Advertisement

Pyrethroids pp 73-81 | Cite as

Pyrethrin Biosynthesis and Its Regulation in Chrysanthemum cinerariaefolium

Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 314)

Abstract

Pyrethrins are a natural insecticide biosynthesized by the plant pyrethrum [Chrysanthemum cinerariaefolium (Current species name: Tanacetum cinerariifolium)] of the family Asteraceae. Although pyrethrins have been used to control household pests for the past century, little is known about the mechanism of biosynthesis, contrasting with intensive research on their synthetic analogs, pyrethroids. The author studied pyrethrin biosynthesis in young seedlings of C. cinerariaefolium. The results of experiments using 13C-labeled glucose as the biosynthesis precursor indicated that the acid and alcohol moieties are biosynthesized via the 2-C-methyl-d-erythritol 4-phosphate (MEP) and oxylipin pathways, respectively. Further study on the effects of wound-induced signals in leaves showed that biosynthesis is enhanced in response to both volatile and nonvolatile signals.

Keywords

Biosynthesis Chrysanthemum cinerariaefolium Natural pyrethrins Tanacetum cinerariifolium 

Notes

Acknowledgment

The author was supported by Grant-in-Aid for Scientific Research (S) (No. 19101009) and Core-to-Core Program (No. 20004) from the Japan Society for the Promotion of Science. The author was also supported by Strategic Project to Support the Formation of Research Bases at Private Universities: Matching Fund Subsidy (S1101035) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

