Skip to main content

Star-Shaped Mesogens – Hekates: The Most Basic Star Structure with Three Branches

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 318))

Abstract

The chapter introduces and defines the term star-shaped mesogens as a highly symmetric subgroup of multipodes. Hekates, the three arm stars, are in the focus of the other sections. Flexible, semi-flexible and shape-persistent mesogens can be distinguished. The chapter presents various modes of self-assembly which account for nanosegregation and space-filling. Recent examples are semi-flexible structures which fold to E-shaped conformers followed by self-organisation in columnar 2D and 3D and micellar cubic structures. Hekates are mesogens that will allow the design of complex mesomorphic and functional materials in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Hekate is the name of a popular Greek goddess, also known as the goddess of the three ways and the connection of the three ways. She was represented as a triple-form figure owing to her threefold power in heaven, earth and underworld [1215]. Since star mesogens with three arms are rather special, due to the large void space between their arms and thus should be distinguished from star mesogens with four or more arms, we suggest to introduce this more specific name “Hekates” for the star mesogens with three arms described in this section.

  2. 2.

    Note that in the original publications the interpretation of the X-ray results is not correct. Instead of a hexagonal phase the given X-ray data point to a rectangular phase with much smaller parameters compared to the molecular diameter. For the molecule with octyloxy chains the dimension of the column would be about 4.0 nm compared to a diameter of 5.2 nm for the molecule.

  3. 3.

    Tschierske, personal communication. The experimental verification is in progress.

  4. 4.

    The segregation of perfluorinated segments is generally explained by the fluorophobic effect and not by an especially attractive interaction of perfluorinated alkyl chains. The dispersion interaction between small perfluorinated molecules has been shown to be larger than the non-fluorinated alkyl chains [97]; however, they decrease and become smaller than that of the alkyl chains for longer chain lengths owing to the larger intermolecular distance of perfluorinated aliphatic building blocks (see for more details [98]). In the present case the columnar phase of the all alkyl chain derivative 38a clears at 65 °C whereas the derivative with one semi-perfluorinated arm 38b shows a transition only at 152 °C to a SmA phase and the clearing temperature at 190 °C. This is difficult to explain by only an underlying phlorophobic effect; thus dispersion forces may play an important role here too.

References

  1. Wenninger MJ (1971) Polyhedron models. Cambridge University Press, New York

    Google Scholar 

  2. Lehmann M (2009) Star mesogens (Hekates) – tailor-made molecules for programming supramolecular functionality. Chem Eur J 15:3628–3651

    Article  CAS  Google Scholar 

  3. Donnio B, Guillon D (2006) Adv Polym Sci 201:45–155

    Article  CAS  Google Scholar 

  4. Goodby JW, Saez IM, Cowling SJ, Görtz V, Draper M, Hall AW, Sia S, Cosquer G, Lee S-E, Raynes EP (2008) Angew Chem Int Ed 47:2754–2787

    Article  CAS  Google Scholar 

  5. Demus D (2001) Mol Cryst Liq Cryst 364:25–91

    Article  CAS  Google Scholar 

  6. Tschierske C (2001) J Mater Chem 11:2647–2671

    Article  CAS  Google Scholar 

  7. Tschierske C (1998) J Mater Chem 8:1485–1508

    Article  CAS  Google Scholar 

  8. Tschierske C (2007) Chem Soc Rev 36:1930–1970, A review about tilings comprising ABC star blockcopolymers

    Article  CAS  Google Scholar 

  9. Lehmann M (2009) Chem Eur J 15:3638–3651

    Article  CAS  Google Scholar 

  10. Lehmann M, Jahr M (2011) Mesogens and mesophases. In: Andrews D, Scholes G, Wiederrecht G (eds) Comprehensive nanoscience and technology, vol 5. Elsevier, Amsterdam, pp 277–357

    Chapter  Google Scholar 

  11. Detert H, Lehmann M, Meier H (2010) Materials 3:3218–3330

    Article  CAS  Google Scholar 

  12. Halsey WD, Johnston B (eds) (1988) Collier’s encyclopedia, vol 12. Macmillan Educatorial Company, New York

    Google Scholar 

  13. Burkert W (1985) Greek religion. Harvard University Press, Cambridge

    Google Scholar 

  14. Roscher WH (ed) (1993) Ausführliches Lexikon der griechischen und römischen Mythologie. I.2: 1885 ff, Georg Olms, Hildesheim

