NMR with Multiple Receivers

  • Ēriks KupčeEmail author
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 335)


Parallel acquisition NMR spectroscopy (PANSY) is used to detect simultaneously signals from up to four nuclear species, such as H-1, H-2, C-13, N-15, F-19 and P-31. The conventional COSY, TOCSY, HSQC, HMQC and HMBC pulse sequences have been adapted for such applications. Routine availability of NMR systems that incorporate multiple receivers has led to development of new types of NMR experiments. One such scheme named PANACEA allows unambiguous structure determination of small organic molecules from a single measurement and includes an internal field/frequency correction routine. It does not require the conventional NMR lock system and can be recorded in pure liquids. Furthermore, long-range spin–spin couplings can be extracted from the PANACEA spectra and used for three-dimensional structure refinement. In bio-molecular NMR, multi-receiver NMR systems are used for simultaneous recording of H-1 and C-13 detected multi-dimensional spectra. For instance, the 2D (HA)CACO and 3D (HA)CA(CO)NNH experiments can be recorded simultaneously in proteins of moderate size (up to 30 kDa). The multi-receiver experiments can also be used in combination with the fast acquisition schemes such as Hadamard spectroscopy, computer optimized aliasing and projection-reconstruction techniques. In general, experiments that utilize multiple receivers provide significantly more information from a single NMR measurement as compared to the conventional single receiver techniques.


Hadamard spectroscopy Multidimensional NMR Multiple receivers Parallel acquisition NMR Projection reconstruction 



