Advertisement

EPR Spectroscopy in Catalysis

Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 321)

Abstract

The modern chemical industry relies heavily on homogeneous and heterogeneous catalysts. Understanding the operational mode, or reactivity, of these catalysts is crucial for improved developments and enhanced performance. As a result, various spectroscopic techniques are inevitably used to characterize and interrogate the mechanistic details of the catalytic cycle. Where paramagnetic centres are involved, ranging from transition metal ions to defects and radicals, EPR spectroscopy is without doubt the technique of choice. In this review we will demonstrate the wealth and breadth of information that can be gleaned from this technique, in the characterization of homogenous and heterogeneous systems of catalytic importance, whilst illustrating the advantages that modern high-field and pulsed EPR methodologies can offer.

Keywords

EPR Heterogeneous catalysis Homogeneous catalysis 

Notes

Acknowledgments

DMM would like to thanks EPSRC for funding (EP/H023879/1). SVD thanks the University of Antwerp for support (via NOI-BOF funding).

References

  1. 1.
    Gates BC (1992) Catalytic chemistry. Wiley, New YorkGoogle Scholar
  2. 2.
    Nguyen ST, Johnson LK, Grubbs RH et al (1992) Ring-opening metathesis polymerization (ROMP) of norbornene by a group VIII carbene complex in protic media. J Am Chem Soc 114:3974–3975CrossRefGoogle Scholar
  3. 3.
    Heck RF, Nolley JP Jr (1972) Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J Org Chem 37:2320–2322CrossRefGoogle Scholar
  4. 4.
    Katsuki T, Sharpless KB (1980) The 1st practical method for asymmetric epoxidation. J Am Chem Soc 102:5974–5976CrossRefGoogle Scholar
  5. 5.
    Rossiter BE, Katsuki T, Sharpless KB (1981) Asymmetric epoxidation provides shortest routes to four chiral epoxy alcohols which are key intermediates in syntheses of methymycin, erythromycin, leukotriene C-1 and disparlure. J Am Chem Soc 103:464–465CrossRefGoogle Scholar
  6. 6.
    Martin VS, oodard SS, Katsuki T et al (1981) Kinetic resolution of racemic allylic alcohols by enantioselective epoxidation – a route to substances of absolute enantiomeric purity. J Am Chem Soc 103:6237–6240CrossRefGoogle Scholar
  7. 7.
    Walsh PJ, Kozlowski MC (2009) Fundamentals of asymmetric catalysis. University Science, SausalitoGoogle Scholar
  8. 8.
    Yoon TP, Jacobsen EN (2003) Privileged chiral catalysts. Science 299:1691–1693CrossRefGoogle Scholar
  9. 9.
    Nielsen LPC, Stevenson CP, Blackmond DG et al (2004) Mechanistic investigation leads to a synthetic improvement in the hydrolytic kinetic resolution of terminal epoxides. J Am Chem Soc 126:1360–1362CrossRefGoogle Scholar
  10. 10.
    Ready JM, Jacobsen EN (2002) A practical oligomeric [(salen)Co] catalyst for asymmetric epoxide ring-opening reactions. Angew Chem Int Ed 41:1374–1377CrossRefGoogle Scholar
  11. 11.
    Lunsford JH (1972) Electron spin resonance in catalysis. Adv Catal 22:265–344CrossRefGoogle Scholar
  12. 12.
    Howe R (1982) EPR spectroscopy in surface chemistry: recent developments. Adv Colloid Interface Sci 18:1–55CrossRefGoogle Scholar
  13. 13.
    Che M, Taarit YB (1985) Applications of electron paramagnetic resonance to heterogeneous systems. Adv Colloid Interface Sci 23:235–255CrossRefGoogle Scholar
  14. 14.
    Che M, Giamello E (1987) Electron paramagnetic resonance. Stud Surf Sci Catal 57:B265–B332CrossRefGoogle Scholar
  15. 15.
    Murphy DM (2008) Electron paramagnetic resonance spectroscopy of polycrystalline oxide systems. In: Jackson SD, Hargreaves J (eds) Metal oxide catalysis. Wiley-VCH, New YorkGoogle Scholar
  16. 16.
    Hunger M, Weitkamp J (2001) In situ IR, NMR, EPR, and UV/Vis spectroscopy: tools for new insight into the mechanisms of heterogeneous catalysis. Angew Chem Int Ed 40:2954–2971CrossRefGoogle Scholar
  17. 17.
    Bruckner A (2010) In situ electron paramagnetic resonance: a unique tool for analyzing structure-reactivity relationships in heterogeneous catalysis. Chem Soc Rev 39:4673–4684CrossRefGoogle Scholar
  18. 18.
    Stosser R, Marx U, Herrmann W et al (2010) In situ EPR study of chemical reactions in Q-band at higher temperatures: a challenge for elucidating structure-reactivity relationships in catalysis. J Am Chem Soc 132:9873–9880CrossRefGoogle Scholar
  19. 19.
    Van Doorslaer S, Caretti I, Fallis IA et al (2009) The power of electron paramagnetic resonance to study asymmetric homogeneous catalysts based on transition-metal complexes. Coord Chem Rev 253:2116–2130CrossRefGoogle Scholar
  20. 20.
    Carter E, Murphy DM (2009) Structure – function relationships and mechanistic pathways in homogeneous enantioselective catalysis as probed by ENDOR spectroscopy. In: Douthwaite R, Duckett S (eds) Spectroscopic properties of inorganic and organometallic compounds, vol 40. RSC, CambridgeCrossRefGoogle Scholar
  21. 21.
    Mobius K, Savitsky A (2008) High field EPR spectroscopy on proteins and their model systems. RSC, CambridgeGoogle Scholar
  22. 22.
    Goldfarb D (2006) High field ENDOR as a characterization tool for functional sites in microporous materials. Phys Chem Chem Phys 8:2325–2343CrossRefGoogle Scholar
  23. 23.
