Skip to main content

Cryo-Crystallography: Diffraction at Low Temperature and More

  • Chapter
  • First Online:
Advanced X-Ray Crystallography

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 315))

Abstract

This chapter comments on the motivations and the methods of crystallographic studies at low temperature. Cry-crystallography is a brunch of Crystallography, a science that is too often confused with a technique. On the other hand, the scientific background to study crystal phases at low temperature is here provided, together with a survey of many possible techniques that provide complementary or supplementary information. Several applications are discussed, in particular in relation with highly accurate studies like electron density determination or phase transition mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sometimes an X-ray diffraction experiment is carried out only with the purpose of ascertaining the chemical composition of a given solid.

  2. 2.

    More generally, one may ask whether a (macro)molecule frozen in the solid state can really be representative of the structure in solution, where the molecule is in fact active.

  3. 3.

    In [59] the authors reported the structure of a tri-osmium complex containing a hydride and clearly stated that a low temperature X-ray diffraction experiment would not be useful to locate the hydride if an accurate absorption correction is not carried out. Curiously, a few years before they had contacted Prof. A. Sironi and myself at the University of Milan proposing a low temperature data collection on that compound, with the purpose of locating the not so clearly visible hydride. As evident from [59], we were able to convince them on the real problems connected with the location of hydrogens close to heavy metals.

  4. 4.

    It is important here to talk about space group type, not just space group. In fact, the space group is determined by the combination of lattice and symmetry operators. When crystallographers report a given space group, in reality they refer to a space group type (i.e., the coincidence of symmetry operations with those cataloged in the International Tables of crystallography, regardless the actual lattice dimensions). This distinction is particularly important when discussing phase diagrams and in particular it is fundamental to appreciate the exact meaning of iso-symmetric phase transition.

  5. 5.

    This problem is sometimes referred to as the second phase problem in crystallography.

References

  1. Larsen FK (1995) Diffraction studies of crystals at low temperatures – crystallography below 77 K. Acta Crystallogr B 51:468–482

    Article  Google Scholar 

  2. Cambridge Crystallographic Data Center (2010) Cambridge structural database. Cambridge Crystallographic Data Center, Cambridge

    Google Scholar 

  3. Allen FR (2002) Acta Crystallogr B 58:380–388

    Article  Google Scholar 

  4. Bürgi H-B, Dunitz JD (eds) (1993) Structure correlation. VCH, Weinheim, Germany

    Google Scholar 

  5. Steurer W (2007) What is a crystal? Introductory remarks to an ongoing discussion. Z Kristallogr 222:308–309

    Article  CAS  Google Scholar 

  6. Lifshitz R (2007) What is a crystal. Z Kristallogr 222:313–317

    Article  CAS  Google Scholar 

  7. Wallace DC (1972) Thermodynamics of crystals. Wiley, New York

    Google Scholar 

  8. Einstein A (1907) The Planck theory of radiation and the theory of specific heat. Ann Phys 22:180–190

    Google Scholar 

  9. Debye P (1912) The theory of specific warmth. Ann Phys 39:789–839

    Article  CAS  Google Scholar 

  10. Born M, Huang K (1954) Dynamical theory of crystal lattices. Clarendon Press, Oxford

    Google Scholar 

  11. Capelli SC, Förtsch M, Bürgi HB (2000) Dynamics of molecules in crystals from multi-temperature anisotropic displacement parameters. II. Application to benzene (C6D6) and urea [OC(NH)2]. Acta Crystallogr A 56:413–424

    Article  Google Scholar 

  12. Bürgi H-B (1995) Motion in crystals: the molecular mean field. Acta Crystallogr B 51:571–579

    Article  Google Scholar 

  13. Shomaker V, Trueblood KN (1968) On the rigid-body motion of molecules in crystals. Acta Crystallogr B 24:63–76

    Article  Google Scholar 

  14. Hirshfeld FL (1976) Can X-ray data distinguish bonding effects from vibrational smearing? Acta Crystallogr A 32:239–244

    Article  Google Scholar 

  15. Smith GT, Mallinson PR, Frampton CS, Farrugia LJ, Peacock RD, Howard JAK (1997) Experimental determination of the electron density topology in a non-centrosymmetric transition metal complex: [Ni(H3L)][NO3][PF6] [H3L = N, N′,N″-tris(2-hydroxy-3-methylbutyl)-1,4,7-triazacyclononane]. J Am Chem Soc 119:5028–5034

