Progress and Future of Pyrethroids

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 314)


After the chemical structure of “natural pyrethrins,” the insecticidal ingredient of pyrethrum flowers, was elucidated, useful synthetic pyrethroids provided with various characteristics have been developed by organic chemists throughout the world, leading to the advancement of pyrethroid chemistry. Even in pyrethroids with high selective toxicity, a chemical design placing too much importance on efficacy improvements may invite loss of the safety margin. It is strongly hoped that the development of household pyrethroids and their preparations for use in living environments around humans and pets will be achieved in the future by retaining the characteristics of natural pyrethrins.


Cross resistance Natural pyrethrins Safety Synthetic pyrethroid 


  1. 1.
    Katsuda Y (1999) Development of and future prospects for pyrethroid chemistry. Pestic Sci 55:775–782CrossRefGoogle Scholar
  2. 2.
    Hosono S (1950) Pyrethrum as an exporting farm product. Publishing Soiety, National Agricultural Research, Tokyo, pp 179–186Google Scholar
  3. 3.
    Katsuda Y, Tikamoto T, Nakasima K (1955) Studies on the degradation of pyrethrins. Botyu Kagaku 20:15–21Google Scholar
  4. 4.
    Katsuda Y, Tikamoto T, Nakasima K (1956) Studies on the degradation of pyrethrins. Botyu Kagaku 21:139–144Google Scholar
  5. 5.
    Ueno T, Koike S, Nakayama K, Katsuda Y (2006) Studies on biosynthesis and behavior of pyrethrins in pyrethrum leaves. Jpn J Environ Entomol Zool 17(1):17–22Google Scholar
  6. 6.
    Fujitani J (1909) Chemistry and pharmacology of insect powder. Arch Exp Path Pharmak 61:47–75CrossRefGoogle Scholar
  7. 7.
    Yamamoto R (1923) The insecticidal principle in Chrysanthemum cinerariaefolium. Parts II and III. On the constitution of pyrethronic acid. J Chem Soc Jpn 44:311–330CrossRefGoogle Scholar
  8. 8.
    Yamamoto R (1925) On the insecticidal principle of insect powder. Inst Phys Chem Res Tokyo 3:193Google Scholar
  9. 9.
    Staudinger H, Ruzicka L (1924) Insektentotende stoffe I-VI and VIII-X. Helv Chim Acta 7:177–458CrossRefGoogle Scholar
  10. 10.
    LaForge FB, Barthel WF (1945) Constituents of pyrethrum flowers XVIII. The structure and isomerism of pyrethrolone and cinerolone. J Org Chem 10:114–120CrossRefGoogle Scholar
  11. 11.
    Gordin PJ, Sleeman RJ, Snarey M, Thain EM (1966) The jasmolins, new insecticidally active constituents of Chrysanthemum cinerariaefolium Vis. J Chem Soc C:332–334Google Scholar
  12. 12.
    Crombie L (1995) Chemistry of pyrethrins. In: Pyrethrum flowers, production, chemistry toxicology, and uses, ed by Casida JE, Quistad GB. Oxford University press, New York, Oxford, pp 124Google Scholar
  13. 13.
    Crombie L, Harper SH (1954) The chrysanthemum carboxylic acids. VI. The configurations of the chrysanthemic acids. J Chem Soc:470Google Scholar
  14. 14.
    Inouye Y, Takeshita Y, Ohno M (1955) Studies on synthetic pyrethroids V. Synthesis of geometrical isomers of chrysanthemum dicarboxylic acid. Bull Agric Chem Soc Jpn 19:193–199CrossRefGoogle Scholar
  15. 15.
    Katsuda Y, Chikamoto T, Inouye Y (1958) The absolute configuration of naturally derived pyrethrolone and cinerolone. Bull Agric Chem Soc Jpn 22:427–428CrossRefGoogle Scholar
  16. 16.
    Schechter MS, Green N, LaForge FB (1949) Constituents of pyrethrum flowers XXIII. Cinerolone and the synthesis of related cyclopentenolones. J Amer chem Soc 71:3165–3173CrossRefGoogle Scholar
  17. 17.
    Gersdorff WA, Piquett PG (1961) The relative effectiveness of two synthetic pyrethroids more toxic to houseflies than pyrethrins in kerosene sprays. J Econ Entomol 54:1250–1252Google Scholar
  18. 18.
    Katsuda Y (1971) Novel chrysanthemate esters. In: Proc Second International Congress on Pesticide Chemistry, pp 443–453Google Scholar
  19. 19.
