TROSY NMR Spectroscopy of Large Soluble Proteins

  • Yingqi Xu
  • Stephen MatthewsEmail author
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 335)


Solution nuclear magnetic resonance spectroscopy is usually only used to study proteins with molecular weight not exceeding about 50 kDa. This size limit has been lifted significantly in recent years, thanks to the development of labelling methods and the application of transverse-relaxation optimized spectroscopy (TROSY). In particular, methyl-specific labelling and methyl-TROSY have been shown to be effective for supramolecular systems as large as about 1 MDa. In this chapter we review the available methods for labelling different kinds of methyl groups and the assignment strategies in very large protein systems. Several proteins are selected as examples to show how NMR helps to reveal the details of structure, interaction and dynamics of these proteins.


Large proteins Methyl labelling Mutagenesis NOESY TROSY 



Aspartate transcarbamoylase


Chemical shift anisotropy


Heteronuclear multiple-quantum correlation


Heteronuclear single-quantum correlation


Nuclear magnetic resonance


Nuclear Overhauser effect


Pseudocontact shift


Paramagnetic relaxation enhancement


Residual dipolar coupling


Transverse relaxation optimized spectroscopy


  1. 1.
    Kay LE, Gardner KH (1997) Curr Opin Struct Biol 7:722CrossRefGoogle Scholar
  2. 2.
    Xu YQ, Zheng Y, Fan JS, Yang DW (2006) Nat Methods 3:931CrossRefGoogle Scholar
  3. 3.
    Sprangers R, Kay LE (2007) Nature 445:618CrossRefGoogle Scholar
  4. 4.
    Lemaster DM, Richards FM (1988) Biochemistry 27:142CrossRefGoogle Scholar
  5. 5.
    Pervushin K, Riek R, Wider G, Wuthrich K (1997) Proc Natl Acad Sci USA 94:12366CrossRefGoogle Scholar
  6. 6.
    Keeler J (2005) Understanding NMR spectroscopy. Wiley, New YorkGoogle Scholar
  7. 7.
    Salzmann M, Pervushin K, Wider G, Senn H, Wuthrich K (1998) Proc Natl Acad Sci USA 95:13585CrossRefGoogle Scholar
  8. 8.
    Fiaux J, Bertelsen EB, Horwich AL, Wuthrich K (2002) Nature 418:207CrossRefGoogle Scholar
  9. 9.
    Pervushin K (2000) Q Rev Biophys 33:161CrossRefGoogle Scholar
  10. 10.
    Salzmann M, Pervushin K, Wider G, Senn H, Wuthrich K (2000) J Am Chem Soc 122:7543CrossRefGoogle Scholar
  11. 11.
    Pervushin K, Riek R, Wider G, Wuthrich K (1998) J Am Chem Soc 120:6394CrossRefGoogle Scholar
  12. 12.
    Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) J Am Chem Soc 125:10420CrossRefGoogle Scholar
  13. 13.
    Gelis I, Bonvin A, Keramisanou D, Koukaki M, Gouridis G, Karamanou S, Economou A, Kalodimos CG (2007) Cell 131:756CrossRefGoogle Scholar
  14. 14.
    Tugarinov V, Hwang PM, Kay LE (2004) Annu Rev Biochem 73:107CrossRefGoogle Scholar
  15. 15.
    Sprangers R, Velyvis A, Kay LE (2007) Nat Methods 4:697CrossRefGoogle Scholar
  16. 16.
    Tugarinov V, Kanelis V, Kay LE (2006) Nat Protoc 1:749CrossRefGoogle Scholar
  17. 17.
    Sivashanmugam A, Murray V, Cui CX, Zhang YH, Wang JJ, Li QQ (2009) Protein Sci 18:936CrossRefGoogle Scholar
  18. 18.
    Rosen MK, Gardner KH, Willis RC, Parris WE, Pawson T, Kay LE (1996) J Mol Biol 263:627CrossRefGoogle Scholar
  19. 19.
    Otten R, Chu B, Krewulak KD, Vogel HJ, Mulder FAA (2010) J Am Chem Soc 132:2952Google Scholar
  20. 20.
    Gardner KH, Kay LE (1998) Annu Rev Biophys Biomol Struct 27:357CrossRefGoogle Scholar
  21. 21.
    Gardner KH, Kay LE (1997) J Am Chem Soc 119:7599CrossRefGoogle Scholar
  22. 22.
    Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) J Biomol NMR 13:369CrossRefGoogle Scholar
  23. 23.
    Tugarinov V, Kay LE (2004) J Biomol NMR 28:165CrossRefGoogle Scholar
  24. 24.
    Gans P, Hamelin O, Sounier R, Ayala I, Dura MA, Amero CD, Noirclerc-Savoye M, Franzetti B, Plevin MJ, Boisbouvier J (2010) Angew Chem Int Ed 49:1958CrossRefGoogle Scholar