    Bennati M, Prisner TF (2005) New developments in high field electron paramagnetic resonance with applications in structural biology. Rep Prog Phys 68:411–448CrossRefGoogle Scholar
  24. 24.
    Andersson KK, Schmidt PP, Katterle B et al (2003) Examples of high-frequency EPR studies in bioinorganic chemistry. J Biol Inorg Chem 8:235–247Google Scholar
  25. 25.
    Fortman GC, Kegl T, Li QS et al (2007) Spectroscopic detection and theoretical confirmation of the role of Cr2(CO)5 (C5R5)2 and.Cr(CO)2(ketene)(C5R5) as intermediates in carbonylation of N=N=CHSiMe3 to O=C=CHSiMe3 by.Cr(CO)3 (C5R5) (R = H, CH3). J Am Chem Soc 129:14388–14400CrossRefGoogle Scholar
  26. 26.
    Krzystek J, Ozarowsk A, Telser J (2006) Multi-frequency, high-field EPR as a powerful tool to accurately determine zero-field splitting in high-spin transition metal coordination complexes. Coord Chem Rev 250:2308–2324CrossRefGoogle Scholar
  27. 27.
    Bianchini C, Gatteschi D, Giambastiani G et al (2007) Electronic influence of the thienyl sulfur atom on the oligomerization of ethylene by cobalt(II) 6-(thienyl)-2-(imino)pyridine catalysis. Organometallics 26:726–739CrossRefGoogle Scholar
  28. 28.
    Schweiger A, Jeschke G (2001) Principles of pulse electron paramagnetic resonance. Oxford University Press, OxfordGoogle Scholar
  29. 29.
    Zein S, Kulik LV, Yano J et al (2008) Focusing the view on nature’s water-splitting catalyst. Philos Trans R Soc B 363:1167–1177CrossRefGoogle Scholar
  30. 30.
    Hoffman BM (2003) Electron-nuclear double resonance spectroscopy (and electron spin-echo envelope modulation spectroscopy) in bioinorganic chemistry. Proc Natl Acad Sci USA 100:3575–3578CrossRefGoogle Scholar
  31. 31.
    Peloquin JM, Britt RD (2001) EPR/ENDOR characterization of the physical and electronic structure of the OEC Mn cluster. Biochim Biophys Acta Bioenerg 1503:96–111CrossRefGoogle Scholar
  32. 32.
    Lubitz W, Reijerse E, Van Gastel M (2007) [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. Chem Rev 107:4331–4365CrossRefGoogle Scholar
  33. 33.
    Lubitz W, Lendzian F, Bittl R (2002) Radicals, radical pairs and triplet states in photosynthesis. Acc Chem Res 35:313–320CrossRefGoogle Scholar
  34. 34.
    Schiemann O, Prisner TF (2007) Long-range distance determinations in biomacromolecules by EPR spectroscopy. Quart Rev Biophys 40:1–53CrossRefGoogle Scholar
  35. 35.
    Prisner T, Rohrer M, MacMillan F (2001) Pulsed EPR spectroscopy: biological applications. Annu Rev Phys Chem 52:270–313CrossRefGoogle Scholar
  36. 36.
    Rosati F, Roelfes G (2010) Artificial metalloenzymes. ChemCatChem 2:916–927CrossRefGoogle Scholar
  37. 37.
    Palucki M, Finney NS, Pospisil PJ et al (1998) The mechanistic basis for electronic effects on enantioselectivity in the (salen)Mn(III)-catalyzed epoxidation reaction. J Am Chem Soc 120:948–954CrossRefGoogle Scholar
  38. 38.
    Katsuki T (1995) Catalytic asymmetric oxidations using optically active (salen)-manganese(III) complexes as catalysts. Coord Chem Rev 140:189–214CrossRefGoogle Scholar
  39. 39.
    Schaus SE, Brandes BD, Larrow JF et al (2002) Highly selective hydrolytic kinetic resolution of terminal epoxides catalyzed by chiral (salen)Co-III complexes. Practical synthesis of enantioenriched terminal epoxides and 1,2-diols. J Am Chem Soc 124:1307–1315CrossRefGoogle Scholar
  40. 40.
    Fallis IA, Murphy DM, Willock DJ et al (2004) Direct observation of enantiomer discrimination of epoxides by chiral salen complexes using ENDOR. J Am Chem Soc 126:15660–15661CrossRefGoogle Scholar
  41. 41.
    Murphy DM, Fallis IA, Willock DJ et al (2008) Discrimination of geometrical epoxide isomers by ENDOR & DFT – the role of H-bonds. Angew Chem Int Ed 47:1414–1416CrossRefGoogle Scholar
  42. 42.
    Carter E, Murphy DM, Fallis IA et al (2010) Probing the role of weak outer sphere interactions (H-bond) in VO(3,5-tBu2-salophen) – epoxide adducts by EPR, ENDOR and HYSCORE. Chem Phys Lett 486:74–79CrossRefGoogle Scholar
  43. 43.
    Murphy DM, Fallis IA, Landon J et al (2009) Enantioselective binding of structural epoxide isomers by a chiral vanadyl salen complex: a pulsed EPR, CW-ENDOR and DFT investigation. Phys Chem Chem Phys 11:6757–6769CrossRefGoogle Scholar
  44. 44.
    Carter E, Fallis IA, Kariuki BM et al (2011) Structure and EPR characterization of N,N’-bis(5-tert-butylsalicylidene)-1,2-cyclohexanediamino-vanadium (IV) oxide and its adducts with propylene oxide. Dalton Trans 40:7454–7462Google Scholar
  45. 45.
    Murphy DM, Caretti I, Carter E et al (2011) Visualising diastereomeric interactions of chiral amine-chiral copper Salen adducts by EPR/ENDOR/HYSCORE spectroscopy and DFT. Inorg Chem (submitted)Google Scholar
  46. 46.
    Merkx M, Kopp DA, Sazinsky MH et al (2001) Dioxygen activation and methane hydroxylation by soluble methane monooxygenase: a tale of two irons and three proteins. Angew Chem Int Ed 40:2782–2807CrossRefGoogle Scholar
  47. 47.
