Skip to main content

Chemical Applications of Fluorous Reagents and Scavengers

  • Chapter
  • First Online:
Fluorous Chemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 308))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Curran DP (2000) Fluorous techniques for the synthesis of organic molecules: a unified strategy for reaction and separation. In: Stoddard F, Reinhoudt D, Shibasaki M (eds) Stimulating concepts in chemistry. Wiley-VCH, New York

    Google Scholar 

  2. Curran DP (2001) Fluorous reverse phase silica gel. A new tool for preparative separations in synthetic organic and organofluorine chemistry. Synlett:1488–1496

    Google Scholar 

  3. Curran DP (2006) Synthetic applications of fluorous solid-phase extraction (F-SPE). Tetrahedron 62:11837–11865

    Article  Google Scholar 

  4. Palomo C, Aizpurua JM, Loinaz I, Fernandez-Berridi MJ, Irusta L (2001) Scavenging of fluorinated N,N’-dialkylureas by hydrogen binding: a novel separation method for fluorous synthesis. Org Lett 3:2361–2364

    Article  CAS  Google Scholar 

  5. Del Pozo C, Keller AI, Nagashima T, Curran DP (2007) Amide bond formation with a new fluorous carbodiimide: separation by reverse fluorous solid-phase extraction. Org Lett 9:4167

    Article  Google Scholar 

  6. Markowicz MW, Dembinski R (2004) Fluorous coupling reagents: application of 2-chloro-4,6-bis[(heptadecafluorononyl)oxy]-1,3,5-triazine in peptide synthesis. Synthesis:80–86

    Google Scholar 

  7. Zhang W, Lu Y, Nagashima T (2005) Plate-to-plate fluorous solid-phase extraction for solution-phase parallel synthesis. J Combi Chem 7:893–897

    Article  CAS  Google Scholar 

  8. Matsugi M, Hasegawa M, Sadachika D, Okamoto S, Tomioka M, Ikeya Y, Masuyama A, Mori Y (2007) Preparation and condensation reactions of a new light-fluorous Mukaiyama reagent: reliable purification with fluorous solid phase extraction for esters and amides. Tetrahedron Lett 48:4147–4150

    Article  CAS  Google Scholar 

  9. Matsugi M, Suganuma M, Yoshida S, Hasebe S, Kunda Y, Hagihara K, Oka S (2008) An alternative and facile purification procedure of amidation and esterification reactions using a medium fluorous Mukaiyama reagent. Tetrahedron Lett 49:6573–6574

    Article  CAS  Google Scholar 

  10. Matsugi M, Nakamura S, Kunda Y, Sugiyama Y, Shioiri T (2009) Pronounced rate enhancements in condensation reactions attributed to the fluorous tag in modified Mukaiyama reagents. Tetrahedron Lett 51:133–135

    Article  Google Scholar 

  11. Otera J (2004) Toward ideal (trans)esterification by use of fluorous distannoxane catalysts. Acc Chem Res 37:288–296

    Article  CAS  Google Scholar 

  12. Xiang J, Toyoshima S, Orita A, Otera J (2001) A practical and green chemical process: fluoroalkyldistannoxane-catalyzed biphasic transesterification. Angew Chem Int Ed 40:3670–3672

    Article  CAS  Google Scholar 

  13. Orita J, Man-e S, Otera J (2006) Fluorophilicity switch by solvation. J Am Chem Soc 128:4182–4183

    Article  CAS  Google Scholar 

  14. Bucher B, Curran DP (2000) Selective sulfonylation of 1,2-diols and derivatives catalyzed by a recoverable fluorous tin oxide. Tetrahedron Lett:9617–9621

    Google Scholar 

  15. Beeler AB, Acquilano DE, Su Q, Yan F, Roth BL, Panek JS, Porco JA (2005) Synthesis of a library of complex macrodiolides employing cyclodimerization of hydroxy esters. J Comb Chem 7:673–681

