Skip to main content

Nanoscale Wetting Under Electric Field from Molecular Simulations

  • Chapter
  • First Online:
Multiscale Molecular Methods in Applied Chemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 307))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berge B, Peseux J (2000) Variable focal lens controlled by an external voltage: an application of electrowetting. Eur Phys J E 3(2):159–163

    CAS  Google Scholar 

  2. Hendriks BHW, Kuiper S, Van As MAJ, Renders CA, Tukker TW (2005) Electrowetting-based variable-focus lens for miniature systems. Opt Rev 12(3):255–259

    Google Scholar 

  3. Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Google Scholar 

  4. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026

    CAS  Google Scholar 

  5. Cho SK, Moon H (2008) Electrowetting on dielectric (EWOD): new tool for bio/micro fluids handling. Biochip J 2(2):79–96

    Google Scholar 

  6. Dzubiella J, Allen RJ, Hansen JP (2004) Electric field-controlled water permeation coupled to ion transport through a nanopore. J Chem Phys 120(11):5001–5004

    CAS  Google Scholar 

  7. Dzubiella J, Hansen JP (2005) Electric-field-controlled water and ion permeation of a hydrophobic nanopore. J Chem Phys 122(23):234706

    CAS  Google Scholar 

  8. Rasaiah JC, Garde S, Hummer G (2008) Water in nonpolar confinement: from nanotubes to proteins and beyond. Annu Rev Phys Chem 59:713–740

    CAS  Google Scholar 

  9. Li JY, Gong XJ, Lu HJ, Li D, Fang HP, Zhou RH (2007) Electrostatic gating of a nanometer water channel. Proc Natl Acad Sci 104(10):3687–3692

    CAS  Google Scholar 

  10. Bostick D, Berkowitz ML (2003) The implementation of slab geometry for membrane-channel molecular dynamics simulations. Biophys J 85(1):97–107

    CAS  Google Scholar 

  11. Tieleman DP, Leontiadou H, Mark AE, Marrink SJ (2003) Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J Am Chem Soc 125(21):6382–6383

    CAS  Google Scholar 

  12. Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88(6):4045–4053

    CAS  Google Scholar 

  13. Suydam IT, Snow CD, Pande VS, Boxer SG (2006) Electric fields at the active site of an enzyme: direct comparison of experiment with theory. Science 313(5784):200–204

    CAS  Google Scholar 

  14. Bateni A, Susnar SS, Amirfazli A, Neumann AW (2004) Development of a new methodology to study drop shape and surface tension in electric fields. Langmuir 20(18):7589–7597

    CAS  Google Scholar 

  15. Bateni A, Laughton S, Tavana H, Susnar SS, Amirfazli A, Neumann AW (2005) Effect of electric fields on contact angle and surface tension of drops. J Colloid Interface Sci 283(1):215–222

    CAS  Google Scholar 

  16. Shapiro B, Moon H, Garrell RL, Kim CJ (2003) Equilibrium behavior of sessile drops under surface tension, applied external fields, and material variations. J Appl Phys 93(9):5794–5811

    CAS  Google Scholar 

  17. Quinn A, Sedev R, Ralston J (2003) Influence of the electrical double layer in electrowetting. J Phys Chem B 107(5):1163–1169

    CAS  Google Scholar 

  18. Daikhin LI, Kornyshev AA, Urbakh M (1999) The effect of electric field on capillary waves at the interface of two immiscible electrolytes. Chem Phys Lett 309(3–4):137–142

    CAS  Google Scholar 

  19. Holt JK, Park HG, Wang YM, Stadermann M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312(5776):1034–1037

    CAS  Google Scholar 

  20. Mugele F, Baret JC (2005) Electrowetting: from basics to applications. J Phys Condens Matter 17(28):R705–R774

    CAS  Google Scholar 

  21. Shamai R, Andelman D, Berge B, Hayes R (2008) Water, electricity, and between … on electrowetting and its applications. Soft Matter 4(1):38–45