    Wallar BJ, Lipscomb JD (1996) Dioxygen activation by enzymes containing binuclear non-heme iron clusters. Chem Rev 96:2625–2657CrossRefGoogle Scholar
  48. 48.
    Pulver SC, Froland WA, Lipscomb JD et al (1997) Ligand field circular dichroism and magnetic circular dichroism studies of component B and substrate binding to the hydroxylase component of methane monooxygenase. J Am Chem Soc 119:387–395CrossRefGoogle Scholar
  49. 49.
    Wolfe MD, Parales JV, Gibson DT et al (2001) Single turnover chemistry and regulation of O2 activation by the oxygenase component of naphthalene 1,2-dioxygenase. J Biol Chem 276:1945–1953CrossRefGoogle Scholar
  50. 50.
    Karlsson A, Parales JV, Parales RE et al (2003) Crystal structure of naphthalene dioxygenase: side-on binding of dioxygen to iron. Science 299:1039–1042CrossRefGoogle Scholar
  51. 51.
    Ward TR (2011) Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond. Acc Chem Res 44:47–57CrossRefGoogle Scholar
  52. 52.
    Park MJ, Lee J, Suh Y et al (2006) Reactivities of mononuclear non-heme iron intermediates including evidence that iron(III) – hydroperoxo species is a sluggish oxidant. J Am Chem Soc 128:2630–2634CrossRefGoogle Scholar
  53. 53.
    Que L, Ho RYN (1996) Dioxygen activation by enzymes with mononuclear non-heme iron active sites. Chem Rev 96:2607–2624CrossRefGoogle Scholar
  54. 54.
    Costas M, Chen K, Que L (2000) Biomimetic nonheme iron catalysts for alkane hydroxylation. Coord Chem Rev 200–202:517–544CrossRefGoogle Scholar
  55. 55.
    Katona G, Carpentier P, Nivière V et al (2007) Raman-assisted crystallography reveals end-on peroxide intermediates in a nonheme iron enzyme. Science 316:449–453CrossRefGoogle Scholar
  56. 56.
    Dey A, Jenney FE, Adams MK et al (2007) Sulfur K-edge X-ray absorption spectroscopy and density functional theory calculations on superoxide reductase: role of the axial thiolate in reactivity. J Am Chem Soc 129:12418–12431CrossRefGoogle Scholar
  57. 57.
    Clay MD, Yang TC, Jenney FE et al (2006) Geometries and electronic structures of cyanide adducts of the non-heme iron active site of superoxide reductases: vibrational and ENDOR studies. Biochemistry 45:427–438CrossRefGoogle Scholar
  58. 58.
    Jiang YB, Telser J, Goldberg DP (2009) Evidence for the formation of a mononuclear ferric-hydroperoxo complex via the reaction of dioxygen with an (N4S(thiolate))iron(II) complex. Chem Commun 6828–6830Google Scholar
  59. 59.
    Girerd JJ, Banse F, Simaan AJ (2000) Characterization and properties of non-heme iron peroxo complexes. In: Metal-oxo and metal peroxo species in catalytic oxidations. Structure and Bonding, vol 97. Springer, Hidelberg, pp 145–177Google Scholar
  60. 60.
    Simaan AJ, Banse F, Girerd JJ (2001) The electronic structure of non-heme iron(III)-hydroperoxo and iron(III)-peroxo model complexes studied by Mossbauer and electron paramagnetic resonance spectroscopies. Inorg Chem 40:6538–6540CrossRefGoogle Scholar
  61. 61.
    Berry JF, Bill E, Bothe E et al (2006) Octahedral non-heme oxo and non-oxo Fe(IV) complexes: an experimental/theoretical comparison. J Am Chem Soc 128:13515–13528CrossRefGoogle Scholar
  62. 62.
    Bilis G, Christoforidis KC, Deligiannakis Y et al (2010) Hydrocarbon oxidation by homogeneous and heterogeneous non-heme iron(III) catalysts with H2O2. Catal Today 157:101–106CrossRefGoogle Scholar
  63. 63.
    Shi W, Liu Y, Liu B et al (2006) Synthesis and characterization of a six-coordinate monomeric Mn(III) complex with SOD-like activity. J Coord Chem 59:119–130CrossRefGoogle Scholar
  64. 64.
    Parsell TH, Behan RK, Green MT et al (2006) Preparation and properties of a monomeric MnIV-oxo complex. J Am Chem Soc 128:8728–8729CrossRefGoogle Scholar
  65. 65.
    Donoghue PJ, Gupta AK, Boyce DW et al (2010) An anionic, tetragobal copper(II) superoxide complex. J Am Chem Soc 132:15869–15871CrossRefGoogle Scholar
  66. 66.
    Chaudhuri P, Wieghardt K (2001) Phenoxyl radical complexes. Prog Inorg Chem 50:151–216Google Scholar
  67. 67.
    Jörgensen CK (1969) Oxidation numbers and oxidation states. Springer, HeidelbergGoogle Scholar
  68. 68.
    Jazdzewski BA, Tolma WB (2000) Understanding the copper-phenoxyl radical array in galactose oxidase: contributions from synthetic modeling studies. Coord Chem Rev 200–202:633–685CrossRefGoogle Scholar
  69. 69.
    Krüger H-J (1999) What can we learn from nature about the reactivity of coordinated phenoxyl radicals? A bioinorganic success story. Angew Chem Int Ed 38:627–631CrossRefGoogle Scholar
  70. 70.
    Bereman RD, Kosman DJ (1977) Stereo-electronic properties of metalloenzymes 5. Identification and assignment of ligand hyperfine splittings in electron spin resonance spectrum of galactose oxidase. J Am Chem Soc 99:7322–7325CrossRefGoogle Scholar
  71. 71.