    Article  CAS  Google Scholar 

  16. Farrugia LJ, Frampton CS, Howard JAK, Mallinson PR, Peacock RD, Smith GT (2006) Experimental determination of the electron density topology in a non-centrosymmetric transition metal complex: [Ni(H3L)][NO3][PF6] [H3L = N, N′,N″-tris(2-hydroxy-3-methylbutyl)-1,4,7-triazacyclononane]: a reappraisal. Acta Crystallogr B 62:236–244

    Article  CAS  Google Scholar 

  17. Johnson CK, Levy HA (1974) International tables for X-ray crystallography, vol IV. Kynoch Press, Birmingham, pp 311–336

    Google Scholar 

  18. Kendal MG, Stuart A (1958) The advanced theory of statistics. Griffin, London

    Google Scholar 

  19. Grüneisen E (1926) Geiger H, Scheel K (eds) Handbuch der Physik, vol 10. Springer, Berlin, pp 1–59

    Google Scholar 

  20. Herbstein FK (2006) On the mechanism of some first-order enantiotropic solid-state phase transitions: from Simon through Ubbelohde to Mnyukh. Acta Crystallogr B 62:341–383

    Article  Google Scholar 

  21. Rees B (1977) Data-processing and structure-factor determination. Isr J Chem 16:154–158

    CAS  Google Scholar 

  22. Coppens P, Hamilton WC (1970) Anisotropic extinction corrections in the Zachariasen approximation. Acta Crystallogr A 26:71–83

    Article  CAS  Google Scholar 

  23. Lucas BW (1969) On contribution of thermal diffuse X-ray scattering to integrated Bragg intensities of single crystals. Acta Crystallogr A 25:627–631

    Article  CAS  Google Scholar 

  24. Coppens P, Su Z, Becker PJ (2003) Analysis of charge and spin densities, International Tables for Crystallography, vol C, 3rd edn. Kluwer Academic Publisher, Dordrecht, pp 713–734

    Google Scholar 

  25. American Institute of Physics (1972) Handbooks, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  26. Leadbetter AJ (1965) Thermodynamic and vibrational properties of H2O ice and D2O ice. Proc R Soc London, Ser A 287:403–425

    Article  CAS  Google Scholar 

  27. Coppens P, Vos A (1971) Electron density distribution in cyanuric acid. 2. Neutron diffraction study at liquid nitrogen temperature and comparison of X-ray and neutron diffraction results. Acta Crystallogr B 27:146–158

    Article  CAS  Google Scholar 

  28. Macchi P, Sironi A (2004) Variable-temperature X-ray crystallographic studies: a complementary tool for charge-density investigation of soft (organometallic) bonds. Acta Crystallogr A 60:502–509

    Article  Google Scholar 

  29. Munshi P, Madsen AØ, Spackman MA, Larsen S, Destro R (2008) Estimated H-atom anisotropic displacement parameters: a comparison between different methods and with neutron diffraction results. Acta Crystallogr A 64:465–475

    Article  Google Scholar 

  30. Madsen AØ (2006) SHADE web server for estimation of hydrogen anisotropic displacement parameters. J Appl Crystallogr 39:757–758

    Article  CAS  Google Scholar 

  31. Teng T-Y, Moffat K (2000) Primary radiation damage of protein crystals by an intense synchrotron X-ray beam. J Synchrotron Radiat 7:313–317

    Article  CAS  Google Scholar 

  32. Hope H (1988) Cryocrystallography of biological macromolecules – a generally applicable method. Acta Crystallogr B 44:22–26

    Article  Google Scholar 

  33. Hope H, Frolow F, Von Böhlen K, Makowski I, Kratky C, Halfon Y, Danz H, Webster P, Bartels KS, Wittmann HG, Yonath A (1989) Cryocrystallography of ribosomal particles. Acta Crystallogr B 45:190–199

    Article  Google Scholar 

  34. Kottke T, Stalke D (1993) Crystal handling at low temperatures. J Appl Crystallogr 26:615–619

    Article  Google Scholar 

  35. Parkin S, Hope H (1998) Macromolecular cryocrystallography: cooling, mounting, storage and transportation of crystals. J Appl Crystallogr 31:945–953

