Pyrethroids pp 113-135 | Cite as

Biotransformation and Enzymatic Reactions of Synthetic Pyrethroids in Mammals

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 314)


Synthetic pyrethroids, a major insecticide group, are used worldwide for controlling indoor and agricultural pests. Extensive mammalian metabolism studies have been carried out since the late 1960s, and major metabolic reactions have been found to be oxidation of the acid or alcohol moiety, ester cleavage, and conjugation reactions. In addition, various conjugation reactions occur in mammals, forming hydrophilic and lipophilic conjugates. Pyrethroids are generally rapidly metabolized in mammals and completely excreted from the body in a short period. Human and laboratory animals share similar metabolic reactions for pyrethroids. Oxidation reactions in humans are mediated by several CYP isoforms. On the other hand, ester bonds of pyrethroids are hydrolyzed mainly by carboxylesterase(s).


Carboxylesterase CYP Ester hydrolysis Metabolism Oxidation Pyrethroid 


  1. 1.
    Kaneko H (2010) Pyrethroid chemistry and metabolism. In: Krieger R (ed) Hayes’ handbook of pesticide toxicology, 3rd edn. Elsevier Inc, AmsterdamGoogle Scholar
  2. 2.
    Kaneko H (2011) Pyrethroids mammalian metabolism and toxicity. J Agric Food Chem 59:2786–2791CrossRefGoogle Scholar
  3. 3.
    Ohkawa H, Kaneko H, Tsuji H, Miyamoto J (1979) Metabolism of fenvalerate (sumicidin) in rats. J Pestic Sci 4:143–155CrossRefGoogle Scholar
  4. 4.
    Kaneko H, Ohkawa H, Miyamoto J (1981) Comparative metabolism of fenvalerate and the [2 S, αS]-isomer in rats and mice. Pestic Sci 6:317–326CrossRefGoogle Scholar
  5. 5.
    Ruzo LO, Unai T, Casida JE (1978) Decamethrin metabolism in rats. J Agric Food Chem 26:918–924CrossRefGoogle Scholar
  6. 6.
    Crawford MJ, Croucher A, Hutson DH (1981) The metabolism of the pyrethroid insecticide cypermethrin in rats: excreted metabolites. Pestic Sci 12:399–411CrossRefGoogle Scholar
  7. 7.
    Soderlund DM, Clark JM, Sheets LP, Mullin LS, Piccirillo VJ, Sargent D, Stevens JT, Weiner ML (2002) Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicolology 171:3–59CrossRefGoogle Scholar
  8. 8.
    Casida JE, Ruzo LO (1980) Metabolic chemistry of pyrethroid insecticides. Pestic Sci 11:257–269CrossRefGoogle Scholar
  9. 9.
    Izumi T, Kaneko H, Matsuo M, Miyamoto J (1984) Comparative metabolism of the six stereoisomers of phenothrin in rats and mice. J Pestic Sci 9:259–267CrossRefGoogle Scholar
  10. 10.
    Kaneko H, Izumi T, Ueda Y, Matsuo M, Miyamoto J (1984) Metabolism and placental transfer of stereoisomers of tetramethrin isomers in pregnant rats. J Pestic Sci 9:249–258CrossRefGoogle Scholar
  11. 11.
    Gaughan LC, Unai T, Casida JE (1977) Permethrin metabolism in rats. J Agric Food Chem 25:9–17CrossRefGoogle Scholar
  12. 12.
    Huckle KR, Hutson DH, Millburn P (1981) Species differences in the metabolism of 3-phenoxybenzoic acid. Drug Metab Dispos 9:352–359Google Scholar
  13. 13.
    Tomigahara Y, Mori M, Shiba K, Isobe N, Kaneko H, Nakatsuka I, Yamada H (1994) Metabolism of tetramethrin isomers in rat I. Identification of a sulphonic acid type of conjugate and reduced metabolites. Xenobiotica 24:473–484CrossRefGoogle Scholar
  14. 14.
    Tomigahara Y, Shiba K, Isobe N, Kaneko H, Nakatsuka I, Yamada H (1994) Identification of two new types of S-linked conjugates of etoc in rat. Xenobiotica 24:839–852CrossRefGoogle Scholar
  15. 15.
    Kaneko H, Matsuo M, Miyamoto J (1986) Differential metabolism of fenvalerate and granuloma formation. I. Identification of a cholesterol ester derived from a specific chiral isomer of fenvalerate. Toxicol Appl Pharmacol 83:148–156CrossRefGoogle Scholar
  16. 16.
    Moorhouse KG, Logan CJ, Hutson DH, Dodds PF (1990) The incorporation of 3-phenoxybenzoic acid and other xenobiotics acids into xenobiotic lipids by enzymes of the monoacylglycerol pathway in microsomes from adult and neonatal tissues. Biochem Pharmacol 39:1529–1536CrossRefGoogle Scholar
  17. 17.
    Quistad GB, Staiger LE, Schooley DA (1982) Xenobiotic conjugation: a novel role for bile acids. Nature 296:462–464CrossRefGoogle Scholar