    Müller J, Kikuchi A, Bill E et al (2000) Phenoxyl radical complexes of chromium(III), manganese(III), cobalt(III) and nickel(II). Inorg Chimica Acta 297:265–277CrossRefGoogle Scholar
  72. 72.
    dos Anjos A, Bortoluzzi AJ, Osorio R et al (2005) New mononuclear CuII and ZnII complexes capable of stabilizing phenoxyl radicals as models for the active form of galactose oxidase. Inorg Chem Comm 8:249–253CrossRefGoogle Scholar
  73. 73.
    Mukherjee A, Lioret R, Mukherjee R (2008) Synthesis and properties of diphenoxo-bridged CoII, NiII, CuII and ZnII complexes of a new tripodal ligand: generation and properties of MII-coordinated phenoxyl radical species. Inorg Chem 47:4471–4480CrossRefGoogle Scholar
  74. 74.
    Thomas F, Arora H, Philouze C et al (2010) CoIII and CuII complexes of reduced Schiff bases: generation of phenoxyl radical species. Inorg Chimica Acta 363:3122–3130CrossRefGoogle Scholar
  75. 75.
    Chaudhuri P, Verani CN, Bill E et al (2001) Electronic structure of bis(o-iminobenzo-semiquinonato)metal complexes (Cu, Ni, Pd). The art of establishing physical oxidation states in transition metal complexes containing radical ligands. J Am Chem Soc 123:2213–2223CrossRefGoogle Scholar
  76. 76.
    Weyhermüller T, Paine TK, Bothe E et al (2002) Complexes of an aminebis(phenolate) [O, N, O] donor ligand and EPR studies of isoelectronic, isostructural Cr(III) and Mn(IV) complexes. Inorg Chimica Acta 337:344–356CrossRefGoogle Scholar
  77. 77.
    Telser J (2010) Overview of ligand versus metal centred redox reactions in tetraaza macrocyclic complexes of nickel with a focus on electron paramagnetic resonance. J Braz Chem Soc 21:1139–1157CrossRefGoogle Scholar
  78. 78.
    Shimazaki Y, Tani F, Fukui K et al (2003) One-electron oxidized nickel(II)-(disalicylidene)diamine complex: temperature-dependent tautomerism between Ni(III)-phenolate and Ni(II)-phenoxyl radical states. J Am Chem Soc 125:10512–10513CrossRefGoogle Scholar
  79. 79.
    Shimazaki Y, Yajima T, Tani F et al (2007) Synthesis and electronic structures of one-electron-oxidized group 10 metal(II) – (disalicylidene)diamine complexes (metal = Ni, Pd, Pt). J Am Chem Soc 129:2559–2568CrossRefGoogle Scholar
  80. 80.
    Rotthaus O, Jarjayes O, Del Valle CP et al (2007) A versatile electronic hole in one-electron oxidized Ni-II bis-salicylidene phenylenediamine complexes. Chem Commun 4462–4464Google Scholar
  81. 81.
    Rotthaus O, Labet V, Philouze C et al (2008) Pseudo-octahedral schiff base nickel(II) complexes: does single oxidation always lead to the nickel(III) valence tautomer? Eur J Inorg Chem 4215–4224Google Scholar
  82. 82.
    Storr T, Wasinger EC, Pratt RC et al (2007) The geometric and electronic structure of a one-electron-oxidized nickel(II) bis(salicylidene)diamine complex. Angew Chem Int Ed 46:5198–5201CrossRefGoogle Scholar
  83. 83.
    Storr T, Verma P, Pratt RC et al (2008) Defining the electronic and geometric structure of one-electron oxidized copper-bis-phenoxide complexes. J Am Chem Soc 46:15448–15459CrossRefGoogle Scholar
  84. 84.
    Pratt RC, Stack TDP (2005) Mechanistic insights from reactions between copper(II)-phenoxyl complexes and substrates with activated C-H bonds. Inorg Chem 44:2367–2375CrossRefGoogle Scholar
  85. 85.
    Vinck E, Murphy DM, Fallis IA et al (2010) Formation of a cobalt(III)-phenoxyl radical complex by acetic acid promoted aerobic oxidation of a Co(II)salen complex. Inorg Chem 49:2083–2092CrossRefGoogle Scholar
  86. 86.
    Vinck E, Van Doorslaer S, Murphy DM et al (2008) The electronic structure of N,N′-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-diamino cobalt(II). Chem Phys Lett 464:31–37CrossRefGoogle Scholar
  87. 87.
    Vinck E, Van Doorslaer S, Murphy DM et al (2011) (in prep)Google Scholar
  88. 88.
    Vinck E, Murphy DM, Fallis IA et al (2010) A pulsed EPR and DFT investigation of the stabilization of coordinated phenoxyl radicals in a series of cobalt Schiff-base complexes. Appl Magn Reson 37:289–303CrossRefGoogle Scholar
  89. 89.
    Orio M, Jarjayes O, Philouze C et al (2010) Spin interaction in octahedral zinc complexes of mono- and diradical Schiff and Mannich bases. Inorg Chem 49:646–658CrossRefGoogle Scholar
  90. 90.
    Büttner T, Geier J, Frison G et al (2005) A stable aminyl radical metal complex. Science 307:235–238CrossRefGoogle Scholar
  91. 91.
    Dixon JT, Green MJ, Hess FM et al (2004) Advances in selective ethylene trimerisation – a critical overview. J Organomet Chem 689:3641–3668CrossRefGoogle Scholar
  92. 92.
    Emrich R, Heinemann O, Jolly PW et al (1997) The role of metallacycles in the chromium-catalyzed trimerization of ethylene. Organometallics 16:1511–1513CrossRefGoogle Scholar
  93. 93.
    Manyik RM, Walker WE, Wilson TP (1997) Soluble chromium based catalysts for ethylene trimerization and polymerization. J Catal 47:197–209CrossRefGoogle Scholar
  94. 94.
    Köhn RD, Haufe M, Mihan S et al (2000) Triazacyclohexane complexes of chromium as highly active homogeneous model systems for the Phillips catalyst. Chem Commun 1927–1928Google Scholar
  95. 95.
    Kohn R (2008) Reactivity of chromium complexes under spin control. Angew Chem Int Ed 47:245–247CrossRefGoogle Scholar
  96. 96.
