Skip to main content

Extracellular Chaperones

  • Chapter
  • First Online:
Molecular Chaperones

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 328))

Abstract

The maintenance of the levels and correct folding state of proteins (proteostasis) is a fundamental prerequisite for life. Life has evolved complex mechanisms to maintain proteostasis and many of these that operate inside cells are now well understood. The same cannot yet be said of corresponding processes in extracellular fluids of the human body, where inappropriate protein aggregation is known to underpin many serious diseases such as Alzheimer’s disease, type II diabetes and prion diseases. Recent research has uncovered a growing family of abundant extracellular chaperones in body fluids which appear to selectively bind to exposed regions of hydrophobicity on misfolded proteins to inhibit their toxicity and prevent them from aggregating to form insoluble deposits. These extracellular chaperones are also implicated in clearing the soluble, stabilized misfolded proteins from body fluids via receptor-mediated endocytosis for subsequent lysosomal degradation. Recent work also raises the possibility that extracellular chaperones may play roles in modulating the immune response. Future work will better define the in vivo functions of extracellular chaperones in proteostasis and immunology and pave the way for the development of new treatments for serious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sitia R, Braakman I (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426:891–894

    CAS  Google Scholar 

  2. Ker YC, Chen RH (1998) Stress-induced conformational changes and gelation of soy protein isolate suspensions. Lebenson Wiss Technol 31:107–113

    CAS  Google Scholar 

  3. Bucciantini M et al (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–510

    CAS  Google Scholar 

  4. Buxbaum J, Gallo G (1999) Nonamyloidotic monoclonal immunoglobulin deposition disease. Light-chain, heavy-chain, and light- and heavy-chain deposition diseases. Hematol Oncol Clin North Am 13:1235–1248

    CAS  Google Scholar 

  5. Mullins RF et al (2000) Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J 14:835–846

    CAS  Google Scholar 

  6. Saito K, Dai Y, Ohtsuka K (2005) Enhanced expression of heat shock proteins in gradually dying cells and their release from necrotically dead cells. Exp Cell Res 310:229–236

    CAS  Google Scholar 

  7. Feng H et al (2001) Stressed apoptotic tumor cells express heat shock proteins and elicit tumor-specific immunity. Blood 97:3503–3512

    Google Scholar 

  8. Gastpar R et al (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65:5238–5247

    CAS  Google Scholar 

  9. Lancaster GI, Febbraio MA (2005) Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem 280:23349–23355

    CAS  Google Scholar 

  10. Mambula SS, Calderwood SK (2006) Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. J Immunol 177:7849–7857

    CAS  Google Scholar 

  11. Mambula SS et al (2007) Mechanisms for Hsp70 secretion: crossing membrane without a leader. Methods 43:168–175

    CAS  Google Scholar 

  12. Merendino AM et al (2010) Hsp60 is actively secreted by human tumor cells. PLoS One 5:e9247

    Google Scholar 

  13. Eustace BK et al (2004) Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol 6:507–514

    CAS  Google Scholar 

  14. Srivastava PK et al (1998) Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 8:657–665

    CAS  Google Scholar 

  15. Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2:185–194

    CAS  Google Scholar 

  16. Basu S, Srivastava PK (1999) Calreticulin, a peptide-binding chaperone of the endoplasmic reticulum, elicits tumor- and peptide-specific immunity. J Exp Med 189:797–802

    CAS  Google Scholar 

  17. Maki RG et al (2007) A phase I pilot study of autologous heat shock protein vaccine HSPPC-96 in patients with resected pancreatic adenocarcinoma. Dig Dis Sci 52:1964–1972

    CAS  Google Scholar 

  18. Rivoltini L et al (2003) Human tumor-derived heat shock protein 96 mediates in vitro activation and in vivo expansion of melanoma- and colon carcinoma-specific T cells. J Immunol 171:3467–3474

    CAS  Google Scholar 

  19. Srivastava PK, DeLeo AB, Old LJ (1986) Tumour rejection antigens of chemically induced sarcomas of inbred mice. Proc Natl Acad Sci USA 83:3407–3411

    CAS  Google Scholar 

  20. Suto R, Srivastava PK (1995) A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269:1585–1588

    CAS  Google Scholar 

  21. Udono H, Srivastava PK (1993) Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178:1391–1396

    CAS  Google Scholar 

  22. Humphreys DT et al (1999) Clusterin has chaperone-like activity similar to that of small heat shock proteins. J Biol Chem 274:6875–6881

    CAS  Google Scholar 

  23. Wilson MR, Easterbrook-Smith SB (2000) Clusterin is a secreted mammalian chaperone. Trends Biochem Sci 25:95–98

    CAS  Google Scholar 

  24. Murphy BF et al (1988) SP-40,40, a newly identified normal human serum protein found in the SC5b-9 complex of complement and in the immune deposits in glomerulonephritis. J Clin Invest 81:1858–1864

    CAS  Google Scholar 

  25. Choi NH et al (1990) Sandwich ELISA for quantitative measurement of SP-40,40 in seminal plasma and serum. J Immunol Methods 131:159–163

    CAS  Google Scholar 

  26. Carver JA et al (2003) Small heat-shock proteins and clusterin: intra- and extracellular molecular chaperones with a common mechanism of action and function. IUBMB Life 55:661–668

