Skip to main content

Molecular Simulations of Retention in Chromatographic Systems: Use of Biased Monte Carlo Techniques to Access Multiple Time and Length Scales

  • Chapter
  • First Online:
Multiscale Molecular Methods in Applied Chemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 307))

  • 2667 Accesses

Abstract

The use of configurational-bias Monte Carlo simulations in the Gibbs ensemble allows for the sampling of phenomena that occur on vastly different time and length scales. In this review, applications of this simulation approach to probe retention in gas and reversed-phase liquid chromatographic systems are discussed. These simulations provide an unprecedented view of the retention processes at the molecular-level and show excellent agreement with experimental retention data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Panagiotopoulos AZ (1987) Mol Phys 61:813

    Article  CAS  Google Scholar 

  2. Panagiotopoulos AZ, Quirke N, Stapleton M, Tildesley DJ (1988) Mol Phys 63:527

    Article  CAS  Google Scholar 

  3. Martin MG, Siepmann JI (1999) J Phys Chem B 103:4508

    Article  CAS  Google Scholar 

  4. Mooij GCAM, Frenkel D, Smit B (1992) J Phys Condens Matter 4:L255

    Google Scholar 

  5. Siepmann JI, McDonald IR (1992) Mol Phys 75:255

    Article  CAS  Google Scholar 

  6. Martin MG, Siepmann JI (1997) J Am Chem Soc 119:8921

    Article  CAS  Google Scholar 

  7. Siepmann JI, Frenkel D (1992) Mol Phys 75:59

    Article  CAS  Google Scholar 

  8. Wick CD, Siepmann JI (2000) Marcomolecules 33:7207

    Article  CAS  Google Scholar 

  9. Vlugt TJH, Martin MG, Smit B, Siepmann JI, Krishna R (1998) Mol Phys 94:727

    CAS  Google Scholar 

  10. McGrath M, Siepmann J, Kuo IF, Mundy C, VandeVondele J, Hutter J, Mohamed F, Krack M (2006) J Phys Chem A 110:640

    Article  CAS  Google Scholar 

  11. Braithwate A, Smith FJ (1985) Chromatographic methods. Chapman and Hall, London

    Google Scholar 

  12. Walter TH, Iraneta P, Capparella M (2005) J Chromatogr A 1075:177

    Article  CAS  Google Scholar 

  13. McCormick RM, Karger BL (1980) Anal Chem 52:2249

    Article  CAS  Google Scholar 

  14. Berezkin VG (1991) Gas-liquid-solid chromatography. Marcel Dekker, New York, NY

    Google Scholar 

  15. Kovats E (1965) Adv Chromatogr 1:229

    CAS  Google Scholar 

  16. Martin MG, Siepmann JI (1998) J Phys Chem B 102:2569

    Article  CAS  Google Scholar 

  17. Chen B, Potoff JJ, Siepmann JI (2001) J Phys Chem B 105:3093

    Article  CAS  Google Scholar 

  18. Stubbs JM, Pottoff JJ, Siepmann JI (2004) J Phys Chem B 108:17596

    Article  CAS  Google Scholar 

  19. Martin MG, Siepmann JI, Schure MR (1999) J Phys Chem B 103:11191

    Article  CAS  Google Scholar 

  20. Wick CD, Siepmann JI, Klotz WL, Schure MR (2002) J Chromatogr A 954:181

    Article  CAS  Google Scholar 

  21. Sun L, Siepmann JI, Klotz WL, Schure MR (2006) J Chromatogr A 1126:373

    Article  CAS  Google Scholar 

  22. Wick CD, Siepmann JI, Schure MR (2002) Anal Chem 74:3518

    Article  CAS  Google Scholar 

  23. Wick CD, Siepmann JI, Schure MR (2002) Anal Chem 74:37

    Article  CAS  Google Scholar 

  24. Schure MR (1994) In: Pesek JJ, Leigh IE (eds) Chemically modified surfaces. Royal Society of Chemistry, Cambridge, pp 181–189