    Moulin JO, Evans J, McGuinness DS et al (2008) Probing the effects of ligand structure on activity and selectivity of Cr(III) complexes for ethylene oligomerisation and polymerization. Dalton Trans 1177–1185Google Scholar
  97. 97.
    Brückner A, Jabor JK, McConnell AEC et al (2008) Monitoring structure and valence state of chromium sites during catalyst formation and ethylene oligomerization by in situ EPR spectroscopy. Organometallics 27:3849–3856CrossRefGoogle Scholar
  98. 98.
    Skobelev IY, Panchenko VN, Lyakin OY et al (2010) In situ EPR monitoring of chromium species formed during Cr-pyrrolyl ethylene trimerization catalyst formation. Organometallics 29:2943–2950CrossRefGoogle Scholar
  99. 99.
    McDyre LE, Hamilton T, Murphy DM et al (2010) A CW EPR and ENDOR investigation on a series of Cr(I) carbonyl complexes with relevance to alkene oligomerization catalysis: [Cr(CO)4L]+ (L = Ph2PN(R)PPh2, Ph2P(R)PPh2, Ph2PN(R)NPPh2). Dalton Trans 39:7792–7799CrossRefGoogle Scholar
  100. 100.
    McDyre LE, Carter E, Murphy DM et al (2011) (in prep)Google Scholar
  101. 101.
    Bianchini G, Giambastiani IG, Rios A et al (2007) Synthesis of a new polydentate ligand obtained by coupling 2,6-bis(amino)pyridine and (imino)pyridine moieties and its use in ethylene oligomerisation in conjunction with iron(II) and cobalt(II) bis-halides. Organometallics 26:5066–5078CrossRefGoogle Scholar
  102. 102.
    Soshnikov IE, Semikolenova NV, Bushmelev AN et al (2009) Investigating the nature of the active species in bis(imino)pyridine cobalt ethylene polymerisation catalysts. Organometallics 28:6003–6013CrossRefGoogle Scholar
  103. 103.
    Britovsek GJP, Clentsmith GKB, Gibson VC et al (2002) The nature of the active site in bis(imino)pyridine iron ethylene polymerisation catalysts. Catal Commun 3:207–211CrossRefGoogle Scholar
  104. 104.
    Dzik WI, Smits JMM, Reek JNH et al (2009) Activation of carbon monoxide by (Me(3)tpa)Rh and (Me(3)tpa)Ir. Organometallics 28:1631–1643CrossRefGoogle Scholar
  105. 105.
    Goldberg H, Kaminker I, Goldfarb D et al (2009) Oxidation of carbon monoxide cocatalyzed by palladium(0) and the H5PV2Mo10O40 polyoxometalate probed by electron paramagnetic resonance and aerobic catalysis. Inorg Chem 48:7947–7952CrossRefGoogle Scholar
  106. 106.
    Khenkin AM, Efremenko I, Weiner L et al (2010) Photochemical reduction of carbon dioxide catalyzed by a ruthenium substituted polyoxometalate. Chem A Eur J 16:1356–1364CrossRefGoogle Scholar
  107. 107.
    Che C-M, Huang J-S (2003) Metal complexes of chiral binaphthyl Schiff-base ligands and their application in stereoselective organic transformations. Coord Chem Rev 242:97–113CrossRefGoogle Scholar
  108. 108.
    Shitama H, Katsuki T (2007) Synthesis of metal-(pentadentate-salen) complexes: asymmetric epoxidation with aqueous hydrogen peroxide and asymmetric cyclopropanation (salenH(2): N,N-bis(salicylidene)ethylene-1,2-diamine). Chem Eur J 13:4849–4858CrossRefGoogle Scholar
  109. 109.
    Groves JT, Stern MK (1988) Synthesis, characterization, and reactivity of oxomanganese(IV) porphyrin complexes. J Am Chem Soc 110:8628–8638CrossRefGoogle Scholar
  110. 110.
    Ostovic D, Bruice TC (1992) Mechanism of alkene epoxidation by iron, chromium and manganese higher valent oxo-metalloporphyrins. Acc Chem Res 25:314–320CrossRefGoogle Scholar
  111. 111.
    Collman JP, Zhang X, Lee VJ et al (1993) Regioselective and enantioselective epoxidation catalyzed by metalloporphyrins. Science 261:1404–1411CrossRefGoogle Scholar
  112. 112.
    Murphy A, Dubois G, Stack TDP (2003) Efficient epoxidation of electron-deficient olefins with a cationic manganese complex. J Am Chem Soc 125:5250–5251CrossRefGoogle Scholar
  113. 113.
    Murphy A, Pace A, Stack TDP (2004) Ligand and pH influence on manganese-mediated peracetic acid epoxidation of terminal olefins. Org Lett 6:3119–3122CrossRefGoogle Scholar
  114. 114.
    de Boer JW, Browne WR, Brinksma J et al (2007) Mechanism of cis-dihydroxylation and epoxidation of alkenes by highly H2O2 efficient dinuclear manganese catalysts. Inorg Chem 46:6353–6372CrossRefGoogle Scholar
  115. 115.
    Bryliakov KP, Lobanova MV, Talsi EP (2002) EPR and 1H NMR spectroscopic study of the CrIII(salen)Cl catalysts. J Chem Soc Dalton Trans 2263–2265Google Scholar
  116. 116.
    Bryliakov KP, Talsi EP (2003) CrIII(salen)Cl catalyzed asymmetric epoxidations: insight into the catalytic cycle. Inorg Chem 42:7258–7265CrossRefGoogle Scholar
  117. 117.
    Campbell KA, Lashley MR, Wyatt JK (2001) Dual-mode EPR study of Mn(III) salen and the Mn(III) salen-catalyzed epoxidation of cis-beta-methylstyrene. J Am Chem Soc 123:5710–5719CrossRefGoogle Scholar
  118. 118.