  18. 18.
    Miyamoto J, Kaneko H, Takamatsu Y (1986) Stereoselective formation of a cholesterol ester conjugate from fenvalerate by mouse microsomal carboxyesterase(s). J Biochem Toxicol 1:79–94CrossRefGoogle Scholar
  19. 19.
    Okuno Y, Seki T, Ito S, Kaneko H, Watanabe T, Yamada H, Miyamoto J (1986) Differential metabolism of fenvalerate and granuloma formation II. Toxicological significance of a lipophilic conjugate from fenvalerate. Toxicol Appl Pharmacol 83:157–169CrossRefGoogle Scholar
  20. 20.
    Scollon EJ, Starr JM, Godin SJ, DeVito MJ, Hughers MF (2009) In vitro metabolism of pyrethroid pesticides by rats and human hepatic microsomes and cytochrome p450 isoforms. Drug Metab Dispos 37:221–228CrossRefGoogle Scholar
  21. 21.
    Godin SJ, Crow JA, Scollon EJ, Hughes MF, DeVito MJ, Ross MK (2007) Identification of rat and human cytochrome p450 isoforms and a rat serum esterase that metabolize the pyrethroid insecticides deltamethrin and esfenvalerate. Drug Metab Dispos 35:1664–1671CrossRefGoogle Scholar
  22. 22.
    Nakamura Y, Sugihara K, Sone T, Isobe M, Ohta S, Kitamura S (2007) The in vitro metabolism of a pyrethroid insecticide, permethrin, and its hydrolysis products in rats. Toxicology 235:176–184CrossRefGoogle Scholar
  23. 23.
    Satoh T, Hosokawa M (2006) Structure, function and regulation of carboxylesterases. Chem Biol Interact 162:195–211CrossRefGoogle Scholar
  24. 24.
    Ross MK, Crow JA (2007) Human carboxylesterases and their role in xenobiotic and endobiotic metabolism. J Biochem Mol Toxicol 21:187–196CrossRefGoogle Scholar
  25. 25.
    Munger JS, Shi GP, Mark EA, Chin DT, Gerard C, Chapman HA (1991) A serine esterase released by human alveolar macrophages is closely related to liver microsomal carboxylesterases. J Biol Chem 266:18832–18838Google Scholar
  26. 26.
    Xu G, Zhang W, Ma MK, McLeod HL (2002) Human carboxylesterase 2 is commonly expressed in tumor tissue and is correlated with activation of irinotecan. Clin Cancer Res 8:2605–2611Google Scholar
  27. 27.
    Li B, Sedlacek M, Manoharan I, Boopathy R, Duysen EG, Masson P, Lockridge O (2005) Butyrylcholinesterase, paraoxonase, and albumin esterase, but no carboxylesterase, are present in human plasma. Biochem Pharmacol 70:1673–1684CrossRefGoogle Scholar
  28. 28.
    Ross MK, Borazjani A, Edwards CC, Potter PM (2006) Hydrolytic metabolism of pyrethroids by human and other mammalian carboxylesterases. Biochem Pharmacol 71:657–669CrossRefGoogle Scholar
  29. 29.
    Yang D, Wang X, Chen Y, Deng R, Yan B (2009) Pyrethroid insecticides: isoform-dependent hydrolysis, induction of cytochrome P450 3A4 and evidence on the involvement of the pregnane X receptor. Toxicol Appl Pharmacol 237:49–58CrossRefGoogle Scholar
  30. 30.
    Crow JA, Borazjani A, Potter PM, Ross MK (2007) Hydrolysis of pyrethroids by human and rat tissues: examination of intestinal, liver and serum carboxylesterases. Toxicol Appl Pharmacol 221:1–12CrossRefGoogle Scholar
  31. 31.
    Yang Q, Sun L, Zhang D, Qian J, Sun Y, Ma L, Sun J, Hu X, Tan W, Wang W, Zhu C (2008) Partial characterization of deltamethrin metabolism catalyzed by chymotrypsin. Toxicol In Vitro 22:1528–1533CrossRefGoogle Scholar
  32. 32.
    Huang H, Fleming CD, Nishi K, Redinbo MR, Hammock BD (2005) Stereoselective hydrolysis of pyrethroid-like fluorescent substrates by human and other mammalian liver carboxylesterases. Chem Res Toxicol 18:1371–1377CrossRefGoogle Scholar
  33. 33.
    Godin SJ, Scollon EJ, Hughes MF, Potter PM, DeVito MJ, Ross MK (2006) Species differences in the in vitro metabolism of deltamethrin and esfenvalerate: differential oxidative and hydrolytic metabolism by humans and rats. Drug Metab Dispos 34:1764–1771CrossRefGoogle Scholar
  34. 34.
    Yang D, Pearce RE, Wang X, Gaedigk R, Wan YJ, Yan B (2009) Human carboxylesterases HCE1 and HCE2: ontogenic expression, inter-individual variability and differential hydrolysis of oseltamivir, aspirin, deltamethrin and permethrin. Biochem Pharmacol 77:238–247CrossRefGoogle Scholar
  35. 35.