    Google Scholar 

  15. Binder W (1874) Dr. Vollmer’s Wörterbuch der Mythologie aller Völker, 3rd edn. Hoffmann’s, Stuttgart

    Google Scholar 

  16. Mehl GH, Thornton AJ, Goodby JW (1999) Mol Cryst Liq Cryst 332:455–461

    Article  Google Scholar 

  17. Göring P, Pelzl G, Diele S, Delavier P, Siemensmeyer K, Etzbach KH (1995) Liq Cryst 19:629–635

    Article  Google Scholar 

  18. Kumar S, Manickman M (1999) Liq Cryst 26:939–941

    Article  CAS  Google Scholar 

  19. Wilson L (1994) Liq Cryst 18:1005–1014

    Article  Google Scholar 

  20. Chen SH, Shi H, Conger BM, Mastrangelo JC, Tsutsui T (1996) Adv Mater 8:998–1001

    Article  CAS  Google Scholar 

  21. Paraschiv I, Giesbers M, van Lagen B, Grozema FC, Abellon RD, Siebbeles LDA, Marcelis ATM, Zuilhof H, Sudhölter EJR (2006) Chem Mater 18:968–974

    Article  CAS  Google Scholar 

  22. Abetz V, Jiang S (2004) e-Polymers 054

    Google Scholar 

  23. Hückstädt H, Göpfert A, Abetz V (2000) Macromol Chem Phys 201:296–307

    Article  Google Scholar 

  24. Ungar G, Tschierske C, Abetz V, Holyst R, Bates MA, Liu F, Prehm M, Kieffer R, Zeng X, Walker M, Glettner B, Zywocinski A (2011) Adv Funct Mater 21:1296–1323

    Article  CAS  Google Scholar 

  25. de Campo L, Varslot T, Moghaddam MJ, Kirkensgaard JJK, Mortensen K, Hyde ST (2011) Phys Chem Chem Phys 13:3139–3152

    Article  CAS  Google Scholar 

  26. Hayashida K, Dotera T, Takano A, Matsushita Y (2007) Phys Rev Lett 98:195502

    Article  CAS  Google Scholar 

  27. Yao D-S, Zhang B-Y, Zhang W-W, Tian M (2008) J Mol Struc 881:83–89

    Article  CAS  Google Scholar 

  28. Zhang B-Y, Yao D-S, Meng F-B, Li Y-H (2005) J Mol Struct 741:135–140

    Article  CAS  Google Scholar 

  29. Chen SH, Mastrangelo JC, Shi H, Bashir-Hashemi A, Li J, Gelber N (1995) Macromolecules 28:7775–7778

    Article  CAS  Google Scholar 

  30. Kocot A, Vij V (2010) Liq Cryst 37:653–667

    Article  CAS  Google Scholar 

  31. Tajber L, Kocot A, Vij JK, Merkel K, Zalewska-Rejdak J, Mehl GH, Elsässer R, Goodby JW, Veith M (2002) Macromolecules 35:8601–8608