    Katsuda Y (1977) Insecticides for fumigants. Japan Kokoku Tokkyo Koho JP 52–45768Google Scholar
  20. 20.
    Matsuo T, Nishioka T, Hirano M, Suzuki Y, Tsushima K, Itaya N, Yoshioka H (1980) Recent topics in the chemistry of synthetic pyrethroids containing certain secondary alcohol moieties. Pestic Sci 11:202–218CrossRefGoogle Scholar
  21. 21.
    Mitsuda S, Umemura T, Hirohara H (1988) Preparation of an optically pure secondary alcohol of synthetic pyrethroids using microbial lipases. Appl Microbiol Biotechnol 29:310–315CrossRefGoogle Scholar
  22. 22.
    Matsuo N (1993) Structure of pyrethroids and their development, vol 18, The 2nd series of pharmaceutical research and development. Hirokawa Publishing Co, Tokyo, pp 494–515Google Scholar
  23. 23.
    Kato T, Ueda K, Fujimoto K (1965) New insecticidally active chrysanthemate. Agric Biol Chem 28:914–915CrossRefGoogle Scholar
  24. 24.
    Hirano M, Itaya N, Ohno I, Fujita Y, Yoshioka H (1979) A new pyrethroid-type ester with strong knockdown activity. Pestic Sci 10:291–294CrossRefGoogle Scholar
  25. 25.
    Barthel WF, Alexander BH (1958) J Org Chem 23:1012CrossRefGoogle Scholar
  26. 26.
    Fujimoto K, Itaya N, Okuno Y, Kadota T, Yamaguchi T (1973) A new insecticidal pyrethroid ester. Agric Biol Chem 37:2681–2682CrossRefGoogle Scholar
  27. 27.
    Matsuo T, Itaya N, Mizutani T, Ohno N, Fujimoto K, Okuno Y, Yoshioka H (1976) 3-Phenoxy-α-cyanobenzyl esters, the most potent synthetic pyrethroids. Agric Biol Chem 40:247–249CrossRefGoogle Scholar
  28. 28.
    Katsuda Y, Chikamoto T, Ogami H, Hirobe H, Kunishige T (1969) Novel insecticidal chrysanthemic esters. Agric Biol Chem 33:1361–1363CrossRefGoogle Scholar
  29. 29.
    Elliott M, Farnham AW, Janes NF, Needham PH, Pearson BC (1967) 5-Benzyl-3-furylmethyl chrysanthemate, a new potent insecticide. Nature 213:493–494CrossRefGoogle Scholar
  30. 30.
    Hirano M, Ohno I, Kitamura S, Nishioka T, Fujita Y (1973) Efficacy of the pyrethroid compound possessing a new type of alcohol moiety. Jpn J Sanit Zool 29:219–224Google Scholar
  31. 31.
    Farkas J, Kouriim P, Sorm F (1958) Chem Listy 52:688Google Scholar
  32. 32.
    Elliott M, Farnham AW, Janes NF, Needham PH, Pulman DA (1974) Synthetic insecticides with a new order of activity. Nature 248:710–711CrossRefGoogle Scholar
  33. 33.
    Hammann I, Fuchs R (1981) Baythroid, ein neues insektizid. Pflanzenschutznachr, Bayer 34:122–152Google Scholar
  34. 34.
    Martel J, Tessier J, Demoute JP (1978) New esters of cyclopropanecarboxylic acids with a polyhalogenated substituent, preparation and pesticidal compositions. Ger Offen 2,742,546Google Scholar
  35. 35.
    Hopkins TJ, Woodley IR (1982) Vet Med Rev: 130Google Scholar
  36. 36.
    Robson MJ, Chectham R, Flettes DJ, Crosby J (1984) Brit Crop Prot Conf. BCPC, Croydon, UK, p 853Google Scholar
  37. 37.
    Plummer EL, Cardis AB, Martinez AJ, VanSaun WA, Palmere RM, Pincus DS, Stewart RR (1983) Pyrethroid insecticides derived from substituted biphenyl-3-ylmethanols. Pestic Sci 14:560–567CrossRefGoogle Scholar
  38. 38.
    Matsuo T, Itaya N, Okuno Y, Mizutani T, Ohno N, Kitamura S (1973) New carboxylic acid ester insecticides and miticides, and process for producing thereof. Japan Kokai Tokkyo Koho JP 48–10225Google Scholar
  39. 39.
    Mrusek K, Naumann K, Sonneck R (1995) NAK 4455 (transfluthrin): a fast-acting insecticide for use in household and hygiene products. Pflanzenschutznachr, Bayer 48(special edn.):1–48Google Scholar
  40. 40.
    Ujihara K, Mori T, Iwasaki T, Sugano M, Shono Y, Matsuo N (2004) Metofluthrin: a potent new synthetic pyrethroid with high vapor activity against mosquitoes. Biosci Biotechnol Biochem 68(1):170–174CrossRefGoogle Scholar
  41. 41.
    Ohno N, Fujimoto K, Okuno Y, Mizutani T, Hirano M, Itaya N, Honda T, Yoshioka H (1974) A new class of pyrethroidal insecticides: α-substituted phenyacetic acid esters. Agric Biol Chem 38:881–883CrossRefGoogle Scholar