    CAS  Google Scholar 

  27. Poon S et al (2002) Mildly acidic pH activates the extracellular molecular chaperone clusterin. J Biol Chem 277:39532–39540

    CAS  Google Scholar 

  28. Poon S et al (2000) Clusterin is an ATP-independent chaperone with a very broad substrate specificity that stabilizes stressed proteins in a folding-competent state. Biochemistry 39:15953–15960

    CAS  Google Scholar 

  29. Poon S et al (2002) Clusterin is an extracellular chaperone that specifically interacts with slowly aggregating proteins on their off-folding pathway. FEBS Lett 513:259–266

    CAS  Google Scholar 

  30. Wyatt AR, Wilson MR (2010) Identification of human plasma proteins as major clients for the extracellular chaperone clusterin. J Biol Chem 285:3532–3539

    CAS  Google Scholar 

  31. Wyatt AR, Yerbury JJ, Wilson MR (2009) Structural characterization of clusterin-client protein complexes. J Biol Chem 284:21920–21927

    CAS  Google Scholar 

  32. Yerbury JJ et al (2007) The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with pre-fibrillar structures. FASEB J 21:2312–2322

    CAS  Google Scholar 

  33. Kumita JR et al (2007) The extracellular chaperone clusterin potentially inhibits amyloid formation by interacting with prefibrillar species. J Mol Biol 369:157–167

    CAS  Google Scholar 

  34. Matsubara E, Frangione B, Ghiso J (1995) Characterization of apolipoprotein J-Alzheimer’s a-beta interaction. J Biol Chem 270:7563–7567

    CAS  Google Scholar 

  35. Oda T et al (1995) Clusterin (apoJ) alters the aggregation of amyloid beta peptide 1–42 and forms slowly sedimenting A-beta complexes that cause oxidative stress. Exp Neurol 136:22–31

    CAS  Google Scholar 

  36. McHattie S, Edington N (1999) Clusterin prevents aggregation of neuropeptide 106–126 in vitro. Biochem Biophys Res Commun 259:336–340

    CAS  Google Scholar 

  37. Hatters DM et al (2002) Suppression of apolipoprotein C-II amyloid formation by the extracellular chaperone, clusterin. Eur J Biochem 269:2789–2794

    CAS  Google Scholar 

  38. Crabb JW et al (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci USA 99:14682–14687

    CAS  Google Scholar 

  39. French LE, Tschopp J, Schifferli JA (1992) Clusterin in renal tissue: preferential localization with the terminal complement complex and immunoglobulin deposits in glomeruli. Clin Exp Immunol 88:389–393

    CAS  Google Scholar 

  40. Sasaki K et al (2002) Clusterin/apolipoprotein J is associated with cortical Lewy bodies: immunohistochemical study in cases with alpha-synucleinopathies. Acta Neuropathol 104:225–230

    CAS  Google Scholar 

  41. Freixes M et al (2004) Clusterin solubility and aggregation in Creutzfeldt-Jakob disease. Acta Neuropathol 108:295–301

    CAS  Google Scholar 

  42. Zenkel M et al (2006) Clusterin deficiency in eyes with pseudoexfoliation syndrome may be implicated in the aggregation and deposition of pseudoexfoliative material. Invest Opthalmol Vis Sci 47:1982–1990

    Google Scholar 

  43. Mackness B et al (1997) Increased immunolocalization of paraoxonase, clusterin and apolipoprotein A-I in the human artery wall with the progression of atherosclerosis. Arterioscler Thromb Vasc Biol 17:1233–1238

    CAS  Google Scholar 

  44. Witte DP et al (1993) Platelet activation releases megakaryocyte-synthesized apolipoprotein J, a highly abundant protein in a atheromatous lesions. Am J Pathol 143:763–773

    CAS  Google Scholar 

  45. Ghiso J et al (1993) The cerebrospinal-fluid soluble form of Alzheimer’s amyloid beta is complexed to SP-40,40 (apolipoprotein J), an inhibitor of the complement membrane-attack complex. Biochem J 293:27–30

    CAS  Google Scholar 

  46. Calero M et al (2000) Apolipoprotein J (clusterin) and Alzheimer’s disease. Microsc Res Tech 50:305–315

    CAS  Google Scholar 

  47. Rosenberg ME, Silkensen J (1995) Clusterin: physiologic and pathophysiologic considerations. Int J Biochem Cell Biol 27:633–645

    CAS  Google Scholar 

  48. Strocchi P et al (2006) Clusterin up-regulation following sub-lethal oxidative stress and lipid peroxidation in human neuroblastoma cells. Neurobiol Aging 27:1588–1594

    CAS  Google Scholar 

  49. Ubrich C et al (2000) Laminar shear stress upregulates the complement-inhibitory protein clusterin. Circulation 101:352–355

    Google Scholar 

  50. Loison F et al (2006) Up-regulation of the clusterin gene after proteotoxic stress: implications of HSF1-HSF2 heterocomplexes. Biochem J 395:223–231

    CAS  Google Scholar 

  51. Michel D et al (1997) Stress-induced transcription of the clusterin/apoJ gene. Biochem J 328:45–50

    CAS  Google Scholar 

  52. Criswell T et al (2005) Delayed activation of insulin-like growth factor-1 receptor/Src/MAPK/Egr-1 signaling regulates clusterin expression, a pro-survival factor. J Biol Chem 280:14212–14221