    Article  CAS  Google Scholar 

  36. Cosier J, Glazer AM (1986) A nitrogen-gas-stream cryostat for general X-ray-diffraction studies. J Appl Crystallogr 19:105–107

    Article  CAS  Google Scholar 

  37. Hardie MJ, Kirschbaum K, Martin A, Pinkerton AA (1998) An open-flow helium cryostat for single-crystal X-ray diffraction experiments. J Appl Crystallogr 31:815–817

    Article  CAS  Google Scholar 

  38. Hanson BL, Martin A, Harp JM, Parrish DA, Bunick CG, Kirschbaum K, Pinkerton AA, Bunick GJ (1999) Use of an open-flow helium cryostat for macromolecular cryocrystallography. J Appl Crystallogr 32:814–820

    Article  CAS  Google Scholar 

  39. Samson S, Goldish E, Dick CJ (1980) A novel low-temperature X-ray goniometer with closed-cycle cooling to about 18 K. J Appl Crystallogr 13:425–432

    Article  CAS  Google Scholar 

  40. Darovsky A, Coppens P (1998) A device for low-temperature crystal reorientation in data collection with the oscillation method. J Appl Crystallogr 31:296–298

    Article  CAS  Google Scholar 

  41. Peterson RC (1992) A flam-heated gas-flow furnace for single crystal X-ray diffraction. J Appl Crystallogr 25:545–548

    Article  Google Scholar 

  42. Lindley PF (2004) Mounting and setting of specimens for X-ray crystallographic studies, International Tables for Crystallography Vol. C: Mathematical, physical and chemical tables, 3rd edn. Kluwer Academic Publishers, Dordrecht, pp 162–170

    Google Scholar 

  43. Tsukimura K, Sato-Sorensen Y, Ghose Y (1989) A gas flow furnace for X-ray crystallography. J Appl Crystallogr 22:401–405

    Article  Google Scholar 

  44. Swanson DK, Prewitt CT (1986) A new radiative single crystal diffractometer microfurnace incorporating MgO as a high temperature cement and internal temperature calibrant. J Appl Crystallogr 19:1–6

    Article  CAS  Google Scholar 

  45. Sayetat F, Prat A (2001) A new X-ray powder diffractometer working in the 87 ± 1000 K range for phase-transition analyses. J Appl Crystallogr 34:311–317

    Article  CAS  Google Scholar 

  46. Arzi E, Sándor E (1983) A variable temperature sample container for low temperature neutron powder diffraction. J Appl Crystallogr 16:449–452

    Article  CAS  Google Scholar 

  47. Debrenne PP, Laugier J, Chaudet M (1970) Diffractometre de rayons X à haute temperature (2500 C) sous vide pousse (10–8 Torr). J Appl Crystallogr 3:493–496

    Article  CAS  Google Scholar 

  48. Reading M, Hahn BK, Crowe BS (1993) Method and apparatus for modulated differential analysis. US Patent 5 224 775

    Google Scholar 

  49. Kamasa P, Merzlyakov M, Pyda M, Pak J, Schick C, Wunderlich B (2002) Multi-frequency heat capacities measured with different types of TMDSC. Thermochimica Acta 392–393:195–207

    Article  Google Scholar 

  50. Hartshorne NH, Stuart A (1970) Crystals and the polarizing microscope, 4th edn. Edward Arnold, London

    Google Scholar 

  51. Glazer AM, Lewis JG, Kaminsky W (1996) An automatic optical imaging system for birefringent media. Proc R Soc London Ser A 452:2751–2765

    Article  Google Scholar 

  52. Pajdzik LA, Glazer AM (2006) Three-dimensional birefringence imaging with amicroscope tilting-stage. I. Uniaxial crystals. J Appl Crystallogr 39:326–337

    Article  CAS  Google Scholar 

  53. Pajdzik LA, Glazer AM (2006) Three-dimensional birefringence imaging with a microscope tilting stage. II. Biaxial crystals. J Appl Crystallogr 39:856–870

    Article  CAS  Google Scholar 

  54. Harada J, Ogawa K (2001) Invisible but common motion in organic crystals: a pedal motion in stilbenes and azobenzenes. J Am Chem Soc 123:10884–10888