  1. 1.
    Staudinger H, Ruzicka L (1924) Insektentötende Stoffe I Über Isolierung und Konstitution des wirksamen Teiles des dalmatinischen Insektenpulvers. Helv Chim Acta 7:177–201CrossRefGoogle Scholar
  2. 2.
    Staudinger H, Ruzicka L (1924) Insektentötende Stoffe II Zur Konstitution der Chrysanthemum-monocarbonsäure und -dicarbonsäure. Helv Chim Acta 7:201–211CrossRefGoogle Scholar
  3. 3.
    Staudinger H, Ruzicka L (1924) Insektentötende Stoffe III Konstitution des Pyrethrolons. Helv Chim Acta 7:212–235CrossRefGoogle Scholar
  4. 4.
    Staudinger H, Ruzicka L (1924) Konstitution des Tetrahydro-pyrethrons. Insektentötende Stoffe IV. Helv Chim Acta 7:236–244CrossRefGoogle Scholar
  5. 5.
    Staudinger H, Ruzicka L (1924) Insektentötende Stoffe V. Synthese des Tetrahydro-pyrethrons, des Reduktionsproduktes des Pyrethrolons. Helv Chim Acta 7:245–259CrossRefGoogle Scholar
  6. 6.
    Staudinger H, Ruzicka L (1924) Insektentötende Stoffe VI Untersuchungen über Cyclopentanolonderivate und ihr Vergleich mit dem Pyrethrolon. Helv Chim Acta 7:377–390CrossRefGoogle Scholar
  7. 7.
    Staudinger H, Ruzicka L (1924) Insektentötende Stoffe VII Synthesen der Chrysanthemumsäure und anderer Trimethylen-carbonsäuren mit ungesättigter Seitenkette. Helv Chim Acta 7:390–406CrossRefGoogle Scholar
  8. 8.
    Staudinger H, Ruzicka L (1924) Insektentötende Stoffe VIII Versuche zur Herstellung von pyrethrolonähnlichen Alkoholen. Helv Chim Acta 7:406–441CrossRefGoogle Scholar
  9. 9.
    Staudinger H, Ruzicka L (1924) Insektentötende Stoffe IX Weitere Versuche zur Herstellung von Cyclopentanolonderivaten mit ungesättigter Seitenkette. Helv Chim Acta 7:442–448CrossRefGoogle Scholar
  10. 10.
    Staudinger H, Ruzicka L (1924) Insektentötende Stoffe X Über die Synthese von Pyrethrinen. Helv Chim Acta 7:448–458CrossRefGoogle Scholar
  11. 11.
    La Forge FB, Soloway SB (1947) Constituents of pyrethrum flowers; revision of the structure of dihydrocinerolone. J Am Chem Soc 69:2932–2935CrossRefGoogle Scholar
  12. 12.
    LaForge FB, Barthel WF (1944) Heterologous nature of pyrethrolone. J Org Chem 9:242–249CrossRefGoogle Scholar
  13. 13.
    Godin PJ, Sleeman RJ, Snarey M, et al. (1966) The jasmolin, new insecticidally active constituents of Chrysanthemum cinerariaefolium Vis. J Chem Soc:332–334Google Scholar
  14. 14.
    Crombie L (1995) Chemistry of the pyrethrins. In: Casida JE, Quistad GB (eds) Pyrethrum flowers. Oxford University Press, Oxford, pp 123–193Google Scholar
  15. 15.
    Crombie L, Harper SH (1954) The chrysanthemum carboxylic acids. Part VI. The configuration of the chrysanthemic acids. J Chem Soc:470Google Scholar
  16. 16.
    Crombie L, Crossley J, Mitchard DA (1963) Synthesis, absolute configuration and ring fission of cis- and trans-homocaronic acid: their configurative relation to natural terpenes. J Chem Soc:4957–4969Google Scholar
  17. 17.
    Katsuda Y, Chikamoto T, Inouye Y (1958) The absolute configuration of naturally derived pyrethrolone and cinerolone. Bull Agric Chem Soc Jpn 22:427–428CrossRefGoogle Scholar
  18. 18.
    Bramwell AF, Crombie L, Hemesley P et al (1969) Nuclear magnetic resonance spectra of the natural pyrethrins and related compounds. Tetrahedron 25:1727–1741CrossRefGoogle Scholar
  19. 19.
    Begley MJ, Crombie L, Simmonds DJ, et al. (1972) Absolute configuration of pyrethrins. Configuration and structure of (+)-allethronyl (+)-trans-chrysanthemate 6-bromo-2,4-dinitrophenylhydrazone by X-ray methods. J Chem Soc Chem Commun:1276–1277Google Scholar
  20. 20.
    Begley MJ, Crombie L, Simmonds DJ et al (1974) X-ray analysis of synthetic (4S)-2-(prop-2’-enyl)rethronyl (1R)(3R)-chrysantemate 6-bromo-2,4-dinitrophenylhydrazone and (3R) chiroptical correlation with the six natural pyrethrin esters. J Chem Soc Perkin Trans 1:879–913Google Scholar
  21. 21.
    Rivera SB, Swedlund BD, King GJ et al (2001) Chrysanthemyl diphosphate synthase: isolation of the gene and characterization of the recombinant non-head-to-tail monoterpene synthase from Chrysanthemum cinerariaefolium. Proc Natl Acad Sci USA 98:4373–4378CrossRefGoogle Scholar
  22. 22.
    Rohmer M, Knani M, Simonin P et al (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295(Pt 2):517–524Google Scholar
  23. 23.
    Rohmer M, Seemann M, Horbach S et al (1996) Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J Am Chem Soc 118:2564–2566CrossRefGoogle Scholar
  24. 24.
    Dubey VS, Bhalla R, Luthra R (2003) An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. J Biosci 28:637–646CrossRefGoogle Scholar
  25. 25.
    Eisenreich W, Bacher A, Arigoni D et al (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 61:1401–1426CrossRefGoogle Scholar
  26. 26.
    Rohmer M (2007) Diversity in isoprene unit biosynthesis: the methylerythritol phosphate pathway in bacteria and plastids. Pure Appl Chem 79:739–751CrossRefGoogle Scholar
  27. 27.
    Phillips MA, Leon P, Boronat A et al (2008) The plastidial MEP pathway: unified nomenclature and resources. Trends Plant Sci 13:619–623CrossRefGoogle Scholar
  28. 28.
    Crowley MP, Godin PJ, Inglis HS et al (1962) The biosynthesis of the “pyrethrins”. I. The incorporation of 14C-labelled compounds into the flowers of Chrysanthemum cinerariaefolium and the biosynthesis of chrysanthemum monocarboxylic acid. Biochim Biophys Acta 60:312–319CrossRefGoogle Scholar
  29. 29.
    Crowley MP, Inglis HS, Snarey M et al (1961) Biosynthesis of the pyrethrins. Nature 191:281–282CrossRefGoogle Scholar
  30. 30.
    Matsuda K, Kikuta Y, Haba A et al (2005) Biosynthesis of pyrethrin I in seedlings of Chrysanthemum cinerariaefolium. Phytochemistry 66:1529–1535CrossRefGoogle Scholar
  31. 31.
    Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297CrossRefGoogle Scholar
  32. 32.
    Ueda H, Matsuda K (2011) VOC-mediated within-plant communications and nonvolatile systemic signals upregulate pyrethrin biosynthesis in wounded seedlings of Chrysanthemum cinerariaefolium. J Plant Interact 6:89–91Google Scholar
  33. 33.
    Arimura G, Matsui K, Takabayashi J (2009) Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant Cell Physiol 50:911–923CrossRefGoogle Scholar
  34. 34.
    Heil M, Karban R (2010) Explaining evolution of plant communication by airborne signals. Trends Ecol Evol 25:137–144CrossRefGoogle Scholar
  35. 35.
    Kikuta Y, Ueda H, Nakayama K et al (2011) Specific regulation of pyrethrin biosynthesis in Chrysanthemum cinerariaefolium by a blend of volatiles emitted from artificially damaged conspecific plants. Plant Cell Physiol 52:588–596CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Applied Biological Chemistry, Faculty of AgricultureKinki UniversityNaraJapan

Personalised recommendations