    CAS  Google Scholar 

  53. Harold D et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093

    CAS  Google Scholar 

  54. Lambert JC et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099

    CAS  Google Scholar 

  55. Binder RJ, Karimeddini D, Srivastava PK (2001) Adjuvanticity of alpha2-macroglobulin, an independent ligand for the heat shock protein receptor CD91. J Immunol 166:4968–4972

    CAS  Google Scholar 

  56. Sottrup-Jensen L (1989) Alpha-macroglobulins: structure shape and mechanism of proteinase complex formation. J Biol Chem 264:11539–11542

    CAS  Google Scholar 

  57. Biringer RG et al (2006) Enhanced sequence coverage of proteins in human cerebrospinal fluid using multiple enzymatic digestion and linear ion trap LC-MS/MS. Brief Funct Genomic Proteomic 5:144–153

    CAS  Google Scholar 

  58. Narita M et al (1997) Alpha2-macroglobulin complexes with and mediates the endocytosis of beta-amyloid peptide via cell surface low-density lipoprotein receptor-related protein. J Neurochem 69:1904–1911

    CAS  Google Scholar 

  59. Mettenburg JM, Webb DJ, Gonias SL (2002) Distinct binding sites in the structure of alpha 2-macroglobulin mediate the interaction with beta-amyloid peptide and growth factors. J Biol Chem 277:13338–13345

    CAS  Google Scholar 

  60. Motomiya Y et al (2003) Circulating levels of alpha2-macroglobulin-beta2-microglobulin complex in hemodialysis patients. Kidney Int 64:2244–2252

    CAS  Google Scholar 

  61. Adler V, Kryukov V (2007) Serum macroglobulin induces prion protein transition. Neurochem J 1:43–52

    Google Scholar 

  62. French K, Yerbury JJ, Wilson MR (2008) Protease activation of alpha2-macroglobulin modulates a chaperone-like action with broad specificity. Biochemistry 47:1176–1185

    CAS  Google Scholar 

  63. Fabrizi C et al (2001) Role of alpha2-macroglobulin in regulating amyloid -protein neurotoxicity: protective or detrimental factor? J Neurochem 78:406–412

    CAS  Google Scholar 

  64. Adler V et al (2007) Alpha2-macroglobulin is a potential facilitator of prion protein transformation. Amyloid 14:1–10

    CAS  Google Scholar 

  65. Binder RJ (2004) Purification of alpha2-macroglobulin and the construction of immunogenic alpha2-macroglobulin-peptide complexes for use as cancer vaccines. Methods 32:29–31

    CAS  Google Scholar 

  66. Bowman BH, Kurosky A (1982) Haptoglobin: the evolutionary product of duplication, unequal crossing over, and point mutation. Adv Hum Genet 12:189–261

    CAS  Google Scholar 

  67. Baskies AM et al (1980) Serum glycoproteins in cancer patients: first reports of correlations with in vitro and in vivo parameters of cellular immunity. Cancer 45:3050–3060

    CAS  Google Scholar 

  68. Kurosky A et al (1980) Covalent structure of human haptoglobin: a serine protease homolog. Proc Natl Acad Sci USA 77:3388–3392

    CAS  Google Scholar 

  69. Pavlicek Z, Ettrich R (1999) Chaperone-like activity of human haptoglobin: similarity with a-crystallin. Collect Czech Chem Comm 64:717–725

    CAS  Google Scholar 

  70. Kristiansen M et al (2001) Identification of the haemoglobin scavenger receptor. Nature 409:198–201

    CAS  Google Scholar 

  71. Langlois MR, Delanghe JR (1996) Biological and clinical significance of haptoglobin polymorphisms in humans. Clin Chem 42:1589–1600

    CAS  Google Scholar 

  72. Powers JM et al (1981) An immunoperoxidase study of senile cerebral amyloidosis with pathogenetic considerations. J Neuropathol Exp Neurol 40:592–612

    CAS  Google Scholar 

  73. Kliffen M, de Jong PT, Luider TM (1995) Protein analysis of human maculae in relation to age-related maculopathy. Lab Invest 72:267–272

    Google Scholar 

  74. Tomino Y et al (1981) Immunofluorescent studies on acute phase reactants in patients with various types of chronic glomerulonephritis. Tokai J Exp Clin Med 6:435–441

    CAS  Google Scholar 

  75. Phillips NR, Havel RJ, Kane JP (1983) Sex-related differences in the concentrations of apolipoprotein E in human blood plasma and plasma lipoproteins. J Lipid Res 24:1525–1531

    CAS  Google Scholar 

  76. Landén M et al (1996) Apolipoprotein E in cerebrospinal fluid from patients with Alzheimer’s disease and other forms of dementia is reduced but without any correlation to the apoE4 isoform. Dementia 7:273–278

    Google Scholar 

  77. Strittmatter WJ et al (1994) Isoform-specific interactions of apolipoprotein E with microtubule-associated tau: implications for Alzheimer disease. Proc Natl Acad Sci USA 91:11183–11186

    CAS  Google Scholar 

  78. Strittmatter WJ et al (1993) Binding of human apolipoprotein E to synthetic amyloid b peptide: isoform specific-effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci USA 90:8098–8102