    Article  CAS  Google Scholar 

  55. Juers DH, Matthews BW (2004) Cryo-cooling in macromolecular crystallography: advantages, disadvantages and optimization. Q Rev Biophys 37:105–119

    Article  CAS  Google Scholar 

  56. Teng T-Y, Moffat K (2002) Radiation damage of protein crystals at cryogenic temperatures between 40 K and 150 K. J Synchrotron Radiat 9:198–201

    Article  CAS  Google Scholar 

  57. Yaghi OM, Li GM, Li HL (1995) Selective binding and removal of guests in a microporous metal-organic framework. Nature 378:703–706

    Article  CAS  Google Scholar 

  58. Rowsell JLC, Spencer EC, Eckert J, Howard JAK, Yaghi OM (2004) Gas adsorption sites in a large-pore metal-organic framework. Science 309:1350–1354

    Article  Google Scholar 

  59. Aime S, Diana E, Gobetto R, Milanesio M, Valls E, Viterbo D (2002) Structural and spectroscopic study of the dihydrogen bond in an imine triosmium complex. Organometallics 21:50–57

    Article  CAS  Google Scholar 

  60. Zachariasen WH (1945) Theory of X-ray diffraction in crystals. Wiley, New York

    Google Scholar 

  61. Macchi P, Iversen BB, Sironi A, Chackoumakos BC, Larsen FK (2000) Interanionic O-H–-O interactions: the charge density point of view. Angew Chem 39:2719–2722

    Article  CAS  Google Scholar 

  62. Debey P (1915) X-ray dispersal. Ann Phys 48:809–823

    Article  Google Scholar 

  63. Coppens P (1067) Comparative X-ray and neutron diffraction study of bonding effects in s-triazine. Science 158:1577–1579

    Article  Google Scholar 

  64. Coppens P (1997) X-ray charge densities and chemical bonding. Oxford University Press, New York

    Google Scholar 

  65. Stewart RF, Bentlety J, Goodman B (1975) Generalized X-ray scattering factors in diatomic molecules. J Chem Phys 63:3786–3793

    Article  CAS  Google Scholar 

  66. Kurki-Suonio K (1977) Charge density deformation models. Isr J Chem 16:115

    CAS  Google Scholar 

  67. Hansen NK, Coppens P (1978) Electron population analysis of accurate diffraction data. 6. Testing aspherical atom refinements on small-molecule data sets. Acta Crystallogr A 34:909–921

    Article  Google Scholar 

  68. Volkov A, Macchi P, Farrugia LJ, Gatti C, Mallinson P, Richter T, Koritsanszky T (2006) XD2006 – a computer program package for multipole refinement, topological analysis of charge densities and evaluation of intermolecular energies from experimental and theoretical structure factors. University of Buffalo, USA

    Google Scholar 

  69. Hansen NK, MOLLY (1978) A Computer Program for Multipole Charge-Density Refinement. Univ. Henri Poincare, Nancy I, France. See [67]

    Google Scholar 

  70. Stewart RF, Spackman MA, Flensburg C (2000) VALRAY – user’s manual, 2.1 ed. Carnegie Mellon University, Pittsburgh, PA, USA, and University of Copenhagen, Denmark

    Google Scholar 

  71. Petricek V, Dusek M, Palatinus L (2006) JANA2006, Structure Determination Software Programs, Institute of Physics, Praha

    Google Scholar 

  72. Ghermani NE, Bouhmaida N, Lecomte C (1992) ELECTROS: Computer program to calculate electroststic properties from high resolution X-ray diffraction. Universite´ de Nancy I, France

    Google Scholar 

  73. Becker P, Gillet J-M, Cortona P, Ragot S (2001) Complementary aspects of charge and momentum densities for the study of the chemical bond. Theor Chem Acc 105:284–291

    Article  CAS  Google Scholar 

  74. Clinton WL, Frishberg C, Massa LJ, Oldfield PA (1973) Methods for obtaining an electron-density matrix from X-ray diffraction data. Int J Quantum Chem Symp 7:505–514

    Article  Google Scholar 

  75. Jayatilaka D, Grimwood DJ (2001) Wavefunctions derived from experiment. I. Motivation and theory. Acta Crystallogr A 57:76–86

    Article  CAS  Google Scholar 

  76. Jayatilaka D, Grimwood DJ (2004) Electron localization functions obtained from X-ray constrained Hartree-Fock wavefunctions for molecular crystals of ammonia, urea and alloxan. Acta Crystallogr A 60:111–119