    Article  CAS  Google Scholar 

  32. Katoh M, Uehara S, Kohmoto S, Kishikawa K (2006) Chem Lett 35:322–323

    Article  CAS  Google Scholar 

  33. Zelcer A, Donnio B, Bourgogne C, Cukiernik FD, Guillon D (2007) Chem Mater 19:1992–2006

    Article  CAS  Google Scholar 

  34. Kumar S (2005) Liq Cryst 32:1089–1113

    Article  CAS  Google Scholar 

  35. Frackowiak E, Scherowsky G (1997) Z Naturforsch B Chem Sci 52:1539–1543

    CAS  Google Scholar 

  36. Kotha S, Kashinath D, Lahiri K, Sunoj R B (2004) Eur J Org Chem 4003–4013

    Google Scholar 

  37. Ponomarenko SA, Kirchmeyer S, Elschner A, Huisman B-H, Karbach A, Drechsler D (2003) Adv Funct Mater 13:591–596

    Article  CAS  Google Scholar 

  38. Narita T, Takase M, Nishinaga T, Iyoda M, Kamada K, Ohta K (2010) Chem Eur J 16:12108–12113

    Article  CAS  Google Scholar 

  39. Pappenfus TM, Mann KR (2002) Org Lett 4:3043–3046

    Article  CAS  Google Scholar 

  40. Christiano R (2005) Pereira de Oliveira Santos D M, Gallardo H. Liq Cryst 32:7–14

    Article  CAS  Google Scholar 

  41. Zhang Y-D, Jespersen KG, Kempe M, Kornfield JA, Barlow S, Kippelen B, Marder SR (2003) Langmuir 19:6534–6536

    Article  CAS  Google Scholar 

  42. Varghese S, Kumar NSS, Krishna A, Rao DSS, Prasad SK, Das S (2009) Adv Funct Mater 19:2064–2073

    Article  CAS  Google Scholar 

  43. Kim BG, Kim S, Park SY (2001) Tetrahedron Lett 42:2697–2699

    Article  CAS  Google Scholar 

  44. Pesak DJ, Moore JS (1997) Angew Chem Int Ed 36:1636–1639; Angew Chem 109:1709–1712

    Google Scholar 

  45. Bushey M, Nguyen T, Nuckolls C (2003) J Am Chem Soc 125:8264–8269

    Article  CAS  Google Scholar 

  46. Nuckolls C (2004) J Am Chem Soc 126:5234–5242

    Article  CAS  Google Scholar 

  47. Zhao Y, Shirai Y, Slepkov AD, Cheng L, Alemany LB, Sasaki T, Hegmann FA, Tour JM (2005) Chem Eur J 11:3643–3658

    Article  CAS  Google Scholar 

  48. Bock H, Babeau A, Seguy I, Jolinat P, Destruel P (2002) Chem Phys Chem 6:532–535

    Article  Google Scholar 

  49. Bock HR, Anderson S, Fujita Y, Hudson AJ, Rorison JM, Weaver M (1999) UK Patent GB2336839

    Google Scholar 

  50. Lee H, Kim D, Lee H-K, Qiu W, Oh N-K, Zin W-C, Kim K (2004) Tetrahedron Lett 45:1019–1022

    Article  CAS  Google Scholar 

  51. Lin YC, Kai CK, Chang Y-C, Liu K-T (2002) Liq Cryst 29:237–242

    Article  CAS  Google Scholar 

  52. Pieterse K, Lauritsen A, Schenning APHJ, Vekemans JAJM, Meijer EW (2003) Chem Eur J 9:5597–5604

    Article  CAS  Google Scholar 

  53. Lee CH, Yamamoto T (2001) Tetrahedron Lett 42:3993–3996

    Article  CAS  Google Scholar 

  54. Lee CH, Yamamoto T (2002) Mol Cryst Liq Cryst 378:13–21

    Article  CAS  Google Scholar 

  55. Kotha S, Kashinat D, Lopus M, Panda D (2009) Ind J Chem 48B: 1766–1770

    Google Scholar 

  56. Zerban G, Meier H (1993) Z Naturforsch 48b:171–184

    Google Scholar 

  57. Holst HC, Pakula T, Meier H (2004) Tetrahedron 60:6765–6775

    Article  CAS  Google Scholar 

  58. Lifka T, Oehlhof A, Meier H (2008) J Heterocycl Chem 45:935–937

    Article  CAS  Google Scholar 

  59. Attias A-J, Cavalli C, Donnio B, Guillon D, Hapiot P, Malthête J (2002) Chem Mater 14:375–384

    Article  CAS  Google Scholar 

  60. Meier H, Lehmann M, Kolb U (2000) Chem Eur J 6:2462–2469

    Article  CAS  Google Scholar 

  61. Meier H, Lehmann M (1998) Angew Chem Int Ed 37:643–645; Angew Chem 110:666–669

    Google Scholar 

  62. Lehmann M, Schartel B, Hennecke M, Meier H (1999) Tetrahedron 55:13377–13394

    Article  CAS  Google Scholar 

  63. Lehmann M, Fischbach I, Spiess HW, Meier H (2004) J Am Chem Soc 126:772–784

    Article  CAS  Google Scholar 

  64. Meier H, Holst HC, Oehlhof A (2003) Eur J Org Chem 4173–4180

    Google Scholar 

  65. Rumpf N, Lehmann M (2009) Book of Abstracts. Topical Meeting on Liquid Crystals, Stuttgart

    Google Scholar 

  66. Meier H (1992) Angew Chem Int Ed 31:1399–1420; Angew Chem 104:1425–1576