    Article  CAS  Google Scholar 

  16. Kesavan S, Su Q, Shao J, Porco JA, Panek JS (2005) Enantioselective synthesis of linear polypropionate arrays using anthracene-tagged organosilanes. Org Lett 7:4435–4438

    Article  CAS  Google Scholar 

  17. Mikami K, Mikami Y, Matsuzawa H, Matsumoto Y, Nishikido J, Yamamoto F, Nakajima H (2002) Lanthanide catalysts with tris(perfluorooctanesulfonyl)methide and bis(perfluorooctanesulfonyl)amide ponytails: recyclable Lewis acid catalysts in fluorous phases or as solids. Tetrahedron 58:4015–4021

    Article  CAS  Google Scholar 

  18. Hao X, Yoshida A, Nishikido J (2004) Recyclable and selective Lewis acid catalysts for transesterification and direct esterification in a fluorous biphase system: tin(IV) and hafnium(IV) bis(perfluorooctanesulfonyl)amide complexes. Tetrahedron Lett 45:781–785

    Article  CAS  Google Scholar 

  19. Yoshida A, Hao X, Nishikido J (2003) Development of the continuous-flow reaction system based on the Lewis acid-catalysed reactions in a fluorous biphasic system. Green Chem 5:554–557

    Article  CAS  Google Scholar 

  20. For a review see Cai C, Yi W-B, Zhang W, Shen M-G, Hong M, Zeng L-Y (2009) Fluorous Lewis acids and phase transfer catalysts. Mol Divers 14:209–239

    Google Scholar 

  21. Hartwig JF (1998) Transition metal catalyzed synthesis of arylamines and aryl ethers from aryl halides and triflates: scope and mechanism. Angew Chem Int Ed 37:2046–2067

    Article  CAS  Google Scholar 

  22. Hartwig JF (2000) Palladium-catalyzed amination of aryl halides and sulfonates. In: Ricci A (ed) Modern amination methods. Wiley-VCH, Weinheim, pp 195–262

    Chapter  Google Scholar 

  23. Cioffi CL, Berlin ML, Herr RJ (2004) Convenient palladium-catalyzed preparation of primary anilines using a fluorous benzophenone imine reagent. Synlett:841–845

    Google Scholar 

  24. Trabanco AA, Vega JA, Fernandez MA (2007) Fluorous-tagged carbamates for the pd-catalyzed amination of aryl halides. J Org Chem 72:8146–8148

    Article  CAS  Google Scholar 

  25. Dandapani S, Curran DP (2004) Separation-friendly mitsunobu reactions: a microcosm of recent developments in separation strategies. Chem Eur J 10:3130–3138

    Article  CAS  Google Scholar 

  26. Dembinski R (2004) Recent advances in the Mitsunobu reaction: modified reagents and the quest for chromatography-free separation. Eur J Org Chem:2763–2772

    Google Scholar 

  27. Dandapani S, Curran DP (2002) Fluorous Mitsunobu reagents and reactions. Tetrahedron 58:3855–3864

    Article  CAS  Google Scholar 

  28. Dandapani S, Curran DP (2004) Second generation fluorous dead reagents have expanded scope in the mitsunobu reaction and retain convenient separation features. J Org Chem 69:8751–8757

    Article  CAS  Google Scholar 

  29. Jogireddy R, Dakas P-Y, Valot G, Barluenga S, Winssinger N (2009) Synthesis of a resorcylic acid lactone (RAL) library using fluorous-mixture synthesis and profile of its selectivity against a panel of kinases. Chem-Eur J 15:11498–11506

    Article  CAS  Google Scholar 

  30. Chu Q, Henry C, Curran DP (2008) Second-generation tags for fluorous chemistry exemplified with a new fluorous Mitsunobu reagent. Org Lett 10:2453–2456