    CAS  Google Scholar 

  79. Corder EH et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923

    CAS  Google Scholar 

  80. Namba Y et al (1991) Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res 541:163–166

    CAS  Google Scholar 

  81. Koistinaho M et al (2004) Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat Med 10:719–726

    CAS  Google Scholar 

  82. Aquilina JA, Robinson CV (2003) Investigating interactions of the pentraxins serum amyloid P component and C-reactive protein by mass spectrometry. Biochem J 375:323–328

    CAS  Google Scholar 

  83. Pepys MB et al (1978) Comparative clinical study of protein SAP (amyloid P component) and C-reactive protein in serum. Clin Exp Immunol 32:119–124

    CAS  Google Scholar 

  84. Hutchinson WL et al (1994) The pentraxins, C-reactive protein and serum amyloid P component, are cleared and catabolized by hepatocytes in vivo. J Clin Invest 94:1390–1396

    CAS  Google Scholar 

  85. Botto M et al (1997) Amyloid deposition is delayed in mice with targeted deletion of the serum amyloid P component gene. Nat Med 3:885–889

    Google Scholar 

  86. Coria F et al (1988) Isolation and characterization of amyloid P component from Alzheimer’s disease and other types of cerebral amyloidosis. Lab Invest 58:454–458

    CAS  Google Scholar 

  87. Breathnach SM et al (1981) Amyloid P component is located on elastic fibre microfibrils in normal human tissue. Nature 293:652–654

    CAS  Google Scholar 

  88. Kalaria RN et al (1991) Serum amyloid P in Alzheimer’s disease. Implications for dysfunction of the blood-brain barrier. Ann NY Acad Sci 640:145–148

    CAS  Google Scholar 

  89. Yang GC et al (1992) Ultrastructural immunohistochemical localization of polyclonal IgG, C3, and amyloid P component on the congo red-negative amyloid-like fibrils of fibrillary glomerulopathy. Am J Pathol 141:409–410

    CAS  Google Scholar 

  90. Tennent GA, Lovat LB, Pepys MB (1995) Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer’s disease and systemic amyloidosis. Proc Natl Acad Sci USA 92:4299–4303

    CAS  Google Scholar 

  91. Swaisgood HE (2003) Chemistry of the caseins. In: Fox PF, McSweeney PLH (eds) Advanced dairy chemistry. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  92. Thorn DC, Ecroyd H, Carver JA (2009) The two-faced nature of milk casein proteins: amyloid fibril formation and chaperone-like activity. Aust J Dairy Technol 64:36–40

    Google Scholar 

  93. Bhattacharyya J, Das KP (1999) Molecular chaperone-like properties of an unfolded protein, alpha(s)-casein. J Biol Chem 274:15505–15509

    CAS  Google Scholar 

  94. Matsudomi N et al (2004) Ability of alphas-casein to suppress the heat aggregation of ovotransferrin. J Agric Food Chem 52:4882–4886

    CAS  Google Scholar 

  95. Morgan PE et al (2005) Casein proteins as molecular chaperones. J Agric Food Chem 53:2670–2683

    CAS  Google Scholar 

  96. Zhang X et al (2005) Chaperone-like activity of beta-casein. Int J Biochem Cell Biol 37:1232–1240

    CAS  Google Scholar 

  97. Hassanisadi M et al (2008) Chemometric study of the aggregation of alcohol dehydrogenase and its suppression by beta-caseins: a mechanistic perspective. Anal Chim Acta 613:40–47

    CAS  Google Scholar 

  98. Reid IM (1972) Corpora amylacea of the bovine mammary gland. Histochemical and electron microscopic evidence for their amyloid nature. J Comp Pathol 82:409–413

    CAS  Google Scholar 

  99. Taniyama H et al (2000) Localized amyloidosis in canine mammary tumors. Vet Pathol 37:104–107

    CAS  Google Scholar 

  100. Gruys E (2004) Protein folding pathology in domestic animals. J Zhejiang Univ Sci 5:1226–1238

    CAS  Google Scholar 

  101. Nickerson SC (1987) Amyloid fibril formation in the bovine mammary gland: an ultrastructural study. Cytobios 51:81–92

    CAS  Google Scholar 

  102. Claudon C et al (1998) Proteic composition of corpora amylacea in the bovine mammary gland. Tissue Cell 30:589–595

    CAS  Google Scholar 

  103. Niewold TA et al (1999) Casein related amyloid, characterization of a new and unique amyloid protein isolated from bovine corpora amylacea. Amyloid 6:244–249

    CAS  Google Scholar 

  104. Mosesson MW (2005) Fibrinogen and fibrin structure and functions. J Thromb Haemost 3:1894–1904

    CAS  Google Scholar 

  105. Tang H et al (2009) Fibrinogen has chaperone-like activity. Biochem Biophys Res Commun 378:662–667

    CAS  Google Scholar 

  106. Tang H et al (2009) Alpha(E)C, the C-terminal extension of fibrinogen, has chaperone-like activity. Biochemistry 48:3967–3976

    CAS  Google Scholar 

  107. Jenne DE, Tschopp J (1992) Clusterin: the intriguing guises of a widely expressed glycoprotein. Trends Biochem Sci 17:154–159