    CAS  Google Scholar 

  22. Mugele F (2009) Fundamental challenges in electrowetting: from equilibrium shapes to contact angle saturation and drop dynamics. Soft Matter 5(18):3377–3384

    CAS  Google Scholar 

  23. Mugele F, Duits M, van den Ende D (2009) Electrowetting: a versatile tool for drop manipulation, generation, and characterization. Adv Colloid Interface Sci 161(1–2):115–123

    Google Scholar 

  24. Bocquet L, Charlaix E (2010) Nanofluidics, from bulk to interfaces. Chem Soc Rev 39(3):1073–1095

    CAS  Google Scholar 

  25. Guan L, Qi GC, Liu S, Zhang H, Zhang Z, Yang YL, Wang C (2009) Nanoscale electrowetting effects studied by atomic force microscopy. J Phys Chem C 113(2):661–665

    CAS  Google Scholar 

  26. Gelb LD, Gubbins KE, Radhakrishnan R, Sliwinska-Bartkowiak M (1999) Phase separation in confined systems. Rep Prog Phys 62(12):1573–1659

    CAS  Google Scholar 

  27. Luzar A, Bratko D, Blum L (1987) Monte-Carlo simulation of hydrophobic interaction. J Chem Phys 86(5):2955–2959

    CAS  Google Scholar 

  28. Lum K, Luzar A (1997) Pathway to surface-induced phase transition of a confined fluid. Phys Rev E 56(6):R6283–R6286

    CAS  Google Scholar 

  29. Nakanishi H, Fisher ME (1983) Critical-point shifts in films. J Chem Phys 78(6):3279–3293

    CAS  Google Scholar 

  30. Evans R (1990) Fluids adsorbed in narrow pores – phase-equilibria and structure. J Phys Condens Matter 2(46):8989–9007

    Google Scholar 

  31. Schoen M, Diestler DJ (1998) Analytical treatment of a simple fluid adsorbed in a slit-pore. J Chem Phys 109(13):5596–5606

    CAS  Google Scholar 

  32. Klapp SHL, Schoen M (2002) Spontaneous orientational order in confined dipolar fluid films. J Chem Phys 117(17):8050–8062

    CAS  Google Scholar 

  33. Klapp SHL, Schoen M (2004) Ferroelectric states of a dipolar fluid confined to a slit-pore. J Mol Liq 109(2):55–61

    CAS  Google Scholar 

  34. Huang X, Margulis CJ, Berne BJ (2003) Dewetting-induced collapse of hydrophobic particles. Proc Natl Acad Sci 100(21):11953–11958

    CAS  Google Scholar 

  35. Parker JL, Claesson PM, Attard P (1994) Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces. J Phys Chem 98(34):8468–8480

    CAS  Google Scholar 

  36. Bratko D, Curtis RA, Blanch HW, Prausnitz JM (2001) Interaction between hydrophobic surfaces with metastable intervening liquid. J Chem Phys 115(8):3873–3877

    CAS  Google Scholar 

  37. MacDowell LG (2003) Formal study of nucleation as described by fluctuation theory. J Chem Phys 119(1):453–463

    CAS  Google Scholar 

  38. Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Academic, London

    Google Scholar 

  39. Berne BJ, Weeks JD, Zhou RH (2009) Dewetting and hydrophobic interaction in physical and biological systems. Annu Rev Phys Chem 60:85–103

    CAS  Google Scholar 

  40. Evans R, Parry AO (1990) Liquids at interfaces – what can a theorist contribute. J Phys Condens Matter 2:SA15–SA32

    CAS  Google Scholar 

  41. Leung K, Luzar A, Bratko D (2003) Dynamics of capillary drying in water. Phys Rev Lett 90:065502

    Google Scholar 

  42. Koishi T, Yasuoka K, Ebisuzaki T, Yoo S, Zeng XC (2005) Large-scale molecular-dynamics simulation of nanoscale hydrophobic interaction and nanobubble formation. J Chem Phys 123(20):204707

