  36. 36.
    Bouchard LS, Burt SR, Anwar MS, Kovtunov KV, Koptyug IV, Pines A (2008) NMR imaging of catalytic hydrogenation in microreactors with the use of para-hydrogen. Science 319:442–445CrossRefGoogle Scholar
  37. 37.
    Kovtunov KV, Beck IE, Bukhtiyarov VI, Koptyug IV (2008) Observation of parahydrogen-induced polarization in heterogeneous hydrogenation on supported metal catalysts. Angew Chem 120:1514–1517CrossRefGoogle Scholar
  38. 38.
    Adams RW, Aguilar JA, Atkinson KD, Cowley MJ, Elliott PIP, Duckett SB, Green GGR, Khazal IG, Lopez-Serrano J, Williamson DC (2009) Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer. Science 323:1708–1711CrossRefGoogle Scholar
  39. 39.
    Atkinson KD, Cowley MJ, Elliott PIP, Duckett SB, Green GGR, Lopez-Serrano J, Whitwood AC (2009) Spontaneous transfer of parahydrogen derived spin order to pyridine at low magnetic field. J Am Chem Soc 131:13362–13368CrossRefGoogle Scholar
  40. 40.
    Bowers CR, Weitekamp DP (1987) Parahydrogen and synthesis allow dramatically enhanced nuclear alignment. J Am Chem Soc 109:5541–5542CrossRefGoogle Scholar
  41. 41.
    Gong Q, Gordji-Nejad A, Blümich B, Appelt S (2010) Trace analysis by low-field NMR: breaking the sensitivity limit. Anal Chem 82:7078–7082CrossRefGoogle Scholar
  42. 42.
    Appelt S, Glöggler S, Häsing FW, Sieling U, Gordji-Nejad A, Blümich B (2010) NMR spectroscopy in the milli-tesla regime: measurement of 1H chemical-shift differences below the line width. Chem Phys Lett 485:217–220CrossRefGoogle Scholar
  43. 43.
    Glöggler S, Blümich B, Appelt S (2011) Real-time detection of polymerization reactions with hyperpolarized xenon at low magnetic fields. AIP Conf Proc 1330:101–104Google Scholar
  44. 44.
    Crabtree RH, Lavin M, Bonneviot L (1986) Some molecular hydrogen complexes of iridium. J Am Chem Soc 108:4032–4037CrossRefGoogle Scholar
  45. 45.
    Appelt S, Häsing FW, Sieling U, Gordji-Nejad A, Glöggler S, Blümich B (2010) Paths from weak to strong coupling in NMR. Phys Rev A 81:023420CrossRefGoogle Scholar
  46. 46.
    Appelt S, Häsing FW, Kühn H, Sieling U, Blümich B (2007) Analysis of molecular structures by homo- and hetero-nuclear J-coupled NMR in the ultra-low field. Chem Phys Lett 440:308–313CrossRefGoogle Scholar
  47. 47.
    Appelt S, Häsing FW, Kühn H, Sieling U, Blümich B (2007) Phenomena in J-coupled nuclear magnetic resonance spectroscopy in low magnetic fields. Phys Rev A 76:023420CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Stefan Glöggler
    • 1
    • 2
  • Bernhard Blümich
    • 1
    Email author
  • Stephan Appelt
    • 1
    • 3
  1. 1.Institute for Technical Chemistry and Macromolecular ChemistryRWTH AachenAachenGermany
  2. 2.II. Institute of PhysicsRWTH Aachen UniversityAachenGermany
  3. 3.Central Institute for ElectronicsResearch Center JülichJülichGermany

Personalised recommendations