    Article  Google Scholar 

  77. Tanaka K, Makita R, Funahashi S, Komori T, Win Z (2008) X-ray atomic orbital analysis. I. Quantum mechanical and crystallographic framework of the method. Acta Crystallogr B 64:437–449

    Google Scholar 

  78. Figgis BN, Reynolds PA, Williams GA (1980) Spin-density and bonding in the CoCl 2-4 ion in Cs3CoCl5. 2. Valence electron-distribution in the CoCl 2–4 ion. J Chem Soc, Dalton Trans 2339–2347

    Google Scholar 

  79. Holladay A, Leung PC, Coppens P (1983) Generalized relations between d-orbital occupancies of transition-metal atoms and electron-density multipole population parameters from X-ray diffraction data. Acta Crystallogr A 39:377–387

    Article  Google Scholar 

  80. Clementi E, Roetti C (1974) Tables of Roothaan-Hartree-Fock wavefunctions, special issue in atomic data and nuclear data table. Academic Press, New York

    Google Scholar 

  81. Clementi E, Raimondi DL (1963) Atomic screening constants from SCF functions. J Chem Phys 38:2686–2689

    Article  CAS  Google Scholar 

  82. Collins DM (1982) Electron density images from imperfect data by iterative entropy maximization. Nature 298:49–51

    Article  CAS  Google Scholar 

  83. Jaynes ET (1968) Prior probabilities. IEEE Trans Syst Sci Cybern SSC-4:227–240

    Article  Google Scholar 

  84. Roversi P, Irwin JJ, Bricogne G (1998) Accurate charge-density studies as an extension of Bayesian crystal structure determination. Acta Crystallogr A 54:971–996

    Article  Google Scholar 

  85. Palatinus L, van Smaalen S (2005) The prior-derived F constraints in the maximum-entropy method. Acta Crystallogr A 61:363–372

    Article  Google Scholar 

  86. van Smaalen S, Netzel J (2009) The maximum entropy method in accurate charge-density studies. Physica Scripta 79:048304

    Article  Google Scholar 

  87. Johnson CK (1969) Addition of higher cumulants to the crystallographic structure-factor equation: a generalized treatment for thermal-motion effects. Acta Crystallogr A 25:187–194

    Article  CAS  Google Scholar 

  88. Mallinson PR, Koritsanszky T, Elkaim E, Li N, Coppens P (1988) The Gram-Charlier and multipole expansions in accurate X-ray diffraction studies: can they be distinguished? Acta Crystallogr A 44:336–343

    Article  Google Scholar 

  89. Roversi P, Barzaghi M, Merati F, Destro R (1996) Charge density in crystalline citrinin from X-ray diffraction at 19 K. Can J Chem 74:1145–1161

    Article  CAS  Google Scholar 

  90. Makita R, Tanaka K, Onuki Y (2008) 5d and 4f electron configuration of CeB6 at 340 and 535 K. Acta Crystallogr B 64:534–549

    Article  Google Scholar 

  91. Tanaka K, Onuki Y (2002) Observation of 4f electron transfer from Ce to B6 in the Kondo crystal CeB6 and its mechanism by multi-temperature X-ray diffraction. Acta Crystallogr B 58:423–436

    Article  Google Scholar 

  92. Funahashi S, Tanaka K, Iga F (2010) X-ray atomic orbital analysis of 4f and 5d electron configuration of SmB6 at 100, 165, 230, 298 K. Acta Crystallogr B 66:292–306

    Article  Google Scholar 

  93. Coppens P (1997) X-ray charge densities and chemical bonding. IUCr texts on crystallography 4. International Union of Crystallography, Oxford University Press, Oxford

    Google Scholar 

  94. Bader RFW (1990) Atoms in molecules: a quantum theory. International series of mono-graphs on chemistry 22. Oxford Science Publications, Oxford

    Google Scholar 

  95. Matta CF, Boyd RJ (eds) (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH, Weinheim

    Google Scholar 

  96. Gatti C, Macchi P (eds) (2011) Modern charge density analysis, Springer

    Google Scholar 

  97. Dunitz JD, Bernstein J (1995) Disappearing polymorphs. Acc Chem Res 28:193–200

    Article  CAS  Google Scholar 

  98. Mnyukh Yu (2001) Fundamentals of solid state phase transitions, ferromagnetism and ferroelectricity, First Books New York