    Google Scholar 

  43. Giovambattista N, Rossky PJ, Debenedetti PG (2006) Effect of pressure on the phase behavior and structure of water confined between nanoscale hydrophobic and hydrophilic plates. Phys Rev E 73(4):041604

    Google Scholar 

  44. Leung K, Luzar A (2000) Dynamics of capillary evaporation. II. Free energy barriers. J Chem Phys 113(14):5845–5852

    CAS  Google Scholar 

  45. Luzar A (2004) Activation barrier scaling for the spontaneous evaporation of confined water. J Phys Chem B 108(51):19859–19866

    CAS  Google Scholar 

  46. Luzar A, Leung K (2000) Dynamics of capillary evaporation. I. Effect of morphology of hydrophobic surfaces. J Chem Phys 113(14):5836–5844

    CAS  Google Scholar 

  47. Lum K, Chandler D (1998) Phase diagram and free energies of vapor films and tubes for a confined fluid. Int J Thermophys 19(3):845–855

    CAS  Google Scholar 

  48. Yushchenko VS, Yaminsky VV, Shchukin ED (1983) Interaction between particles in a nonwetting liquid. J Colloid Interface Sci 96(2):307–314

    CAS  Google Scholar 

  49. Yaminsky VV (2000) Molecular mechanisms of hydrophobic transitions. J Adhes Sci Technol 14(2):187–233

    CAS  Google Scholar 

  50. Giovambattista N, Lopez CF, Rossky PJ, Debenedetti PG (2008) Hydrophobicity of protein surfaces: separating geometry from chemistry. Proc Natl Acad Sci 105(7):2274–2279

    CAS  Google Scholar 

  51. Huang DM, Chandler D (2002) The hydrophobic effect and the influence of solute-solvent attractions. J Phys Chem B 106(8):2047–2053

    CAS  Google Scholar 

  52. Acharya H, Ranganathan S, Jamadagni SN, Garde S (2010) Mapping hydrophobicity at the nanoscale: applications to heterogeneous surfaces and proteins. Faraday Discuss 146:353

    CAS  Google Scholar 

  53. Bratko D, Daub CD, Luzar A (2009) Water-mediated ordering of nanoparticles in an electric field. Faraday Discuss 141:55–66

    CAS  Google Scholar 

  54. Sarupria S, Garde S (2009) Quantifying water density fluctuations and compressibility of hydration shells of hydrophobic solutes and proteins. Phys Rev Lett 103(3):037803

    Google Scholar 

  55. Lipmann G (1875) Relations entre les phenomenes electriques et capillaires. Ann Chim Phys 5:494

    Google Scholar 

  56. Buehrle J, Herminghaus S, Mugele F (2003) Interface profiles near three-phase contact lines in electric fields. Phys Rev Lett 91(8):086101

    Google Scholar 

  57. Vaitheeswaran S, Yin H, Rasaiah JC (2005) Water between plates in the presence of an electric field in an open system. J Phys Chem B 109(14):6629–6635

    CAS  Google Scholar 

  58. Frank HS (2023) J Chem Phys 1955:23

    Google Scholar 

  59. Mugele F, Klingner A, Buehrle J, Steinhauser D, Herminghaus S (2005) Electrowetting: a convenient way to switchable wettability patterns. J Phys Condens Matter 17(9):S559–S576

    CAS  Google Scholar 

  60. Krupenkin T, Taylor JA, Kolodner P, Hodes M (2005) Electrically tunable superhydrophobic nanostructured surfaces. Bell Labs Tech J 10(3):161–170

    Google Scholar 

  61. Vaitheeswaran S, Rasaiah JC, Hummer G (2004) Electric field and temperature effects on water in the narrow nonpolar pores of carbon nanotubes. J Chem Phys 121(16):7955–7965

    CAS  Google Scholar 

  62. Dzubiella J, Hansen JP (2003) Reduction of the hydrophobic attraction between charged solutes in water. J Chem Phys 119(23):12049–12052

    CAS  Google Scholar 

  63. Dzubiella J, Hansen JP (2004) Competition of hydrophobic and Coulombic interactions between nanosized solutes. J Chem Phys 121(11):5514–5530