    CAS  Google Scholar 

  108. de Silva HV et al (1990) Apolipoprotein J: structure and tissue distribution. Biochemistry 29:5380–5389

    Google Scholar 

  109. Hermo L, Barin K, Oko R (1994) Developmental expression of sulfated glycoprotein-2 in the epididymis of the rat. Anat Rec 240:327–344

    CAS  Google Scholar 

  110. Jordan-Starck TC et al (1992) Apolipoprotein J: a membrane policeman? Curr Opin Lipidol 3:75–85

    CAS  Google Scholar 

  111. Buttyan R et al (1989) Induction of the Trpm-2 gene in cells undergoing programmed death. Mol Cell Biol 9:3473–3481

    CAS  Google Scholar 

  112. Kapron JT et al (1997) Identification and characterization of glycosylation sites in human serum clusterin. Protein Sci 6:2120–2123

    CAS  Google Scholar 

  113. Lupas A (1991) Predicting coiled-coils from protein sequences. Science 252:1162–1164

    CAS  Google Scholar 

  114. Bailey RW et al (2001) Clusterin, a binding protein with a molten globule-like region. Biochemistry 40:11828–11840

    CAS  Google Scholar 

  115. Yang CR et al (2000) Nuclear clusterin/XIP8, an X-ray induced Ku70-binding protein that signals cell death. Proc Natl Acad Sci USA 97:5907–5912

    CAS  Google Scholar 

  116. Santilli G, Aronow BJ, Sala A (2003) Essential requirement of apolipoprotein J (clusterin) signaling for Ikappa B expression and regulation of NF-kappaB activity. J Biol Chem 278:38214–38219

    CAS  Google Scholar 

  117. Kang SW et al (2005) Clusterin interacts with SCLIP (SCG10-like protein) and promotes neurite outgrowth of PC12. Exp Cell Res 309:305–315

    CAS  Google Scholar 

  118. Debure L et al (2003) Intracellular clusterin causes juxtanuclear aggregate formation and mitochondrial alteration. J Cell Sci 116:3109–3121

    CAS  Google Scholar 

  119. Zhang HL et al (2005) Clusterin inhibits apoptosis by interacting with activated Bax. Nat Cell Biol 7:909–915

    CAS  Google Scholar 

  120. Nizard P et al (2007) Stress-induced retrotranslocation of clusterin/ApoJ into the cytosol. Traffic 8:554–565

    CAS  Google Scholar 

  121. Reddy KB et al (1996) Transforming growthfactor b (TGFb)-induced nuclear localization of apolipoprotein J/clusterin in epithelial cells. Biochemistry 35:6157–6163

    CAS  Google Scholar 

  122. Leskov KS et al (2003) Synthesis and functional analyses of nuclear clusterin, a cell death protein. J Biol Chem 278:11590–11600

    CAS  Google Scholar 

  123. Bucciantini M et al (2004) Pre-fibrillar amyloid protein aggregates share common features of cytotoxicity. J Biol Chem 279:31374–31382

    CAS  Google Scholar 

  124. Kounnas MZ et al (1995) Identification of Glycoprotein 330 as an endocytic receptor for apolipoprotein J/clusterin. Biochemistry 270:13070–13075

    CAS  Google Scholar 

  125. Zlokovic BV et al (1996) Glycoprotein 330 megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid b at the blood–brain and blood–cerebrospinal fluid barriers. Proc Natl Acad Sci USA 93:4229–4234

    CAS  Google Scholar 

  126. Hammad SM et al (1997) Interaction of apolipoprotein J-amyloid B-peptide complex with low density lipoprotein receptor-related protein-2/megalin. J Biol Chem 272:18644–18649

    CAS  Google Scholar 

  127. Calero M et al (1999) Functional and structural properties of lipid-associated apolipoprotein J (clusterin). Biochem J 344:375–383

    CAS  Google Scholar 

  128. Mahon MG et al (1999) Multiple involvement of clusterin in chicken ovarian follicle development. J Biol Chem 274:4036–4044

    CAS  Google Scholar 

  129. Bartl MM et al (2001) Multiple receptors mediate apoJ-dependent clearance of cellular debris into nonprofessional phagocytes. Exp Cell Res 271:130–141

    CAS  Google Scholar 

  130. Lakins JN et al (2002) Evidence that clusterin has discrete chaperone and ligand binding sites. Biochemistry 41:282–291

    CAS  Google Scholar 

  131. Bajari TM et al (2003) A model for modulation of leptin activity by association with clusterin. FASEB J 17:1505–1507

    CAS  Google Scholar 

  132. Trougakos IP et al (2006) Clusterin/apolipoprotein J up-regulation after zinc exposure, replicative senescence or differentiation of human haematopoietic cells. Biogerontology 7:375–382

    CAS  Google Scholar 

  133. Bailey RW et al (2002) Heat shock-initiated apoptosis is accelerated and removal of damaged cells is delayed in the testis of clusterin/apoJ knock-out mice. Biol Reprod 66:1042

    CAS  Google Scholar 

  134. McLaughlin L et al (2000) Apolipoprotein J/clusterin limits the severity of murine autoimmune myocarditis. J Clin Invest 106:1105–1113