    Scarpellini M, Casellato A, Bortoluzzi AJ et al (2006) EPR and semi-empirical studies as tools to assign the geometric structures of Fe-III isomer models for transferrins. J Braz Chem Soc 17:1617–1626CrossRefGoogle Scholar
  119. 119.
    Dyers L, Que SY, Van Derveer D et al (2006) Synthesis and structures of new salen complexes with bulky groups. Inorg Chimica Acta 359:197–203CrossRefGoogle Scholar
  120. 120.
    Tani F, Matsu-ura M, Nakayama S et al (2001) Synthesis and characterization of alkanethiolate-coordinated iron porphyrins and their dioxygen adducts as models for the active center of cytochrome P450: direct evidence for hydrogen bonding to bound dioxygen. J Am Chem Soc 123:1133–1142CrossRefGoogle Scholar
  121. 121.
    Bryliakov KP, Talsi EP (2004) Evidence for the formation of an iodosylbenzene(salen)iron active intermediate in a (salen)iron (III)-catalyzed asymmetric sulfide oxidation. Angew Chem Int Ed 43:5228–5230CrossRefGoogle Scholar
  122. 122.
    Sivasubramanian VK, Ganesan M, Rajagopal S et al (2002) Iron(III)-salen complexes as enzyme models: mechanistic study of oxo(salen)iron complexes oxygenation of organic sulfides. J Org Chem 67:1506–1514CrossRefGoogle Scholar
  123. 123.
    Ottenbacher RV, Bryliakov KP, Talsi EP (2010) Nonheme manganese-catalyzed asymmetric oxidation. A Lewis acid activation versus oxygen rebound mechanism: evidence for the third oxidant. Inorg Chem 49:8620–8628CrossRefGoogle Scholar
  124. 124.
    Duban EA, Bryliakov KP, Talsi EP (2007) The active intermediates of non-heme-iron-based systems for catalytic alkene epoxidation with H2O2/CH3COOH. Eur J Inorg Chem 852–857Google Scholar
  125. 125.
    Lyakin OY, Bryliakov KP, Britovsek GJP et al (2009) EPR spectroscopic trapping of the active species of nonheme iron-catalyzed oxidation. J Am Chem Soc 131:10798–10799CrossRefGoogle Scholar
  126. 126.
    Maurya MR, Kumar M, Pessoa JC (2008) Oxidation of p-chlorotoluene and cyclohexene catalyzed by polymer-anchored oxovanadium(IV) and copper(II) complexes of amino acid derived tridentate ligands. Dalton Trans 4220–4232Google Scholar
  127. 127.
    Mimmi MC, Gullotti M, Santagostini L (2004) Models for biological trinuclear copper clusters. Characterization and enantioselective catalytic oxidation of catechols by the copper(I) complexes of a chiral ligand derived from (S)-(−)-1,1′binaphthyl-2,2′-diamine. Dalton Trans 2192–2201Google Scholar
  128. 128.
    Adão P, Maurya MR, Kumar U et al (2009) Vanadium-salen and -salan complexes: characterization and application in oxygen-transfer reactions. Pure Appl Chem 81:1279–1296CrossRefGoogle Scholar
  129. 129.
    Andino JG, Kilgore UJ, Pink M et al (2010) Intermolecular C-H bond activation of benzene and pyridines by a vanadium(III) alkylidene including a stepwise conversion of benzene to a vanadium-benzyne complex. Chem Sci 1:351–356CrossRefGoogle Scholar
  130. 130.
    Ye S, Neese F, Ozarowski A et al (2010) Family of V(III)-tristhiolato complexes relevant to functional models of vanadium nitrogenase: synthesis and electronic structure investigations by means of high-frequency and -field electron paramagnetic resonance coupled to quantum chemical computations. Inorg Chem 49:977–988CrossRefGoogle Scholar
  131. 131.
    Krzystek J, Fiedler AT, Sokol JJ et al (2004) Pseudooctahedral complexes of vanadium(III): electronic structure investigation by magnetic and electronic spectroscopy. Inorg Chem 43:5645–5658CrossRefGoogle Scholar
  132. 132.
    Bolm C, Martin M, Gescheidt G et al (2003) Spectroscopic investigation of bis(sulfoximine) copper(II) complexes and their relevance in asymmetric catalysis. J Am Chem Soc 125:6222–6227CrossRefGoogle Scholar
  133. 133.
    Bolm C, Martin M, Gescheidt G et al (2007) Mechanistic insights into stereoselective catalysis – the effects of counterions in a CuII-bissulfoximine-catalyzed Diels-Alder reaction. Chem Eur J 13:1842–1850CrossRefGoogle Scholar
  134. 134.
    Tatsumi T (2004) Zeolites: catalysis. In: Atwood JL, Steed JW (eds) Encyclopedia of supramolecular chemistry, vol 2. Marcel Dekker, New York, pp 1610–1616Google Scholar
  135. 135.
    Čejka J (2004) Zeolites: structures and inclusion properites. In: Atwood JL, Steed JW (eds) Encyclopedia of supramolecular chemistry, vol 2. Marcel Dekker, New York, pp 1623–1630Google Scholar
  136. 136.
    Arieli D, Delabie A, Vaughan DEW et al (2002) Isomorphous substitution of Mn(II) into aluminophosphate zeotypes: a combined high-field ENDOR and DFT study. J Phys Chem B 106:7509–7519CrossRefGoogle Scholar
  137. 137.
    Arieli D, Prisner TF, Hertel M et al (2004) Resolving Mn framework sites in large cage aluminophosphate zeotypes by high field EPR and ENDOR spectroscopy. Phys Chem Chem Phys 6:172–181CrossRefGoogle Scholar
  138. 138.
    Arieli D, Delabie A, Groothaert M et al (2002) The process of Mn(II) incorporation into aluminophosphate zeotypes through high-field ENDOR spectroscopy and DFT calculations. J Phys Chem B 106:9086–9097CrossRefGoogle Scholar
  139. 139.