  25. 25.
    Ruschak AM, Velyvis A, Kay LE (2010) J Biomol NMR 48:129Google Scholar
  26. 26.
    Baldwin AJ, Religa TL, Hansen DF, Bouvignies G, Kay LE (2010) J Am Chem Soc 132:10992CrossRefGoogle Scholar
  27. 27.
    Religa TL, Kay LE (2010) J Biomol NMR 47:163CrossRefGoogle Scholar
  28. 28.
    Isaacson RL, Simpson PJ, Liu M, Cota E, Zhang X, Freemont P, Matthews S (2007) J Am Chem Soc 129:15428CrossRefGoogle Scholar
  29. 29.
    Ayala I, Sounier R, Use N, Gans P, Boisbouvier J (2009) J Biomol NMR 43:111CrossRefGoogle Scholar
  30. 30.
    Godoy-Ruiz R, Guo C, Tugarinov V (2010) J Am Chem Soc 132:18340CrossRefGoogle Scholar
  31. 31.
    Sprangers R, Kay LE (2007) J Am Chem Soc 129:12668CrossRefGoogle Scholar
  32. 32.
    Fischer M, Kloiber K, Hausler J, Ledolter K, Konrat R, Schmid W (2007) ChemBioChem 8:610CrossRefGoogle Scholar
  33. 33.
    Religa TL, Sprangers R, Kay LE (2010) Science 328:98CrossRefGoogle Scholar
  34. 34.
    Kigawa T, Yabuki T, Yoshida Y, Tsutsui M, Ito Y, Shibata T, Yokoyama S (1999) FEBS Lett 442:15CrossRefGoogle Scholar
  35. 35.
    Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Mei Ono A, Guntert P (2006) Nature 440:52CrossRefGoogle Scholar
  36. 36.
    Tugarinov V, Kay LE (2003) J Am Chem Soc 125:13868CrossRefGoogle Scholar
  37. 37.
    Tugarinov V, Kay LE (2003) J Am Chem Soc 125:5701CrossRefGoogle Scholar
  38. 38.
    Sheppard D, Guo CY, Tugarinov V (2009) J Am Chem Soc 131:1364CrossRefGoogle Scholar
  39. 39.
    Sheppard D, Guo CY, Tugarinov V (2009) J Biomol NMR 43:229CrossRefGoogle Scholar
  40. 40.
    Tugarinov V, Choy WY, Orekhov VY, Kay LE (2005) Proc Natl Acad Sci USA 102:622CrossRefGoogle Scholar
  41. 41.
    Sprangers R, Gribun A, Hwang PM, Houry WA, Kay LE (2005) Proc Natl Acad Sci USA 102:16678CrossRefGoogle Scholar
  42. 42.
    Velyvis A, Schachman HK, Kay LE (2009) J Am Chem Soc 131:16534CrossRefGoogle Scholar
  43. 43.
    Ruschak AM, Religa TL, Breuer S, Witt S, Kay LE (2010) Nature 467:868CrossRefGoogle Scholar
  44. 44.
    John M, Schmitz C, Park AY, Dixon NE, Huber T, Otting G (2007) J Am Chem Soc 129:13749CrossRefGoogle Scholar
  45. 45.
    Xu YQ, Liu MH, Simpson PJ, Isaacson R, Cota E, Marchant J, Yang DW, Zhang XD, Freemont P, Matthews S (2009) J Am Chem Soc 131:9480CrossRefGoogle Scholar
  46. 46.
    Neal S, Nip AM, Zhang HY, Wishart DS (2003) J Biomol NMR 26:215CrossRefGoogle Scholar
  47. 47.
    Osapay K, Case DA (1991) J Am Chem Soc 113:9436CrossRefGoogle Scholar
  48. 48.
    Gaspari Z, Pal G, Perczel A (2008) Bioessays 30:772CrossRefGoogle Scholar
  49. 49.
    Amero C, Schanda P, Dura MA, Ayala I, Marion D, Franzetti B, Brutscher B, Boisbouvier J (2009) J Am Chem Soc 131:3448CrossRefGoogle Scholar
  50. 50.
    Hamel DJ, Dahlquist FW (2005) J Am Chem Soc 127:9676CrossRefGoogle Scholar
  51. 51.
    Velyvis A, Yang YR, Schachman HK, Kay LE (2007) Proc Natl Acad Sci USA 104:8815CrossRefGoogle Scholar
  52. 52.
    Velyvis A, Schachman HK, Kay LE (2009) J Mol Biol 387:540CrossRefGoogle Scholar
  53. 53.
    Korzhnev DM, Kloiber K, Kanelis V, Tugarinov V, Kay LE (2004) J Am Chem Soc 126:3964CrossRefGoogle Scholar
  54. 54.
    Sprangers R, Li XM, Mao XL, Rubinstein JL, Schimmer AD, Kay LE (2008) Biochemistry 47:6727CrossRefGoogle Scholar
  55. 55.
    Ruschak AM, Kay LE (2009) J Biomol NMR 46:75CrossRefGoogle Scholar
  56. 56.
    Hsu ST, Cabrita LD, Fucini P, Christodoulou J, Dobson CM (2009) J Am Chem Soc 131:8366CrossRefGoogle Scholar
  57. 57.
    Imai S, Osawa M, Takeuchi K, Shimada I (2010) Proc Natl Acad Sci USA 107:6216CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Division of Molecular BiosciencesImperial College LondonLondonUK

Personalised recommendations