    CAS  Google Scholar 

  135. Wehrli P et al (2001) Inhibition of post-ischemic brain injury by clusterin overexpression. Nat Med 7:977–978

    CAS  Google Scholar 

  136. DeMattos RB et al (2004) ApoE and clusterin cooperatively suppress Abeta levels and deposition: evidence that ApoE regulates extracellular Abeta metabolism in vivo. Neuron 41:193–202

    CAS  Google Scholar 

  137. Rosenberg M et al (2002) Apolipoprotein J/clusterin prevents progressive glomerulopathy of aging. Mol Cell Biol 22:1893–1902

    Google Scholar 

  138. Jensen PE, Sottrup-Jensen L (1986) Primary structure of human alpha-2 macroglobulin. Complete disulfide bridge assignment and localization of two interchain bridges in the dimeric and proteinase binding unit. J Biol Chem 261:15863–15869

    CAS  Google Scholar 

  139. Imber MJ, Pizzo SV (1981) Clearance and binding of two electrophoretic "fast" forms of human alpha 2-macroglobulin. J Biol Chem 256:8134–8139

    CAS  Google Scholar 

  140. LaMarre J et al (1991) Cytokine binding and clearance properties of proteinase-activated alpha 2-macroglobulins. Lab Invest 65:3–14

    CAS  Google Scholar 

  141. Feige JJ et al (1996) Alpha 2-macroglobulin: a binding protein for transforming growth factor-beta and various cytokines. Horm Res 45:227–232

    CAS  Google Scholar 

  142. Crookston KP et al (1994) Classification of alpha 2-macroglobulin-cytokine interactions based on affinity of noncovalent association in solution under apparent equilibrium conditions. J Biol Chem 269:1533–1540

    CAS  Google Scholar 

  143. Araujo-Jorge TC, de Meirelles Mde N, Isaac L (1990) Trypanosoma cruzi: killing and enhanced uptake by resident peritoneal macrophages treated with alpha-2-macroglobulin. Parasitol Res 76:545–552

    CAS  Google Scholar 

  144. van Dijk MC et al (1992) Role of the scavenger receptor in the uptake of methylamine-activated alpha 2-macroglobulin by rat liver. Biochem J 287(Pt 2):447–455

    Google Scholar 

  145. Hughes SR et al (1998) Alpha2-macroglobulin associates with beta-amyloid and prevents fibril formation. Proc Natl Acad Sci USA 95:3275–3280

    CAS  Google Scholar 

  146. Yerbury JJ et al (2009) Alpha 2 macroglobulin and haptoglobin suppress amyloid formation by interacting with prefibrillar protein species. J Biol Chem 284:4246–4254

    CAS  Google Scholar 

  147. Du Y et al (1997) Alpha2-macroglobulin as a beta-amyloid peptide-binding plasma protein. J Neurochem 69:299–305

    CAS  Google Scholar 

  148. Shibata M et al (2000) Clearance of Alzheimer’s amyloid-ss(1–40) peptide from brain by LDL receptor–related protein-1 at the blood-brain barrier. J Clin Invest 106:1489–1499

    CAS  Google Scholar 

  149. Basu S et al (2001) CD91, a common receptor for heat shock proteins gp96, Hsp90, hsp70 and calreticulin. Immunity 14:303–313

    CAS  Google Scholar 

  150. Binder RJ, Han DK, Srivastava PK (2000) CD91: a receptor for heat shock protein Gp96. Nat Immunol 1:151–155

    CAS  Google Scholar 

  151. Binder RJ, Srivastava PK (2004) Essential role of Cd91 in re-presentation of Gp96-chaperoned peptides. Proc Natl Acad Sci USA 101:6128–6133

    CAS  Google Scholar 

  152. Arnold-Schild D et al (1999) Receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J Immunol 162:3757–3760

    CAS  Google Scholar 

  153. Henderson B et al (2010) Caught with their PAMPs down? The extracellular signaling actions of molecular chaperones are not due to microbial contaminants. Cell Stress Chaperones 15:123–141

    CAS  Google Scholar 

  154. Pockley AG, Muthana M, Calderwood SK (2008) The dual immunoregulatory roles of stress proteins. Trends Biochem Sci 33:71–79

    CAS  Google Scholar 

  155. Quintana FJ et al (2004) Inhibition of adjuvant-induced arthritis by DNA vaccination with the 70-kd or the 90-kd human heat-shock protein: immune cross-regulation with the 60-kd heat-shock protein. Arthritis Rheum 50:3712–3720

    CAS  Google Scholar 

  156. Binder RJ, Kumar SK, Srivastava PK (2002) Naturally formed or artificially reconstituted non-covalent alpha2-macroglobulin-peptide complexes elicit Cd91-dependent cellular immunity. Cancer Immun 2:16

    Google Scholar 

  157. Dobryszycka W (1997) Biological functions of haptoglobin - new pieces to an old puzzle. Eur J Clin Chem Clin Biochem 35:647–654

    CAS  Google Scholar 

  158. Giblett ER (1968) The haptoglobin system. Ser Haematol 1:3–20

    CAS  Google Scholar 

  159. Gutteridge JM (1987) The antioxidant activity of haptoglobin towards haemoglobin-stimulated lipid peroxidation. Biochimi Biophys Acta 917:219–223

    CAS  Google Scholar 

  160. Edwards DH et al (1986) Haptoglobin-haemoglobin complex in human plasma inhibits endothelium dependent relaxation: evidence that endothelium derived relaxing factor acts as a local autocoid. Cardiovasc Res 20:549–556