    Carl PJ, Vaughan DEW, Goldfarb D (2002) Interactions of Cu(II) ions with framework Al in high Si:Al zeolite Y as determined from X- and W-band pulsed EPR/ENDOR spectroscopies. J Phys Chem B 106:5428–5437CrossRefGoogle Scholar
  140. 140.
    Maurelli S, Ruszak M, Witkowski S et al (2010) Spectroscopic CW-EPR and HYSCORE investigations of Cu2+ and O2− species in copper doped nanoporous calcium aluminate (12CaO.7Al2O3). Phys Chem Chem Phys 12:10933–10941CrossRefGoogle Scholar
  141. 141.
    Woodworth J, Bowman MK, Larsen SC (2004) Two-dimensional pulsed EPR studies of vanadium-exchanged ZSM-5. J Phys Chem B 108:16128–16134CrossRefGoogle Scholar
  142. 142.
    Giamello E, Murphy D, Magnacca G et al (1992) Interaction of NO with copper ions in ZSM5. An EPR and IR investigation. J Catal 136:510–520CrossRefGoogle Scholar
  143. 143.
    Umamaheswari V, Hartmann M, Pöppl A (2005) EPR spectroscopy of Cu(I)-NO adsorption complexes formed over Cu-ZSM-5 and Cu-MCM-22 zeolites. J Phys Chem B 109:1537–1546CrossRefGoogle Scholar
  144. 144.
    Umamaheswari V, Hartmann M, Pöppl A (2005) Pulsed ENDOR study of Cu(I)-NO adsorption complexes in Cu-L zeolite. J Phys Chem B 109:10842–10848CrossRefGoogle Scholar
  145. 145.
    Umamaheswari V, Hartmann M, Pöppl A (2005) Critical assessment of electron spin resonance studies on Cu(I)-NO complexes in Cu-ZSM-5 zeolites prepared by solid- and liquid-state ion exchange. J Phys Chem B 109:19723–19731CrossRefGoogle Scholar
  146. 146.
    Pietrzyk P, Piskorz W, Sojka Z et al (2003) Molecular structure, spin density and hyperfine coupling constants of the η1{CuNO}11 adduct in the ZSM-5 zeolite:DFT calculations and comparison with EPR data. J Phys Chem B 107:6105–6113CrossRefGoogle Scholar
  147. 147.
    Pal C, Wheatley PS, El Mkami H et al (2010) EPR on medically relevant NO adsorbed to Zn-LTA. Appl Magn Reson 37:619–627CrossRefGoogle Scholar
  148. 148.
    Soler-Illia J, Sanchez C, Lebeau B et al (2002) Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev 102:4093–4138CrossRefGoogle Scholar
  149. 149.
    Kresge CT, Leonowicz ME, Roth WJ et al (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712CrossRefGoogle Scholar
  150. 150.
    Beck JS, Vartuli JC, Roth WJ et al (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843CrossRefGoogle Scholar
  151. 151.
    Zhao D, Feng J, Huo Q et al (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores. Science 279:548–552CrossRefGoogle Scholar
  152. 152.
    Kruk M, Jaroniec M, Ko CH et al (2000) Characterization of the porous structure of SBA-15. Chem Mater 12:1961–1968CrossRefGoogle Scholar
  153. 153.
    Bennadja Y, Beaunier P, Margolese D et al (2001) Fine tuning of the interaction between pluronic surfactants and silica walls in SBA-15 nanostructured materials. Microporous Mesoporous Mater 44–45:147–152CrossRefGoogle Scholar
  154. 154.
    Ruthstein S, Goldfarb D (2008) An EPR tool box for exploring the formation and properties of ordered template mesoporous materials. Electron Paramagn Reson 21:184–215CrossRefGoogle Scholar
  155. 155.
    Zhang J, Carl PJ, Zimmermann H et al (2002) Investigation of the formation of MCM-41 by electron spin-echo envelope modulation spectroscopy. J Phys Chem B 106:5382–5389CrossRefGoogle Scholar
  156. 156.
    Ruthstein S, Frydman V, Kababya S et al (2003) Study of the formation of the mesoporous material SBA-15 by EPR spectroscopy. J Phys Chem B 107:1739–1748CrossRefGoogle Scholar
  157. 157.
    Ruthstein S, Frydman V, Goldfarb D (2004) Study of the initial formation stages of the mesoporous material SBA-15 using spin-labeled block co-polymer templates. J Phys Chem B 108:9016–9022CrossRefGoogle Scholar
  158. 158.
    Ruthstein S, Goldfarb D (2008) Evolution of solution structures during the formation of the cubic mesoporous material, KIT-6, determined by double electron-electron resonance. J Phys Chem C 112:7102–7109CrossRefGoogle Scholar
  159. 159.
    Zamani S, Meynen V, Hanu AM et al (2009) Direct spectroscopic detection of framework-incorporated vanadium in mesoporous silica materials. Phys Chem Chem Phys 11:5823–5832CrossRefGoogle Scholar
  160. 160.
    Van Doorslaer S, Segura Y, Cool P (2004) Structural investigation of vanadyl-acetylacetonate-containing precursors of TiOx-VOx mixed oxides on SBA-15. J Phys Chem B 108:19404–19412CrossRefGoogle Scholar
  161. 161.
    Van Der Voort P, Ravikovitch PI, De Jong KP et al (2002) Plugged hexagonal templated silica: a unique micro- and mesoporous composite material with internal silica nanocapsules. Chem Commun 1010–1011Google Scholar
  162. 162.
    Meynen V, Beyers E, Cool P et al (2004) Post-synthesis deposition of V-zeolitic nanoparticles in SBA-15. Chem Commun 898–899Google Scholar
  163. 163.
    Chiesa M, Meynen V, Van Doorslaer S et al (2006) Vanadium silicalite-1 nanoparticles deposition onto mesoporous walls of SBA-15. Mechanistic insights from a combined EPR and Raman study. J Am Chem Soc 128:8955–8963CrossRefGoogle Scholar
  164. 164.
    Zamani S, Chiesa M, Meynen V et al (2010) Accessibility and dispersion of vanadyl sites of vanadium silicate-1. J Phys Chem C 114:12966–12975CrossRefGoogle Scholar
  165. 165.
    Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177CrossRefGoogle Scholar
  166. 166.
    Ayoub K, van Hullebusch ED, Cassir M et al (2010) Application of advanced oxidation processes for TNT removal: a review. J Hazard Mater 178:10–28CrossRefGoogle Scholar
  167. 167.
    Pascual J, Camassel J, Mathieu H (1977) Resolved quadrupole transition in TiO2. Phys Rev Lett 39:1490–1493CrossRefGoogle Scholar
  168. 168.
    Asahi R, Morikawa T, Ohwak T et al (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271CrossRefGoogle Scholar
  169. 169.
    Du GH, Chen Q, Peng LM (2001) Preparation and structure analysis of titanium oxide nanotubes. Appl Phys Lett 79:3702–3704CrossRefGoogle Scholar
  170. 170.
    Naccache C, Meriaude P, Che M et al (1971) Identification of oxygen species adsorbed on reduced titanium dioxide. Trans Faraday Soc 67:506–512CrossRefGoogle Scholar
  171. 171.
    Hurum DC, Agrios AG, Crist SE et al (2006) Probing reaction mechanisms in mixed phase TiO2 by EPR. J Electron Spectrosc Relat Phenomena 150:155–163CrossRefGoogle Scholar
  172. 172.
    Micic OI, Zhang YN, Cromack KR et al (1993) Trapped holes on TiO2 colloids studied by electron paramagnetic resonance. J Phys Chem 97:7277–7283CrossRefGoogle Scholar
  173. 173.
    Berger T, Sterrer M, Diwals O et al (2005) Charge trapping and photoadsorption of O2 on dehydroxylated TiO2 nanocrystals – an electron paramagnetic resonance study. ChemPhysChem 6:2104–2112CrossRefGoogle Scholar
  174. 174.
    Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second generation photocatalysts? J Phys Chem B 110:24287–24293CrossRefGoogle Scholar
  175. 175.
    Livraghi S, Paganini MC, Giamello E et al (2006) Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. J Am Chem Soc 128:15666–15671CrossRefGoogle Scholar
  176. 176.
    Fittipaldi M, Gombac V, Montini T et al (2008) A high-frequency (95 GHz) electron paramagnetic resonance study of B-doped TiO2 photocatalysts. Inorganica Chim Acta 361:3980–3987CrossRefGoogle Scholar
  177. 177.
    Riss A, Berger T, Stankic S et al (2008) Charge separation in layered titanate nanostructures: effect of ion exchange induced morphology transformation. Angew Chem Int Ed 47:1496–1499CrossRefGoogle Scholar
  178. 178.
    Berger T, Sterrer M, Diwald O et al (2005) Light-induced charge separation in anatase TiO2 particles. J Phys Chem B 109:6061–6068CrossRefGoogle Scholar
  179. 179.
    Kumar CP, Gopal NO, Wang TC et al (2006) EPR investigation of TiO2 nanoparticles with temperature-dependent properties. J Phys Chem B 110:5223–5229CrossRefGoogle Scholar
  180. 180.
    Ribbens S, Caretti I, Beyers E et al (2011) Unraveling the photocatalytic activity of multiwalled hydrogen trititanate and mixed-phase anatase/trititanate nanotubes: a combined catalytic and EPR study. J Phys Chem C 115:2302–2313CrossRefGoogle Scholar
  181. 181.
    Green J, Carter E, Murphy DM (2009) Interaction of molecular oxygen with oxygen vacancies on reduced TiO2: site specific blocking by probe molecules. Chem Phys Lett 477:340–344CrossRefGoogle Scholar
  182. 182.
    Riss A, Elser MJ, Bernardi J et al (2009) Stability and photoelectronic properties of layered titanate nanostructures. J Am Chem Soc 131:6198–6206CrossRefGoogle Scholar
  183. 183.
    Pattier B, Henderson M, Pöppl A et al (2010) Multi-approach electron paramagnetic resonance investigations of UV-photoinduced Ti3+ in titanium oxide-based gels. J Phys Chem B 114:4424–4431CrossRefGoogle Scholar
  184. 184.
    Maurelli S, Livraghi S, Chiesa M et al (2011) Hydration structure of the Ti(III) cation as revealed by pulse EPR and DFT studies: new insights into a textbook case. Inorg Chem 50:23852394CrossRefGoogle Scholar
  185. 185.
    Hertzsch T, Hulliger J, Weber E et al (2004) Organic zeolites. In: Atwood JL, Steed JW (eds) Encyclopedia of supramolecular chemistry, vol 2. Marcel Dekker, New York, pp 996–1004Google Scholar
  186. 186.
    Meilikhov M, Yusenko K, Torrisi A et al (2010) Reduction of a metal-organic framework by an organometallic complex: magnetic properties and structure of the inclusion compound [(η5-C5H5)2Co]0.5@MIL-47(V). Angew Chem Int Ed 49:6212–6215CrossRefGoogle Scholar
  187. 187.
    Mendt M, Jee B, Stock N et al (2010) Structural phase transitions and thermal hysteresis in the metal-organic framework compound MIL-53 as studied by electron spin resonance spectroscopy. J Phys Chem C 114:19443–19451CrossRefGoogle Scholar
  188. 188.
    Pöppl A, Kunz S, Himsl D et al (2008) CW and pulsed ESR spectroscopy of cupric ions in the metal-organic framework compound Cu3(BTC)2. J Phys Chem C 112:2678–2684CrossRefGoogle Scholar
  189. 189.
    Jee B, Eisinger K, Gul-E-Noor F et al (2010) Continuous wave and pulsed electron spin resonance spectroscopy of paramagnetic framework cupric ion in the Zn(II) doped porous coordination polymer Cu3-xZnx(btc)2. J Phys Chem C 114:16630–16639CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.SIBAC Laboratory – Department of PhysicsUniversity of AntwerpWilrijkBelgium
  2. 2.School of ChemistryCardiff UniversityCardiffUK

Personalised recommendations