    Google Scholar 

  99. Landau LD, Lifshitz EM (1958) Statistical physics. Pergamon, Oxford

    Google Scholar 

  100. Toledano J-C, Toledano P (1997) The Landau theory of phase transitions: application to structural, incommensurate, magnetic, and liquid crystal systems. World Scientific Pub. Co Inc., Singapore

    Google Scholar 

  101. Threlfall TL, Gelbrich T (2007) The crystal structure of methyl paraben at 118 K does not represent a new polymorph. Cryst Growth Des 7:2297

    Article  CAS  Google Scholar 

  102. Morrison CA, Siddick MM, Camp PJ, Wilson CC (2005) Toward understanding mobile proton behavior from first principles calculation: the short hydrogen bond in crystalline urea-phosphoric acid. J Am Chem Soc 127:4042–4048

    Article  CAS  Google Scholar 

  103. Casati N, Macchi P, Sironi A (2009) Hydrogen migration in oxalic acid di-hydrate at high pressure? Chem Commun 2679–2681

    Google Scholar 

  104. Macchi P, Casati N, Marshall WG, Sironi A (2010) The α and β forms of oxalic acid di-hydrate at high pressure: a theoretical simulation and a neutron diffraction study. CrystEngComm 12:2596–2603

    Article  CAS  Google Scholar 

  105. Ehrenfest P (1933) Phase changes in the ordinary and extended sense classified according to the corresponding singularities of the thermodynamic potential. Proc Acad Sci Amsterdam 36:153–157

    CAS  Google Scholar 

  106. Macchi P, Garlaschelli L, Martinengo S, Sironi A (1998) Characterization of the solid-solid phase transition of Co2(CO)6(AsPh3)2. Inorg Chem 37:6263–6268

    Article  CAS  Google Scholar 

  107. Farrugia LJ, Macchi P, Sironi A (2003) Reversible displacive phase transition in [Ni(en)3]2+(NO -3 )2: a potential temperature calibrant for area-detector diffractometers. J Appl Crystallogr 36:141–145

    Article  CAS  Google Scholar 

  108. Casati N, Macchi P, Sironi A (2005) Staggered to eclipsed conformational rearrangement of [Co2(CO)6(PPh3)2] in the solid state: an X-ray diffraction study at high pressure and low temperature. Angew Chem 44:7736–7739

    Article  CAS  Google Scholar 

  109. Gütlich P, Garcia Y, Goodwin HA (2000) Spin crossover phenomena in Fe(II) complexes. Chem Soc Rev 29:419–427

    Article  Google Scholar 

  110. Glazer AM, Zhang N, Bartasyte A, Keeble DS, Huband S, Thomas PA (2010) Observation of unusual temperature-dependent stripes in LiTaO3 and LiTaxNb1-xO3 crystals with near-zero birefringence. J Appl Crystallogr 43:1305–1313

    Article  CAS  Google Scholar 

  111. Bürgi H-B, Capelli SC (2000) Dynamics of molecules in crystals from multi-temperature anisotropic displacement parameters. I. Theory. Acta Crystallogr A 56:403–412

    Article  Google Scholar 

  112. Cruickshank DWJ (1956) The entropy of crystalline naphthalene. Acta Crystallogr 9:1010–1011

    Article  CAS  Google Scholar 

  113. Gavezzotti A (2011) Computational studies of crystal structure and bonding. Top Curr Chem, DOI: 10.1007/128_2011_131

    Google Scholar 

  114. McMahon MI (2011) High-pressure crystallography. Top Curr Chem, DOI: 10.1007/128_2011_132

    Google Scholar 

Download references

Acknowledgements

The author thanks the Swiss National Science Foundation for financial support (Project 200021_125313) and Professor Angelo Sironi (University of Milan, Italy) for continuous scientific inspiration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Macchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin-Heidelberg

About this chapter

Cite this chapter

Macchi, P. (2011). Cryo-Crystallography: Diffraction at Low Temperature and More. In: Rissanen, K. (eds) Advanced X-Ray Crystallography. Topics in Current Chemistry, vol 315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_207

Download citation

Publish with us

Policies and ethics