    CAS  Google Scholar 

  161. Lange V (1992) Haptoglobin polymorphisms - not only a genetic marker. Anthropol Anz 50:281–302

    CAS  Google Scholar 

  162. Barclay R (1985) The role of iron in infection. Med Lab Sci 42:166–177

    CAS  Google Scholar 

  163. Cid MC et al (1993) Identification of haptoglobin as an angiogenic factor in sera from patients with systemic vascularitis. J Clin Invest 91:977–985

    CAS  Google Scholar 

  164. Sobek O, Adam P, Seyfert OS, Kunzmann V, Schwetfeger N, Koch HC, Faulstich A (2003) Determinants of lumbar CSF protein concentration. J Neurol 250:371–372

    CAS  Google Scholar 

  165. Yerbury JJ et al (2005) The acute phase protein haptoglobin is a mammalian extracellular chaperone with an action similar to clusterin. Biochemistry 44:10914–10925

    CAS  Google Scholar 

  166. El Ghmati SM et al (1996) Identification of haptoglobin as an alternative ligand for CD11b/CD18. J Immunol 156:2542–2552

    CAS  Google Scholar 

  167. Wagner L et al (1996) Haptoglobin phenotyping by newly developed monoclonal antibodies: demonstration of haptoglobin uptake into peripheral blood neutrophils and monocytes. J Immunol 156:1989–1996

    CAS  Google Scholar 

  168. Lim SK et al (1998) Increased susceptibility in Hp knockout mice during acute hemolysis. Blood 92:1870–1877

    CAS  Google Scholar 

  169. Cedazo-Minguez A, Cowburn RF (2001) Apolipoprotein E: a major piece in the Alzheimer’s disease puzzle. J Cell Mol Med 5:254–266

    CAS  Google Scholar 

  170. Zannis VI, Kardassis D, Zanni EE (1993) Genetic mutations affecting human lipoproteins, their receptors, and their enzymes. Adv Hum Genet 21:145–319

    CAS  Google Scholar 

  171. Li WH et al (1988) The apolipoprotein multigene family: biosynthesis, structure, structure-function relationships, and evolution. J Lipid Res 29:245–271

    CAS  Google Scholar 

  172. Strittmatter WJ et al (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90:1977–1981

    CAS  Google Scholar 

  173. LaDu MJ et al (1994) Isoform-specific binding of apolipoprotein E to beta-amyloid. J Biol Chem 269:23403–23406

    CAS  Google Scholar 

  174. Pillot T et al (1997) Specific modulation of the fusogenic properties of the Alzheimer beta-amyloid peptide by apolipoprotein E isoforms. Eur J Biochem 243:650–659

    CAS  Google Scholar 

  175. Wood SJ, Chan W, Wetzel R (1996) An ApoE-Abeta inhibition complex in Abeta fibril extension. Chem Biol 3:949–956

    CAS  Google Scholar 

  176. Evans KC et al (1995) Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer disease. Proc Natl Acad Sci USA 92:763–767

    CAS  Google Scholar 

  177. Castano EM et al (1995) Fibrillogenesis in Alzheimer’s disease of amyloid beta peptides and apolipoprotein E. Biochem J 306(Pt 2):599–604

    CAS  Google Scholar 

  178. Ma J et al (1994) Amyloid-associated proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments. Nature 372:92–94

    CAS  Google Scholar 

  179. Bales KR et al (1997) Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat Genet 17:263–264

    CAS  Google Scholar 

  180. Bales KR et al (1999) Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 96:15233–15238

    CAS  Google Scholar 

  181. Holtzman DM et al (1999) Expression of human apolipoprotein E reduces amyloid-beta deposition in a mouse model of Alzheimer’s disease. J Clin Invest 103:R15–R21

    CAS  Google Scholar 

  182. Mackic JB et al (1998) Human blood–brain barrier receptors for Alzheimer’s amyloid-beta 1–40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer. J Clin Invest 102:734–743

    CAS  Google Scholar 

  183. Hu J, LaDu MJ, Van Eldik LJ (1998) Apolipoprotein E attenuates beta-amyloid-induced astrocyte activation. J Neurochem 71:1626–1634

    CAS  Google Scholar 

  184. Emsley J et al (1994) Structure of pentameric human serum amyloid-P component. Nature 367:338–345

    CAS  Google Scholar 

  185. Pepys MB et al (1994) Human serum amyloid P component is an invariant constituent of amyloid deposits and has a uniquely homogeneous structure. Proc Natl Acad Sci USA 91:5602–5606

    CAS  Google Scholar 

  186. Wood SP et al (1988) A pentameric form of human serum amyloid P component. Crystallization, X-ray diffraction and neutron scattering studies. J Mol Biol 202:169–173

    CAS  Google Scholar 

  187. Sorensen IJ et al (1995) Native human serum amyloid P component is a single pentamer. Scand J Immunol 41:263–267

    CAS  Google Scholar 

  188. Hawkins PN et al (1994) Concentration of serum amyloid P component in the CSF as a possible marker of cerebral amyloid deposits in Alzheimer's disease. Biochem Biophys Res Commun 201:722–726