    Google Scholar 

  67. Meier H, Karpouk E, Lehmann M, Schollmeyer D, Enkelmann V (2003) Z Naturforsch B 58:775–781

    CAS  Google Scholar 

  68. Lehmann M, Köhn C, Meier H, Renker S, Oehlhof A (2006) J Mater Chem 16:441–451

    Article  CAS  Google Scholar 

  69. Gihm SH, Kim BG, Kim S, Seo J, Park SY, Park CR (2010) J Mol Struct 984:371–375

    Article  CAS  Google Scholar 

  70. Lehmann M (1995) Synthese und Untersuchung von stilbenoiden Sternstrukturen. Diplomarbeit, University of Mainz

    Google Scholar 

  71. Meier H, Lehmann M, Holst HC, Schwöppe D (2004) Tetrahedron 60:6881–6888

    Article  CAS  Google Scholar 

  72. Chang JC, Yeon JR, Chin YS, Han MJ, Hong S-K (2000) Chem Mater 12:1076–1082

    Article  CAS  Google Scholar 

  73. Chang JC, Baik JH, Lee CB, Han MJ, Hong S-K (1997) J Am Chem Soc 119:3197–3198

    Article  CAS  Google Scholar 

  74. Palmans ARA, Vekemans JAJM, Fischer H, Hikmet RA, Meijer EW (1997) Chem Eur J 3:300–307

    Article  CAS  Google Scholar 

  75. Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP (2001) Chem Rev 101:4071–4097

    Article  CAS  Google Scholar 

  76. Brunsveld L, Schenning APHJ, Broeren MAC, Janssen HM, Vekemans JAJM, Meijer EW (2000) Chem Lett 292–293

    Google Scholar 

  77. van Gorp JJ, Vekemans JAJM, Meijer EW (2003) Mol Cryst Liq Cryst 397:191–205

    Article  Google Scholar 

  78. Lehmann M, Jahr M, Donnio B, Graf R, Gemming S, Popov I (2008) Chem Eur J 14:3562–3576

    Article  CAS  Google Scholar 

  79. Lehmann M, Jahr M (2006) Org Lett 8:721–723

    Article  CAS  Google Scholar 

  80. Lehmann M, Jahr M, Grozema FC, Abellon RD, Siebbeles LDA, Müller M (2008) Adv Mater 20:4414–4418

    Article  CAS  Google Scholar 

  81. Lehmann M, Jahr M (2008) Chem Mater 20:5453–5456

    Article  CAS  Google Scholar 

  82. Gemming S, Lehmann M, Seifert G (2005) Z Metallkd 96:988–997

    CAS  Google Scholar 

  83. Lehmann M, Jahr M, Rüffer T, Lang H (2007) Z Naturforschung 62b:988–994

    Google Scholar 

  84. Yu LJ, Cho C-C (2004) Mol Cryst Liq Cryst 411:313–318

    Article  CAS  Google Scholar 

  85. Ivanov DA, Gearba RI, Anokhin D, Magonov S, Lehmann M (2006) PMSE Preprints 94:655–656

    CAS  Google Scholar 

  86. Oswald P, Pieranski P (2006) Smectic and columnar liquid crystals. Taylor & Francis, Boca Raton

    Google Scholar 

  87. Gearba RI, Bondar A, Lehmann M, Goderis B, Bras W, Koch MHJ, Ivanov DA (2005) Adv Mater 17:671–676

    Article  CAS  Google Scholar 

  88. Jahr M (2011) Neue sternförmige Mesogene: Strukturbildung und Chromophore. Dissertation, Chemnitz University of Technology

    Google Scholar 

  89. Stackhouse PJ, Wilson A, Lacey D, Hird M (2010) Liq Cryst 37:1191–1203

    Article  CAS  Google Scholar 

  90. Lehmann M, Gearba RI, Ivanov DA, Koch MHJ (2004) Mol Cryst Liq Cryst 311:397–406

    Article  CAS  Google Scholar 

  91. Weber CHM, Liu F, Zheng X-B, Ungar G, Mullin N, Hobbs JK, Jahr M, Lehmann M (2010) Soft Matter 6:5227–5246

    Article  CAS  Google Scholar 

  92. Yeardley DJP, Ungar G, Percec V, Holerca NM, Johansson G (2000) J Am Chem Soc 122:1684–1689

    Article  CAS  Google Scholar 

  93. Duan H, Hudson SD, Ungar G, Holerca MN, Percec V (2001) Chem Eur J 7:4134–4141

    Article  CAS  Google Scholar 

  94. Donnio B, Garcia-Vazquez P, Gallani J-L, Guillon D, Terazzi E (2007) Adv Mater 19:3534–3539

    Article  CAS  Google Scholar 

  95. Tschierske C, Photinos D (2010) J Mater Chem 20:4263–4294

    Article  CAS  Google Scholar 

  96. Lehmann M, Jahr M, Gutmann J (2008) J Mater Chem 18:2995–3003

    Article  CAS  Google Scholar 

  97. Tsuzuki S et al (2002) J Chem Phys 116:3309–3315

    Article  CAS  Google Scholar 

  98. Tschierske C (2011) Fluorinated liquid crystals: design of soft nanostructures and increased complexity of self-assembly by perfluorinated segments. Top Curr Chem. doi:10.1007/128_2011_267