    CAS  Google Scholar 

  64. Brunet C, Malherbe JG, Amokrane S (2009) Controlling the composition of a confined fluid by an electric field. J Chem Phys 131(22):221103

    CAS  Google Scholar 

  65. Brunet C, Malherbe JG, Amokrane S (2010) Binary mixture adsorbed in a slit pore: field-induced population inversion near the bulk instability. Phys Rev E 82(2):021564

    Google Scholar 

  66. Bratko D, Daub CD, Leung K, Luzar A (2007) Effect of field direction on electrowetting in a nanopore. J Am Chem Soc 129(9):2504–2510

    CAS  Google Scholar 

  67. Maerzke KA, Siepmann JI (2010) Effects of an applied electric field on the vapor-liquid equilibria of water, methanol, and dimethyl ether. J Phys Chem B 114(12):4261–4270

    CAS  Google Scholar 

  68. Bratko D, Daub CD, Luzar A (2008) Field-exposed water in a nanopore: liquid or vapour? Phys Chem Chem Phys 10(45):6807–6813

    CAS  Google Scholar 

  69. England JL, Park S, Pande VS (2008) Theory for an order-driven disruption of the liquid state in water. J Chem Phys 128(4):044503

    Google Scholar 

  70. Landau LD, Lifshitz EM, Pitaevskii LP (1948) Electrodynamics of continuum media. Pergamon, Oxford

    Google Scholar 

  71. Høye JS, Stell G (1980) Statistical-mechanics of polar fluids in electric fields. J Chem Phys 72:1597

    Google Scholar 

  72. Frenkel D, Smit B (2002) Understanding molecular simulation, from algorithms to applications. Academic, San Diego

    Google Scholar 

  73. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, New York

    Google Scholar 

  74. Frolich H (1990) Theory of dielectrics, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  75. Siepmann JI, Sprik M (1995) Influence of surface-topology and electrostatic potential on water electrode systems. J Chem Phys 102(1):511–524

    CAS  Google Scholar 

  76. Reed SK, Lanning OJ, Madden PA (2007) Electrochemical interface between an ionic liquid and a model metallic electrode. J Chem Phys 126(8):084704

    Google Scholar 

  77. Yeh IC, Berkowitz ML (1999) Ewald summation for systems with slab geometry. J Chem Phys 111(7):3155–3162

    CAS  Google Scholar 

  78. Yeh IC, Hummer G (2004) Diffusion and electrophoretic mobility of single-stranded RNA from molecular dynamics simulations. Biophys J 86(2):681–689

    CAS  Google Scholar 

  79. Sutmann G (1998) Structure formation and dynamics of water in strong external electric fields. J Electroanal Chem 450(2):289–302

    CAS  Google Scholar 

  80. Jia R, Hentschke R (2009) Dipolar particles in an external field: molecular dynamics simulation and mean field theory. Phys Rev E 80(5):051502

    Google Scholar 

  81. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91(24):6269–6271

    CAS  Google Scholar 

  82. England JL, Pande VS (2010) Charge, hydrophobicity, and confined water: putting past simulations into a simple theoretical framework. Biochem Cell Biol 88(2):359–369

    CAS  Google Scholar 

  83. Wagner K, Keyes E, Kephart TW, Edwards G (1997) Analytical Debye-Huckel model for electrostatic potentials around dissolved DNA. Biophys J 73(1):21–30

    CAS  Google Scholar 

  84. Polk C (2000) Biological applications of large electric fields: some history and fundamentals. IEEE Trans Plasma Sci 28(1):6–14

    Google Scholar 

  85. Siu SWI, Bockmann RA (2007) Electric field effects on membranes: Gramicidin A as a test ground. J Struct Biol 157(3):545–556

    CAS  Google Scholar 

  86. Schweighofer KJ, Xia XF, Berkowitz ML (1996) Molecular dynamics study of water next to electrified Ag(111) surfaces. Langmuir 12(16):3747–3752