    Article  CAS  Google Scholar 

  31. Kiss LE, Kovesdi I, Rábai J (2001) An improved design of fluorophilic molecules: prediction of the ln P fluorous partition coefficient, fluorophilicity, using 3D QSAR descriptors and neural networks. J Fluorine Chem 108:95–109

    Article  CAS  Google Scholar 

  32. Curran DP, Bajpai R, Sanger E (2006) Purification of fluorous Mitsunobu reactions by liquid-liquid extraction. Adv Synth Catal 348:1621–1624

    Article  CAS  Google Scholar 

  33. Yu MS, Curran DP, Nagashima T (2005) Increasing fluorous partition coefficients by solvent tuning. Org Lett 7:3677–3680

    Article  CAS  Google Scholar 

  34. Chu Q, Yu MS, Curran DP (2007) New fluorous/organic biphasic systems achieved by solvent tuning. Tetrahedron 63:9890–9895

    Article  CAS  Google Scholar 

  35. Kuivila HG (1968) Organotin hydrides and organic free radicals. Acc Chem Res 1:299

    Article  CAS  Google Scholar 

  36. Neumann WP (1987) Tri-n-butyltin hydride as reagent in organic synthesis. Synthesis:665

    Google Scholar 

  37. Curran DP, Hadida S (1996) Tris(2-(perfluorohexyl)ethyl)tin hydride: a new fluorous reagent for use in traditional organic synthesis and liquid phase combinatorial synthesis. J Am Chem Soc 118:2531–2532

    Article  CAS  Google Scholar 

  38. Hadida S, Super MS, Beckman EJ, Curran DP (1997) Radical reactions with alkyl and fluoroalkyl (fluorous) tin hydride reagents in supercritical CO2. J Amer Chem Soc 119:7406–7407

    Article  CAS  Google Scholar 

  39. Curran DP, Hadida S, Kim SY, Luo ZY (1999) Fluorous tin hydrides: a new family of reagents for use and reuse in radical reactions. J Am Chem Soc 121:6607–6615

    Article  CAS  Google Scholar 

  40. Corey EJ, Bakshi RK, Shibata S (1987) Highly enantioselective borane reduction of ketones catalyzed by chiral oxazaborolidines. Mechanism and synthetic implications. J Am Chem Soc 109:5551–5553

    Article  CAS  Google Scholar 

  41. Corey EJ, Bakshi RK, Shibata S, Chen CP, Singh VK (1987) A stable and easily prepared catalyst for the enantioselective reduction of ketones. Applications to multistep syntheses. J Am Chem Soc 109:7925–7926

    Article  CAS  Google Scholar 

  42. Franot C, Stone GB, Engeli P, Spöndlin C, Waldvogel E (1995) A polymer-bound oxazaborolidine catalyst: enantioselective borane reductions of ketones. Tetrahedron-Asymmetry 6:2755–2766

    Article  CAS  Google Scholar 

  43. Price MD, Sui JK, Kurth MJ, Schore NE (2002) Oxazaborolidines as functional monomers: ketone reduction using polymer-supported Corey, Bakshi, and Shibata catalysts. J Org Chem 67:8086–8089

    Article  CAS  Google Scholar 

  44. Kell RJ, Hodge P, Snedden P, Watson D (2003) Towards more chemically robust polymer-supported chiral catalysts: α, α-diphenyl-L-prolinol based catalysts for the reduction of prochiral ketones with borane. Org Biomol Chem 1:3238–3243

    Article  CAS  Google Scholar 

  45. Degni S, Wilén C-E, Rosling A (2004) Highly catalytic enantioselective reduction of aromatic ketones using chiral polymer-supported Corey, Bakshi, and Shibata catalysts. Tetrahedron-Asymmetry 15:1495–1499

    Article  CAS  Google Scholar 

  46. Schunicht C, Biffis A, Wullf G (2000) Microgel-supported oxazaborolidines: novel catalysts for enantioselective reductions. Tetrahedron 56:1693–1699