    Google Scholar 

  99. Barberá J, Puig L, Serrano J-L, Sierra T (2004) Chem Mater 16:3308–3317

    Article  CAS  Google Scholar 

  100. Janietz D (1998) J Mater Chem 8:265–274

    Article  CAS  Google Scholar 

  101. Goldmann D, Janietz D, Schmidt C, Wendorff J H (2000) Angew Chem Int Ed 39: 1851–1854

    Google Scholar 

  102. Goldmann D, Janietz D, Schmidt C, Wendorff J H (2004) J Mater Chem 14:1521–1525

    Google Scholar 

  103. Goldmann D, Janietz D, Schmidt C, Wendorff JH (1998) Liq Cryst 25:711–719

    Article  CAS  Google Scholar 

  104. Barberá J, Puig L, Romero P, Serrano J-L, Sierra T (2005) Chem Mater 17:3763–3771

    Article  CAS  Google Scholar 

  105. Kohlmeier A, Janietz D (2007) Liq Cryst 34:289–294

    Article  CAS  Google Scholar 

  106. Kohlmeier A, Nordsieck A, Janietz D (2009) Chem Mater 21:491–498

    Article  CAS  Google Scholar 

  107. Barberá J, Puig L, Romero P, Serrano J-L, Sierra T (2006) J Am Chem Soc 128:4487–4492

    Article  CAS  Google Scholar 

  108. Vieira AA, Gallardo H, Barberá J, Romero P, Serrano J-L, Sierra T (2011) J Mater Chem 21:5916–5922

    Article  CAS  Google Scholar 

  109. Vera F, Tejedor RM, Romero P, Barberá J, Ros MB, Serrano J-L, Sierra T (2007) Angew Chem Int Ed 46:1873–1877

    Article  CAS  Google Scholar 

  110. Lee JH, Hwang SH, Jang I, Lee SJ, Yoo SH, Jho JY, Park S-Y (2005) Tetrahedron Lett 46:7143–7146

    Article  CAS  Google Scholar 

  111. Kleppinger R, Lillya CP, Yang C (1997) J Am Chem Soc 119:4097–4102

    Article  CAS  Google Scholar 

  112. Lee H-K, Lee H, Ko YH, Chang YJ, Oh N-K, Zin W-C, Kim K (2001) Angew Chem Int Ed 40:2669–2671

    Article  Google Scholar 

  113. Hatano T, Kato T (2006) Chem Commun 1277–1279

    Google Scholar 

  114. Kim C, Marshall K, Wallace JU, Ou JJ, Chen SH (2008) Chem Mater 20:5859–5868

    Article  CAS  Google Scholar 

  115. Pegenau A, Hegemann T, Tschierske C, Diele S (1999) Chem Eur J 5:1643–1660

    Article  CAS  Google Scholar 

  116. Tomović Z, van Dongen J, George SJ, Xu H, Pisula W, Leclère P, Smulders MM, De Feyter S, Meijer EW, Schenning AP (2007) J Am Chem Soc 129:16190–16196

    Article  CAS  Google Scholar 

  117. Zhi L, Wu J, Müllen K (2005) Org Lett 7:5761–5764

    Article  CAS  Google Scholar 

  118. Graafe A, Janietz D (2005) Chem Mater 17:4979–4984

    Article  CAS  Google Scholar 

  119. Kimura M, Narikawa H, Ohta K, Hanabusa K, Shirai H, Kobayashi N (2002) Chem Mater 14:2711–2717

    Article  CAS  Google Scholar 

  120. Chuard T, Deschenaux R, Hirsch A, Schönberger H (1999) Chem Comm 2103–2104

    Google Scholar 

  121. Felder-Flesch D, Rubnicki L, Bourgogne C, Donnio B, Guillon D (2006) J Mater Chem 16:304–309

    Article  CAS  Google Scholar 

  122. Miao J, Zhu M (2010) J Phys Chem B 114:1879–1887

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Lehmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lehmann, M. (2011). Star-Shaped Mesogens – Hekates: The Most Basic Star Structure with Three Branches. In: Tschierske, C. (eds) Liquid Crystals. Topics in Current Chemistry, vol 318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_266

Download citation

Publish with us

Policies and ethics