    CAS  Google Scholar 

  87. Kornyshev AA, Lee DJ, Leikin S, Wynveen A (2007) Structure and interactions of biological helices. Rev Mod Phys 79(3):943–996

    CAS  Google Scholar 

  88. Schweighofer KJ, Benjamin I (1995) Electric-field effects on the structure and dynamics at a liquid/liquid interface. J Electroanal Chem 391(1–2):1–10

    Google Scholar 

  89. Bratko D, Dolar D (1984) Ellipsoidal model of poly-electrolyte solutions. J Chem Phys 80(11):5782–5789

    CAS  Google Scholar 

  90. Luzar A, Bratko D (1990) Electric double-layer interactions in reverse micellar systems – a Monte-Carlo simulation study. J Chem Phys 92(1):642–648

    CAS  Google Scholar 

  91. Bratko D, Woodward CE, Luzar A (1991) Charge fluctuation in reverse micelles. J Chem Phys 95(7):5318–5326

    CAS  Google Scholar 

  92. Wu JZ, Bratko D, Prausnitz JM (1998) Interaction between like-charged colloidal spheres in electrolyte solutions. Proc Natl Acad Sci 95(26):15169–15172

    CAS  Google Scholar 

  93. Wu JZ, Bratko D, Blanch HW, Prausnitz JM (1999) Monte Carlo simulation for the potential of mean force between ionic colloids in solutions of asymmetric salts. J Chem Phys 111(15):7084–7094

    CAS  Google Scholar 

  94. Svishchev IM, Kusalik PG (1994) Crystallization of liquid water in a molecular-dynamics simulation. Phys Rev Lett 73(7):975–978

    CAS  Google Scholar 

  95. Zangi R, Mark AE (2004) Electrofreezing of confined water. J Chem Phys 120(15):7123–7130

    CAS  Google Scholar 

  96. Suresh SJ, Satish AV, Choudhary A (2006) Influence of electric field on the hydrogen bond network of water. J Chem Phys 124(7):074506

    CAS  Google Scholar 

  97. Suresh SJ (2007) Disruption of hydrogen bond structure of water near charged electrode surfaces. J Chem Phys 126(20):204705

    CAS  Google Scholar 

  98. Kiselev M, Heinzinger K (1996) Molecular dynamics simulation of a chloride ion in water under the influence of an external electric field. J Chem Phys 105(2):650–657

    CAS  Google Scholar 

  99. Rodgers JM, Weeks JD (2008) Local molecular field theory for the treatment of electrostatics. J Phys Condens Matter 20:494206

    Google Scholar 

  100. Luzar A, Svetina S, Zeks B (1983) The contribution of hydrogen-bonds to the surface-tension of water. Chem Phys Lett 96(4):485–490

    CAS  Google Scholar 

  101. Luzar A, Svetina S, Zeks B (1985) Consideration of the spontaneous polarization of water at the solid liquid interface. J Chem Phys 82(11):5146–5154

    CAS  Google Scholar 

  102. Lee CY, McCammon JA, Rossky PJ (1984) The structure of liquid water at an extended hydrophobic surface. J Chem Phys 80(9):4448–4455

    CAS  Google Scholar 

  103. Du Q, Freysz E, Shen YR (1994) Surface vibrational spectroscopic studies of hydrogen-bonding and hydrophobicity. Science 264(5160):826–828

    CAS  Google Scholar 

  104. Daub CD, Bratko D, Leung K, Luzar A (2007) Electrowetting at the nanoscale. J Phys Chem C 111(2):505–509

    CAS  Google Scholar 

  105. Grzelak EM, Errington JR (2010) Nanoscale limit to the applicability of Wenzel’s equation. Langmuir 26(16):13297–13304

    CAS  Google Scholar 

  106. Grzelak EM, Errington JR (2008) Computation of interfacial properties via grand canonical transition matrix Monte Carlo simulation. J Chem Phys 128(1):014710

    Google Scholar 

  107. Hu GH, Xu AJ, Xu Z, Zhou ZW (2008) Dewetting of nanometer thin films under an electric field. Phys Fluids 20(10):102101