    Google Scholar 

  25. Klatte SJ, Beck TL (1996) J Phys Chem 100:5931

    Article  CAS  Google Scholar 

  26. Slusher JT, Mountain RD (1999) J Phys Chem B 103:1354

    Article  CAS  Google Scholar 

  27. Zhao CF, Cann NM (2008) Anal Chem 80:2426

    Article  CAS  Google Scholar 

  28. Fouqueau A, Meuwly M, Bemish RJ (2007) J Phys Chem B 111:10208

    Article  CAS  Google Scholar 

  29. Melnikov SM, Höltzel A, Seidel-Morgenstern A, Tallarek U (2009) J Phys Chem C 113:9230

    Article  CAS  Google Scholar 

  30. Zhang L, Sun L, Siepmann JI, Schure MR (2005) J Chromatogr A 1079:127

    Article  CAS  Google Scholar 

  31. Zhang L, Rafferty JL, Siepmann JI, Chen B, Schure MR (2006) J Chromatogr A 1126:219

    Article  CAS  Google Scholar 

  32. Rafferty JL, Zhang L, Siepmann JI, Schure MR (2007) Anal Chem 79:6551

    Article  CAS  Google Scholar 

  33. Rafferty JL, Sun L, Siepmann JI, Schure MR (2010) Fluid Phase Equilibr 290:25

    Article  CAS  Google Scholar 

  34. Rafferty JL, Sun L, Siepmann JI, Schure MR (2011) J Chromatogr A 1218:2203

    Google Scholar 

  35. Rafferty J, Siepmann J, Schure M (2008) J Chromatogr A 1204:11

    Article  CAS  Google Scholar 

  36. Rafferty J, Siepmann J, Schure M (2008) J Chromatogr A 1204:20

    Article  CAS  Google Scholar 

  37. Rafferty JL, Siepmann JI, Schure MR (2008) J Chromatogr A 1216:2320

    Article  Google Scholar 

  38. Rafferty JL, Siepmann JI, Schure MR (2010) In: Brown PR, Grushka E (eds) Advances in chromatography, vol. 48. Marcel Dekker, New York, pp 1–55