    Article  CAS  Google Scholar 

  47. Dalicsek Z, Pollreisz F, Gómóry A, Soós T (2005) Recoverable fluorous CBS methodology for asymmetric reduction of ketones. Org Lett 7:3243–3246

    Article  CAS  Google Scholar 

  48. Chu Q, Yu MS, Curran DP (2008) CBS reductions with a fluorous prolinol immobilized in a hydrofluoroether solvent. Org Lett 10:749–752

    Article  CAS  Google Scholar 

  49. Goushi S, Funabiki K, Ohta M, Hatano K, Matsui M (2007) Novel fluorous prolinol as a pre-catalyst for catalytic asymmetric borane reduction of various ketones. Tetrahedron 63:4061–4066

    Article  CAS  Google Scholar 

  50. Rocaboy C, Gladysz JA (2003) Convenient syntheses of fluorous aryl iodides and hypervalent iodine compounds: ArI(L)n reagents that are recoverable by simple liquid/liquid biphase workups, and applications in oxidations of hydroquinones. Chem Eur J 9:88–95

    Article  CAS  Google Scholar 

  51. Lindsley CW, Zhao Z (2004) Fluorous scavengers. In: Gladys JA, Curran DP, Horváth IT (eds) Handbook of fluorous chemistry. Wiley-VCH, New York, pp 236–246

    Google Scholar 

  52. Tesevic V, Gladysz JA (2005) An easily accessed class of recyclable hypervalent iodide reagents for functional group oxidations: bis(trifluoroacetate) adducts of fluorous alkyl iodides, CF3(CF2)n-1I(OCOCF3)2. Green Chem 7:833–836

    Article  CAS  Google Scholar 

  53. Tesevic V, Gladysz JA (2006) Oxidations of secondary alcohols to ketones using easily recyclable bis(trifluoroacetate) adducts of fluorous alkyl iodides, CF3(CF2)n-1I(OCOCF3)2. J Org Chem 71:7433–7440

    Article  CAS  Google Scholar 

  54. Miura T, Nakashima K, Tada N, Itoh A (2010) An effective and catalytic oxidation using recyclable fluorous IBX. Chem Commun 47:1875–1877

    Article  Google Scholar 

  55. Betzemeier B, Lhermitte F, Knochel P, (1999) A selenium catalyzed epoxidation in perfluorinated solvents with hydrogen peroxide. Synlett 489–491

    Google Scholar 

  56. ten Brink G-J, Vis JM, Arends IWCE, Sheldon RA (2002) Selenium catalysed oxidations with aqueous hydrogen peroxide. Part 3: oxidation of carbonyl compounds under mono/bi/triphasic conditions. Tetrahedron 58:3977–3983

    Article  Google Scholar 

  57. Crich D, Zou Y (2004) Catalytic allylic oxidation with a recyclable, fluorous seleninic acid. Org Lett 6:775–777

    Article  CAS  Google Scholar 

  58. Crich D, Zou Y (2005) Catalytic oxidation adjacent to carbonyl groups and at benzylic positions with a fluorous seleninic acid in the presence of iodoxybenzene. J Org Chem 70:3309–3311

    Article  CAS  Google Scholar 

  59. Crich D, Neelamkavil S (2001) Fluorous Swern reaction. J Am Chem Soc 123:7449–7450

    Article  CAS  Google Scholar 

  60. Pozzi G, Cavazzini M, Hozczknecht O, Quici S, Shepperson I (2005) Synthesis and catalytic activity of a fluorous-tagged TEMPO radical. Tetrahedron Lett 45:4249–4251

    Article  Google Scholar 

  61. Holczknecht O, Pozzi G, Quici S (2006) Fluorous TEMPO: an efficient mediator for the aerobic oxidation of alcohols to carbonyl compounds. QSAR Comb Sci 25:736–741