Correlation spectroscopy


Free induction decay


Heteronuclear correlation


Heteronuclear multiple-bond correlation


Heteronuclear multiple-quantum correlation


Heteronuclear single-quantum correlation


Incredible natural abundance double quantum transfer experiment


In-phase anti-phase


Nuclear magnetic resonance


Nuclear Overhauser effect


Parallel acquisition NMR and all-in-one combination of experimental applications


Parallel acquisition NMR spectroscopy


Projection reconstruction


Radio frequency




Total correlation spectroscopy


Transverse relaxation optimized spectroscopy


  1. 1.
    Gal M, Frydman L (2010) Multidimensional NMR methods for the solution state. In: Morris GA, Emsley JW (eds) Encyclopedia of magnetic resonance, Chap. 3. Wiley, Chichester, UKGoogle Scholar
  2. 2.
    Kupče Ē, Freeman R (2003) J Biomol NMR 27:101–113CrossRefGoogle Scholar
  3. 3.
    Kupče Ē, Nishida T, Freeman R (2003) Progr NMR Spectrosc 42:95–122CrossRefGoogle Scholar
  4. 4.
    Kupče Ē, Freeman R (2006) In: Arrondo JLR, Alonso A (eds) Advanced techniques in biophysics, Chap. 6. Springer, Berlin, pp 131–147Google Scholar
  5. 5.
    Ding K, Gronenborn A (2002) J Magn Reson 156:262–268CrossRefGoogle Scholar
  6. 6.
    Hiller S, Fiorito F, Wüthrich K, Wider G (2005) Proc Natl Acad Sci USA 102:10876–10881CrossRefGoogle Scholar
  7. 7.
    Fiorito F, Hiller S, Wider G, Wüthrich K (2006) J Biomol NMR 35:27–37CrossRefGoogle Scholar
  8. 8.
    Brüschweiler R, Zhang F (2004) J Chem Phys 120:5253–5260CrossRefGoogle Scholar
  9. 9.
    Zhang F, Brüschweiler R (2004) J Am Chem Soc 126:13180–13181CrossRefGoogle Scholar
  10. 10.
    Frydman L, Scherf T, Lupulescu A (2002) Proc Natl Acad Sci USA 99:15858CrossRefGoogle Scholar
  11. 11.
    Frydman L, Scherf T, Lupulescu A (2003) J Am Chem Soc 125:9204CrossRefGoogle Scholar
  12. 12.
    Barna JCJ, Laue ED, Mayger MR, Skilling J, Worrall SJP (1987) J Magn Reson 73:69–77Google Scholar
  13. 13.
    Chen J, Mandelshtam VA, Shaka AJ (2000) J Magn Reson 146:363–368CrossRefGoogle Scholar
  14. 14.
    Schmieder P, Stern AS, Wagner G, Hoch JC (1993) J Biomol NMR 3:569CrossRefGoogle Scholar
  15. 15.
    Kazimierczuk K, Zawadzka A, Kozminski W, Zhukov I (2006) J Biomol NMR 36:157–168CrossRefGoogle Scholar
  16. 16.
    Kazimierczuk K, Kozminski W, Zhukov I (2006) J Magn Reson 179:323–328CrossRefGoogle Scholar
  17. 17.
    Kupče Ē, Freeman R (2003) J Am Chem Soc 125:13958–13959CrossRefGoogle Scholar
  18. 18.
    Kupče Ē, Freeman R (2004) J Am Chem Soc 126:6429–6440CrossRefGoogle Scholar
  19. 19.
    Yoon JW, Godsill S, Kupče Ē, Freeman R (2006) Magn Reson Chem 44:197–209CrossRefGoogle Scholar
  20. 20.
    Schanda P, Brutscher B (2005) J Am Chem Soc 127:8014CrossRefGoogle Scholar
  21. 21.
    Schanda P, Kupče Ē, Brutscher B (2005) J Biomol NMR 33:199CrossRefGoogle Scholar
  22. 22.
    van de Ven FJM (1995) Multidimensional NMR in liquids. VCH, New YorkGoogle Scholar
  23. 23.
    Cavanagh J, Fairbrother WJ, Palmer AG III, Skelton NJ (1996) Protein NMR spectroscopy. Academic, San DiegoGoogle Scholar
  24. 24.
    Moore GJ, Hrovat MI, Gonzalez RG (1991) Magn Reson Med 19:105–112CrossRefGoogle Scholar
  25. 25.
    Hou T, MacNamara E, MacNaughton M, Raftery D (1999) Anal Chim Acta 400:297–305CrossRefGoogle Scholar
  26. 26.
    Blaimer M, Breuer F, Mueller M, Heidemann RM, Griswold MA, Jakob PM (2004) Top Magn Reson Imaging 15:223–236CrossRefGoogle Scholar
  27. 27.
    Kupče Ē, Freeman R, John BK (2006) J Am Chem Soc 128:9606–9607CrossRefGoogle Scholar
  28. 28.
    Ernst RR, Bodenhausen G, Wokaun A (1997) Principles of nuclear magnetic resonance in one and two dimensions. Clarendon, OxfordGoogle Scholar
  29. 29.
    Robinson JN, Coy A, Dykstra R, Eccles CD, Hunter MW, Callaghan PT (2006) J Magn Reson 182:343–347CrossRefGoogle Scholar
  30. 30.
    Kupče Ē, Wrackmeyer B (2010) Appl Organomet Chem (Spl Issue: In Memoriam Professor Edmunds Lukevics) 24:837–841Google Scholar
  31. 31.
    Kupče Ē, Cheatham S, Freeman R (2007) Magn Reson Chem 45:378–380CrossRefGoogle Scholar
  32. 32.
    Bax A, Freeman R, Kempsell SP (1980) J Am Chem Soc 102:4849–4851CrossRefGoogle Scholar
  33. 33.
    Bax A, Freeman R, Kempsell SP (1980) J Magn Reson 41:349–353Google Scholar
  34. 34.
    Kupče Ē, Freeman R (2008) J Am Chem Soc 130:10788–10792CrossRefGoogle Scholar
  35. 35.
    Kupče Ē, Freeman SR (2010) Magn Reson Chem 48:333–336Google Scholar
  36. 36.
    Kupče Ē, Freeman R (2010) J Magn Reson 206:147–153CrossRefGoogle Scholar
  37. 37.
    Iijima T, Takegoshi K (2008) J Magn Reson 191:128–134CrossRefGoogle Scholar
  38. 38.
    Bermel W, Bertini I, Felli IC, Piccioli M, Pierattelli R (2006) Prog NMR Spectrosc 48:25CrossRefGoogle Scholar
  39. 39.
    Kupče Ē, Kay LE, Freeman R (2010) J Am Chem Soc 132:18008–18011CrossRefGoogle Scholar
  40. 40.
    Jeannerat D (2003) Magn Reson Chem 41:3–17CrossRefGoogle Scholar
  41. 41.
    Jeannerat D (2007) J Magn Reson 186:112–122CrossRefGoogle Scholar
  42. 42.
    Lescop E, Schanda P, Rasia R, Brutscher B (2007) J Am Chem Soc 129:2756–2757CrossRefGoogle Scholar
  43. 43.
    Hounsfield GN (1973) Br J Radiol 46:1016CrossRefGoogle Scholar
  44. 44.
    Zhi-Pei Liang, Lauterbur PC (2000) Principles of magnetic resonance imaging, Chap. 6. IEEE, New York, pp 187–216Google Scholar
  45. 45.
    Nagayama K, Bachmann P, Wuthrich K, Ernst RR (1978) J Magn Reson 31:133Google Scholar
  46. 46.
    Bodenhausen G, Ernst RR (1982) J Am Chem Soc 104:1304–1309CrossRefGoogle Scholar
  47. 47.
    Kupče Ē, Freeman R (2004) Concepts Magn Reson 22A:4–11CrossRefGoogle Scholar
  48. 48.
    Kupče Ē, Freeman R (2004) Concepts Magn Reson 23A:63–75CrossRefGoogle Scholar
  49. 49.
    Kupče Ē, Freeman R (2004) Spectroscopy 19(10):16–20Google Scholar
  50. 50.
    McIntyre L, Freeman R (1992) J Magn Reson 96:425Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Agilent Technologies, NMR and MRI SystemsOxfordUK

Personalised recommendations