    Anand SS, Kim KB, Padilla S, Muralidhara S, Kim HJ, Fisher JW, Bruckner JV (2006) Ontogeny of hepatic and plasma metabolism of deltamethrin in vitro: role in age-dependent acute neurotoxicity. Drug Metab Dispos 34:389–397Google Scholar
  36. 36.
    Woollen BH, Marsh JR, Laird WJD, Lesser JE (1992) The metabolism of cypermethrin in man: differences in urinary metabolite profiles following oral and dermal administration. Xenobiotica 22:983–991CrossRefGoogle Scholar
  37. 37.
    Leng G, Leng A, Kühn KH, Lewalter J, Pauluhn J (1997) Human dose-excretion studies with the pyrethroids insecticide cyfluthrin: urinary metabolite profile following inhalation. Xenobiotica 27:1273–1283CrossRefGoogle Scholar
  38. 38.
    Leng G, Kühn KH, Idel H (1997) Biological monitoring of pyrethroids in blood and pyrethroid metabolites in urine: application and limitation. Sci Total Environ 199:173–181CrossRefGoogle Scholar
  39. 39.
    Leng G, Kühn KH, Wieseler B, Idel H (1999) Metabolism of (S)-bioallethrin and related compounds in humans. Toxicol Lett 107:109–121CrossRefGoogle Scholar
  40. 40.
    Takaku T, Mikata K, Matsui M, Nishioka K, Isobe N, Kaneko H (2011) In vitro metabolism of trans-permethrin and its major metabolites PBalc and PBacid, in humans. J Agric Food Chem 59:5001–5005CrossRefGoogle Scholar
  41. 41.
    Leng G, Gries W (2005) Simultaneous determination of pyrethroid and pyrethrin metabolites in human urine by gas chromatography–high resolution mass spectrometry. J Chromarogr B 814:285–294CrossRefGoogle Scholar
  42. 42.
    Chuang JC, Van Emon JM, Trejo RM, Durnford J (2011) Biological monitoring of 3-phenoxybenzoic acid in urine by an enzyme-linked immunosorbent assay. Talanta 83(5):1317–1323CrossRefGoogle Scholar
  43. 43.
    Department of Health and Human Services Centers for Disease Control and Prevention (2009) Fourth National Report on Human Exposure to Environmental ChemicalsGoogle Scholar
  44. 44.
    Riederer AM, Bartell SM, Barr DB, Ryan PB (2008) Diet and nondiet predictors of urinary 3-phenoxybenzoic acid in NHANES 1999–2002. Environ Health Perspect 116:1015–1022CrossRefGoogle Scholar
  45. 45.
    Barr DB, Olsson AO, Wong LY, Udunka S, Baker SE, Whitehead RD, Magsumbol MS, Williams BL, Needham LL (2010) Urinary concentrations of metabolites of pyrethroid insecticides in the general U.S. Population: national health and nutrition examination survey 1999–2002. Environ Health Perspect 118:742–748CrossRefGoogle Scholar
  46. 46.
    Kimata A, Kondo T, Ueyama J, Yamamoto K, Kamijima M, Inoue T, Ito Y, Hamajima N (2009) Relationship between dietary habits and urinary concentrations of 3-phenoxybenzoic acid in a middle-aged and elderly general population in Japan. Environ Health Prev Med 14:173–179CrossRefGoogle Scholar
  47. 47.
    Heudorf U, Butte W, Schulz C, Angerer J (2006) Reference values for metabolites of pyrethroid and organophosphorous insecticides in urine for human biomonitoring in environmental medicine. Int J Hyg Environmental Health 209:293–299CrossRefGoogle Scholar
  48. 48.
    Andersen ME (1995) Development of physiologically based pharmacokinetic and physiologically based pharmacodynamic models for applications in toxicology and risk assessment. Toxicol Lett 79:35–44CrossRefGoogle Scholar
  49. 49.
    Mirfazaelian A, Kim K, Anand SS, Kim HJ, Tornero-Velez R, Bruckner JV, Fisher JW (2006) Development of a physiologically based pharmacokinetic model for deltamethrin in the adult male Sprague-Dawley rat. Toxicol Sci 93(2):432–442CrossRefGoogle Scholar
  50. 50.
    Godin SJ, DeVitro MJ, Hughes MF, Ross DG, Scollon EJ, Starr JM, Serzer RW, Conolly RB, Tornero-Veles R (2010) Physiologically based pharmacokinetic modeling of deltamethrin: development of a rat and human diffusion-limited model. Toxicol Sci 115(2):330–343CrossRefGoogle Scholar
  51. 51.
    Tornero-Velez R, Mirfazaelian A, Kim KB, Anand SS, Kim HJ, Haines WT, Bruckner JV, Fisher JW (2010) Evaluation of deltamethrin kinetics and dosimetry in the maturing rat using a PBPK model. Toxicol Appl Pharmacol 244:208–217CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin-Heidelberg 2011

Authors and Affiliations

  1. 1.Environmental Health Science LaboratorySumitomo Chemical Co., LtdOsakaJapan

Personalised recommendations