    CAS  Google Scholar 

  189. Bickerstaff MCM et al (1999) Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nat Med 5:694–697

    CAS  Google Scholar 

  190. Breathnach SM et al (1989) Serum amyloid P component binds to cell nuclei in vitro and to in vivo deposits of extracellular chromatin in systemic lupus erythematosus. J Exp Med 170:1433–1438

    CAS  Google Scholar 

  191. Sorensen IJ et al (2000) Complexes of serum amyloid P component and DNA in serum from healthy individuals and systemic lupus erythematosus patients. J Clin Immunol 20:408–415

    CAS  Google Scholar 

  192. de Haas CJC (1999) New insights into the role of serum amyloid P component, a novel lipopolysaccharide-binding protein. FEMS Immunol Med Microbiol 26:197–202

    Google Scholar 

  193. Sorensen IJ et al (1996) Binding of complement proteins C1q and C4bp to serum amyloid P component (SAP) in solid contra liquid phase. Scand J Immunol 44:401–407

    CAS  Google Scholar 

  194. Barbashov SF, Wang C, Nicholson-Weller A (1997) Serum amyloid P component forms a stable complex with human C5b6. J Immunol 158:3830–3858

    CAS  Google Scholar 

  195. de Beer FC et al (1981) Fibronectin and C4-binding protein are selectively bound by aggregated amyloid P component. J Exp Med 154:1134–1139

    Google Scholar 

  196. Swanson SJ, Christner RB, Mortensen RF (1992) Human serum amyloid P-component (SAP) selectively binds to immobilized or bound forms of C-reactive protein (CRP). Biochim Biophys Acta 1160:309–316

    CAS  Google Scholar 

  197. Brown MR, Anderson BE (1993) Receptor-ligand interactions between serum amyloid P component and model soluble immune complexes. J Immunol 151:2087–2095

    CAS  Google Scholar 

  198. de Haas CJC et al (1998) A synthetic lipopolysaccharide (LPS)-binding peptide based on amino acids 27–39 of serum amyloid P component inhibits LPS-induced responses in human blood. J Immunol 161:3607–3615

    Google Scholar 

  199. Coker AR et al (2000) Molecular chaperone properties of serum amyloid P component. FEBS Lett 473:199–202

    CAS  Google Scholar 

  200. Hamazaki H (1995) Ca(2+)-dependent binding of human serum amyloid P component to Alzheimer’s beta-amyloid peptide. J Biol Chem 270:10392–10394

    CAS  Google Scholar 

  201. Pepys MB et al (1979) Binding of serum amyloid P component (SAP) by amyloid fibrils. Clin Exp Immunol 38:284–293

    CAS  Google Scholar 

  202. Uversky VN (2002) What does it mean to be natively unfolded? Eur J Biochem 269:2–12

    CAS  Google Scholar 

  203. Farrell HM Jr et al (2002) Molten globule structures in milk proteins: implications for potential new structure-function relationships. J Dairy Sci 85:459–471

    CAS  Google Scholar 

  204. Kumosinski TF, Brown EM, Farrell HM Jr (1993) Three-dimensional molecular modeling of bovine caseins: a refined, energy-minimized kappa-casein structure. J Dairy Sci 76:2507–2520

    CAS  Google Scholar 

  205. Farrell HM Jr et al (2009) Review of the chemistry of alphaS2-casein and the generation of a homologous molecular model to explain its properties. J Dairy Sci 92:1338–1353

    CAS  Google Scholar 

  206. Koudelka T, Hoffmann P, Carver JA (2009) Dephosphorylation of alpha(s)- and beta-caseins and its effect on chaperone activity: a structural and functional investigation. J Agric Food Chem 57:5956–5964

    CAS  Google Scholar 

  207. Khodarahmi R, Beyrami M, Soori H (2008) Appraisal of casein’s inhibitory effects on aggregation accompanying carbonic anhydrase refolding and heat-induced ovalbumin fibrillogenesis. Arch Biochem Biophys 477:67–76

    CAS  Google Scholar 

  208. Thorn DC et al (2005) Amyloid fibril formation by bovine milk kappa-casein and its inhibition by the molecular chaperones alphaS- and beta-casein. Biochemistry 44:17027–17036

    CAS  Google Scholar 

  209. Thorn DC et al (2008) Amyloid fibril formation by bovine milk alpha s2-casein occurs under physiological conditions yet is prevented by its natural counterpart, alpha s1-casein. Biochemistry 47:3926–3936

    CAS  Google Scholar 

  210. Farrell HM Jr et al (2006) Casein micelle structure: what can be learned from milk synthesis and structural biology. Curr Opin Colloid In 11:135–147

    CAS  Google Scholar 

  211. Farrell HM Jr et al (2003) Environmental influences on bovine kappa-casein: reduction and conversion to fibrillar (amyloid) structures. J Protein Chem 22:259–273

    CAS  Google Scholar 

  212. Ecroyd H et al (2008) Dissociation from the oligomeric state is the rate-limiting step in fibril formation by kappa-casein. J Biol Chem 283:9012–9022

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dabbs, R.A., Wyatt, A.R., Yerbury, J.J., Ecroyd, H., Wilson, M.R. (2011). Extracellular Chaperones. In: Jackson, S. (eds) Molecular Chaperones. Topics in Current Chemistry, vol 328. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_262

Download citation

Publish with us

Policies and ethics