    Article  CAS  Google Scholar 

  62. Holczknecht O, Cavazzini M, Quici S, Shepperson I, Pozzi G (2005) Selective oxidation of alcohols to carbonyl compounds mediated by fluorous-tagged TEMPO radicals. Adv Synth Catal 347:677–688

    Article  CAS  Google Scholar 

  63. Dobbs AP, Penny MJ, Jones P (2008) Novel light-fluorous TEMPO reagents and their application in oxidation reactions. Tetrahedron Lett 49:6955–6958

    Article  CAS  Google Scholar 

  64. Dobbs AP, Jones P, Penny MJ, Rigby SE (2009) Light-fluorous TEMPO: reagent, spin trap and stable free radical. Tetrahedron 65:5271–5277

    Article  CAS  Google Scholar 

  65. Gheorghe A, Cuevas-Yanez E, Horn J, Bannwarth W, Narsaiah B, Reiser O (2006) A facile strategy to a new fluorous-tagged, immobilized TEMPO catalyst using a click reaction, and its catalytic activity. Synlett 17:2767–2770

    Google Scholar 

  66. Gheorghe A, Chinnusamy T, Cuesvas-Yañez E, Hilgers P, Reiser O (2008) Combination of perfluoroalkyl and triazole moieties: a new recovery strategy for TEMPO. Org Lett 10:4171–4174

    Article  CAS  Google Scholar 

  67. Curran DP, Lou Z, Degenkolb P (1998) “Propylene spaced” allyl tin reagents: a new class of fluorous tin reagents for allylations under radical and metal-catalyzed conditions. Bioorg Med Chem Lett 8:2403–2408

    Article  CAS  Google Scholar 

  68. Curran DP, Hadida S, He M (1997) Thermal allylations of aldehydes with a fluorous allylstannane. Separation of organic and fluorous products by solid phase extraction with fluorous reverse phase silica gel. J Org Chem 62:6714–6715

    Article  CAS  Google Scholar 

  69. Ryu I, Nigumo T, Minakata S, Komatsu M (1999) Radical carbonylations with fluorous allyltin reagents. Tetrahedron Lett 40:2367–2370

    Article  CAS  Google Scholar 

  70. Ryu I (2004) Radical carbonylations using fluorous tin reagents: convenient workup and facile recycle of the reagents. In: Gladys JA, Curran DP, Horváth IT (eds) Handbook of fluorous chemistry. Wiley-VCH, New York, pp 182–190

    Google Scholar 

  71. Ryu I, Niguma T, Minakata S, Komatsu M, Hadida S, Curran DP (1997) Hydroxymethylation of organic halides. Evaluation of a catalytic system involving a fluorous tin hydride reagent for radical carbonylation. Tetrahedron Lett 38:7883–7886

    Article  CAS  Google Scholar 

  72. Curran DP, Hadida S, Kim S-Y (1999) Tris(2-perfluorohexylethyl) tin azide: a new reagent for preparation of 5-substituted tetrazoles from nitriles with purification by fluorous organic liquid-liquid extraction. Tetrahedron 55:8997–9006

    Article  CAS  Google Scholar 

  73. Curran DP, Hoshino M (1996) Stille couplings with fluorous tin reactants: attractive features for preparative organic synthesis and liquid-phase combinatorial synthesis. J Org Chem 61:6480–6481

    Article  CAS  Google Scholar 

  74. Hoshino M, Degenkolb P, Curran DP (1997) Palladium-catalyzed Stille couplings with fluorous tin reactants. J Org Chem 62:8341–8349

    Article  CAS  Google Scholar 

  75. Osswald T, Schneider S, Wang S, Bannwarth W (2001) Stille couplings in supercritical CO2 catalyzed with perfluoro-tagged and un-tagged Pd complexes. Tetrahedron Lett 42:2965–2967