    Google Scholar 

  39. Rafferty JL, Siepmann JI, Schure MR (2008) Anal Chem 80:6214

    Article  CAS  Google Scholar 

  40. Rafferty JL, Siepmann JI, Schure MR (2011) J Chromatogr A Submitted for publication

    Google Scholar 

  41. Li Z, Rutan SC, Dong S (1996) Anal Chem 68:124

    Article  CAS  Google Scholar 

  42. Gilpin RK, Gangoda ME, Krishen AE (1982) J Chromatogr Sci 20:345

    CAS  Google Scholar 

  43. Yang SS, Gilpin RK (1987) J Chromatogr 394:295

    Article  CAS  Google Scholar 

  44. Rustamov I, Farcas T, Chan F, LoBrutto R, McNair HM, Kazakevich YV (2001) J Chromatogr A 913:49

    Article  CAS  Google Scholar 

  45. Gritti F, Kazakevich YV, Guiochon G (2007) J Chromatogr A 1169:111

    Article  CAS  Google Scholar 

  46. Pemberton JE, Ho M, Orendorff CJ, Ducey MW (2001) J Chromatogr A 913:243

    Article  CAS  Google Scholar 

  47. Ducey MW, Orendorff CJ, Pemberton JE, Sander LC (2002) Anal Chem 74:5585

    Article  CAS  Google Scholar 

  48. Carr PW, Li J, Dallas AJ, Eikens DI, Tan LT (1993) J Chromatogr A 656:113

    Article  CAS  Google Scholar 

  49. Carr PW, Tan LC, Park JH (1996) J Chromatogr A 724:1

    Article  CAS  Google Scholar 

  50. Vailaya A, Horváth C (1998) J Chromatogr A 829:1

    Article  CAS  Google Scholar 

  51. Gritti F, Guichon G (2005) J Chromatogr A 1099:1

    Article  CAS  Google Scholar 

  52. Ranatunga RPJ, Carr PW (2000) Anal Chem 72:5679

    Article  CAS  Google Scholar 

  53. Sander LC, Wise SA (1993) J Chromatogr A 656:335

    Article  CAS  Google Scholar 

  54. Devido DR, Dorsey JG, Chan HS, Dill KA (1998) J Phys Chem B 102:7272

    Article  CAS  Google Scholar 

  55. Zangwill A (1988) Physics at surfaces. Cambridge University Press, Cambridge, UK

    Google Scholar 

  56. Adamson AW, Gast AP (1997) Physical chemistry of surfaces, 6th edn. Wiley-Interscience, New York

    Google Scholar 

  57. Cahn JW, Hilliard JE (1958) J Chem Phys 28:258

    Article  CAS  Google Scholar 

  58. Lum K, Chandler D, Weeks JD (1999) J Phys Chem B 103:4570

    Article  CAS  Google Scholar 

  59. Seelig A, Seelig J (1974) Biochemistry 13:4839

    Article  CAS  Google Scholar 

  60. van der Ploeg P, Berendsen HJC (1982) J Chem Phys 76:3271

    Article  Google Scholar 

  61. Alvarez-Zepeda A (1991) Part I. A thermodynamic study of acetonitrile + water mixturesin reversed-phase liquid chromatography. Part II. A gas chromatographic study of the effect of temperature and column pressure on solute retention on a bonded phase using helium and carbon dioxide as mobile phases. Ph.D. thesis, Georgetown University, Washington DC

    Google Scholar 

  62. Horváth C, Melander W, Molnár I (1976) J Chromatogr 125:129

    Article  Google Scholar 

  63. Vailaya A, Horváth C (1997) J Phys Chem B 101:5875

    Article  CAS  Google Scholar 

  64. Dorsey J, Dill KA (1989) Chem Rev 89:331

    Article  CAS  Google Scholar 

  65. Wise SA, Bonnett WJ, Guenther FR, May WE (1981) J Chromatogr Sci 19:457

    CAS  Google Scholar 

  66. Wise SA, Sander LC (1985) J High Resol Chromatogr 8:248

    Article  CAS  Google Scholar 

  67. Sander LC, Wise SA (1995) Anal Chem 67:3284

    Article  CAS  Google Scholar 

  68. Sander LC, Pursch M, Wise SA (1999) Anal Chem 71:4821

    Article  CAS  Google Scholar 

  69. Lippa KA, Sander LC, Wise SA (2004) Anal Bioanal Chem 378:365

    Article  CAS  Google Scholar 

  70. Rimmer CA, Lippa KA, Sander LC (2008) LC GC North America 26:984

    CAS  Google Scholar 

  71. Sentell K, Dorsey JG (1989) J Chromatogr 461:193

    Article  CAS  Google Scholar 

  72. Chen B, Siepmann JI (2006) J Phys Chem B 110:3555

    Article  CAS  Google Scholar 

  73. Wick CD, Siepmann JI, Theodorou DN (2005) J Am Chem Soc 127:12338

    Article  CAS  Google Scholar 

  74. Zhang L, Siepmann J (2005) J Phys Chem B 109:2911

    Article  CAS  Google Scholar 

  75. Zhao XS, Siepmann JI, Xu W, Kiang YH, Sheth AR, Karaborni S (2009) J Phys Chem B 113:5929

    Article  CAS  Google Scholar 

  76. Kathmann SM, Schenter GK, Garrett BC, Chen B, Siepmann J (2009) J Phys Chem B 113:10354

    CAS  Google Scholar 

  77. Smit B, Maesen TLM (2008) Chem Rev 108:4125

    Article  CAS  Google Scholar 

  78. Dubbeldam D, Galvin CJ, Walton KS, Ellis DE, Snurr RQ (2008) J Am Chem Soc 130:10884

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Science Foundation (CHE-0718383) and The Dow Chemical Company is gratefully acknowledged. Part of the computer resources was provided by the Minnesota Supercomputing Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ilja Siepmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rafferty, J.L., Siepmann, J.I., Schure, M.R. (2011). Molecular Simulations of Retention in Chromatographic Systems: Use of Biased Monte Carlo Techniques to Access Multiple Time and Length Scales. In: Kirchner, B., Vrabec, J. (eds) Multiscale Molecular Methods in Applied Chemistry. Topics in Current Chemistry, vol 307. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_210

Download citation

Publish with us

Policies and ethics