  42. 42.
    Katsuda Y, Nakajima M, Fujita T (1977) Insecticides, and process for producing thereof. Japan Kokai Tokkyo Koho JP 52–82724Google Scholar
  43. 43.
    Henrick CA, Garcia BA, Staal GB, Cerf DC, Anderson RJ, Gill K, Chinn HR, Labovitz JN, Leippe MM, Woo SL, Carney RL, Gordon DC, Kohn GK (1980) 2-Anilino-3-methylbutyrates and 2-(isoindolin-2-yl)-3-methylbutyrates, two novel groups of synthetic pyrethroid esters not containing a cyclopropyl ring. Pestic Sci 11:224–241CrossRefGoogle Scholar
  44. 44.
    Berkelhammer G, Kameswaran V (1978) m-Phenoxybenzyl esters of 2-(haloalkoxyphenyl)alkanoic acids and their use as insecticidal and acaricidal agents. Japan Kokai Tokkyo Koho JP 53–44540Google Scholar
  45. 45.
    Holan G, O’keefe DF, Virgona C, Walser R (1978) Structural and biological link between pyrethroids and DDT in new insecticides. Nature 272:734–736CrossRefGoogle Scholar
  46. 46.
    Nakatani K, Inoue T, Numata S, Oda K, Udagawa T, Gohbara M (1982) MTI-500: a novel insecticide. Fifth International Congress Pesticide Chemistry, Kyoto, Japan, Abstract Ia-9Google Scholar
  47. 47.
    Katsuda Y, Hirobe H, Minamite Y (1986) Insecticides and miticides containing arylalkylsilicon compounds, and process for producing thereof. Japan Kokai Tokkyo Koho JP 61–87687Google Scholar
  48. 48.
    Elliott M (1977) Synthetic pyrethroids. In: Synthetic pyrethroids, ed by Elliot M. Amer Chem Soc, Washington, DC. pp 1–28Google Scholar
  49. 49.
    Sawicki RM, Denholm I, Farnham AW, Murray AWA (1986) Structure-activity relationship to pyrethroid insecticides in houseflies (Musca domestica L.) with kdr and super-kdr. Sixth International Congress Pesticide Chemistry, Ottawa, Canada, Abstract 3E-25Google Scholar
  50. 50.
    Yasutomi K, Takahashi M (1989) Insecticidal resistance of Culex tritaeniorhynchus in Chinen, Okinawa Prefecture, with special reference to the mechanism of pyrethroid-resistance. Jpn J Sanit Zool 40:315–321Google Scholar
  51. 51.
    Katsuda Y, Leemingsawat S, Thongrungkiat S, Komalamisara N, Kanzaki T, Watanabe T, Kahara T (2008) Control of mosquito vectors of tropical infectious diseases: (1) bioefficacy of mosquito coils containing several pyrethroids and a synergist. Southeast Asian J Trop Med Public Health 39(1):48–54Google Scholar
  52. 52.
    Katsuda Y, Leemingsawat S, Thongrungkiat S, Prummmonkol S, Samung Y, Kanzaki T, Watanabe T, Kahara T (2008) Control of mosquito vectors of tropical infectious diseases: (2) pyrethroid susceptibility of Aedes aegypti (L.) collected from different sites in Thailand. Southeast Asian J Trop Med Public Health 39(2):229–234Google Scholar
  53. 53.
    Katsuda Y, Leemingsawat S, Thongrungkiat S, Prummmonkol S, Samung Y, Kanzaki T, Watanabe T (2009) Control of mosquito vectors of tropical infectious diseases: (3) susceptibility of Aedes aegypti to pyrethroid and mosquito coils. Southeast Asian J Trop Med Public Health 40(5):929–936Google Scholar
  54. 54.
    Thanispong K, Sathantriphop S, Chareonviriyaphap T (2008) Insecticide resistance of Aedes aegypti and Culex quinquefasciatus in Thailand. J Pestic Sci 33(4):351–356CrossRefGoogle Scholar
  55. 55.
    Kawada H, Higa Y, Komagata O, Kasai S, Tomita T, Nguyen TY, Nguyen TH, Takagi M (2009) Nationwide investigation on the distribution of kdr gene frequency in Aedes aegypti collected in used tires in Vietnam. Med Entomol Zool 60(Suppl):59Google Scholar
  56. 56.
    Kasai S, Komagata O, Itokawa K, Kobayashi M, Tomita T (2010) Mechanisms of pyrethroid resistance in adult Aedes aegypti. Med Entomol Zool 61(Suppl):46Google Scholar
  57. 57.
    Shinjo G, Yano T, Matsuo N, Umemura T, Mitsuda S, Seki T (1989) Study on a new synthetic pyrethroid “ETOC®”. Sumitomo Kagaku II, 4–18Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Dainihon Jochugiku Co. Ltd.Toyonaka-shi, OsakaJapan

Personalised recommendations