    Article  CAS  Google Scholar 

  76. Kaleta Z, Tárkányi G, Gömöry A, Kálmán F, Nagy T, Soós T (2006) Synthesis and application of a fluorous Lawesson’s reagent: convenient chromatography-free product purification. Org Lett 8:1093–1095

    Article  CAS  Google Scholar 

  77. Kaleta Z, Makowski BT, Soós T, Dembinski R (2006) Thionation using fluorous Lawesson's reagent. Org Lett 8:1625–1628

    Article  CAS  Google Scholar 

  78. Kobayashi S, Yoneda A, Fukuhara T, Hara S (2004) Selective synthesis of fluorinated carbohydrates using N, N-diethyl-α, α-difluoro-(m-methylbenzyl)amine. Tetrahedron Lett 45:1287–1289

    Article  CAS  Google Scholar 

  79. Kobayashi S, Yoneda A, Fukuhara T, Hara S (2004) Tetrahedron 60:6932–6930

    Google Scholar 

  80. Chen CH-T, Zhang W (2005) Fluorous reagents and scavengers versus solid-supported reagents and scavengers, a reaction rate and kinetic comparison. Mol Divers 9:353–359

    Article  CAS  Google Scholar 

  81. Linclau B, Sing AK, Curran DP (1999) Organic-fluorous phase switches: a fluorous amine scavenger for purification in solution phase parallel synthesis. J Org Chem 64:2835–2842

    Article  CAS  Google Scholar 

  82. Lindsley CW, Zhao Z, Leister WH (2002) Fluorous-tethered quenching reagents for solution phase parallel synthesis. Tetrahedron Lett 43:4225–4228

    Article  CAS  Google Scholar 

  83. Lindsley CW, Zhao Z, Leister WH, Strauss KA (2002) Fluorous-tethered amine bases for organic and parallel synthesis: scope and limitations. Tetrahedron Lett 43:6319–6323

    Article  CAS  Google Scholar 

  84. Zhang W, Curran DP, Chen CH-T (2002) Use of fluorous silica gel to separate fluorous thiol quenching derivatives in solution-phase parallel synthesis. Tetrahedron 58:3871–3875

    Article  CAS  Google Scholar 

  85. Zhang W, Chen CH-T, Nagashima T (2003) Fluorous electrophilic scavengers for solution-phase parallel synthesis. Tetrahedron Lett 44:2065–2068

    Article  CAS  Google Scholar 

  86. Zhang AS, Elmore CS, Egan MA, Mellilo DG, Dean DC (2005) Use of fluorous and solid-phase electrophiles as scavengers for excess amine in the preparation of sulfur-35 labelled radioligands. J Label Compd Radiopharm 48:203–208

    Article  CAS  Google Scholar 

  87. Lu Y, Zhang W (2006) Fluorous 2,4-dichloro-1,3,5-triazines (F-DCTs) as nucleophile scavengers. QSAR Comb Sci 8:728–731

    Article  Google Scholar 

  88. Baslé E, Jean M, Gouault N, Renault J, Uriac P (2007) Fluorous scavenger for parallel preparation of tertiary sulfonamides leading to secondary amines. Tetrahedron 48:8138–8140

    Article  Google Scholar 

  89. Werner S, Curran DP (2003) Fluorous dienophiles are powerful diene scavengers in Diels-Alder reactions. Org Lett 5:3293–3296

    Article  CAS  Google Scholar 

  90. Hicks JW, Harrington LE, Valliant JF (2011) Fluorous ligand capture (FLC): a chemoselective solution-phase strategy for isolating 99mTc-labelled compounds in high effective specific activity. Chem Commun. doi:10.1039/c1cc11079a

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin S. Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, M.S. (2011). Chemical Applications of Fluorous Reagents and Scavengers. In: Horváth, I. (eds) Fluorous Chemistry. Topics in Current Chemistry, vol 308. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_264

Download citation

Publish with us

Policies and ethics