    Google Scholar 

  108. Daub CD, Bratko D, Ali T, Luzar A (2009) Microscopic dynamics of the orientation of a hydrated nanoparticle in an electric field. Phys Rev Lett 103:207801

    Google Scholar 

  109. Cramer T, Zerbetto F, Garcia R (2008) Molecular mechanism of water bridge buildup: field-induced formation of nanoscale menisci. Langmuir 24(12):6116–6120

    CAS  Google Scholar 

  110. Cheung DL (2010) Molecular simulation of nanoparticle diffusion at fluid interfaces. Chem Phys Lett 495(1–3):55–59

    CAS  Google Scholar 

  111. Eppenga R, Frenkel D (1984) Monte-Carlo study of the isotropic and nematic phases of infinitely thin hard platelets. Mol Phys 52(6):1303–1334

    CAS  Google Scholar 

  112. Bratko D, Jonsson B, Wennerstrom H (1986) Electrical double-layer interactions with image charges. Chem Phys Lett 128(5–6):449–454

    CAS  Google Scholar 

  113. Harismiadis VI, Vorholz J, Panagiotopoulos AZ (1996) Efficient pressure estimation in molecular simulations without evaluating the virial. J Chem Phys 105(18):8469–8470

    CAS  Google Scholar 

  114. Gloor GJ, Jackson G, Blas FJ, de Miguel E (2005) Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials. J Chem Phys 123(13):134703

    Google Scholar 

  115. de Miguel E, Jackson G (2006) The nature of the calculation of the pressure in molecular simulations of continuous models from volume perturbations. J Chem Phys 125(16):164109

    Google Scholar 

  116. Brumby PE, Haslam AJ, de Miguel E, Jackson G (2011) Subtleties in the calculation of the pressure and pressure tensor of anisotropic particles from volume-perturbation methods and the apparent asymmetry of the compressive and expansive contributions. Mol Phys 109:169–189

    CAS  Google Scholar 

  117. Wang J, Bratko D, Luzar A (2011) Probing surface tension additivity on chemically heterogeneous surfaces: a molecular approach. Proc Natl Acad Sci USA 108(16):6374–6379

    Google Scholar 

  118. Leroy F, dos Santos D, Muller-Plathe F (2009) Interfacial excess free energies of solid-liquid interfaces by molecular dynamics simulation and thermodynamic integration. Macromol Rapid Commun 30(9–10):864–870

    CAS  Google Scholar 

  119. Bratko D (2010) General discussion. Fig. 2. Faraday Discuss 146:367–393

    Google Scholar 

  120. Giovambattista N, Debenedetti PG, Rossky PJ (2009) Enhanced surface hydrophobicity by coupling of surface polarity and topography. Proc Natl Acad Sci 106(36):15181–15185

    CAS  Google Scholar 

  121. Giovambattista N, Debenedetti PG, Rossky PJ (2007) Hydration behavior under confinement by nanoscale surfaces with patterned hydrophobicity and hydrophilicity. J Phys Chem C 111(3):1323–1332

    CAS  Google Scholar 

  122. Zhang XY, Zhu YX, Granick S (2002) Hydrophobicity at a Janus interface. Science 295(5555):663–666

    CAS  Google Scholar 

  123. Park J, Lu W (2007) Orientation of core-shell nanoparticles in an electric field. Appl Phys Lett 91(5):053113

    Google Scholar 

  124. Zhang X, Zhang ZL, Glotzer SC (2007) Simulation study of dipole-induced self-assembly of nanocubes. J Phys Chem C 111(11):4132–4137

    CAS  Google Scholar 

  125. Stratton JA (1941) Electromagnetic theory. McGraw-Hill, New York

    Google Scholar 

  126. Tsori Y (2009) Colloquium: phase transitions in polymers and liquids in electric fields. Rev Mod Phys 81(4):1471–1494

    Google Scholar 

  127. Froltsov VA, Klapp SHL (2007) Dielectric response of polar liquids in narrow slit pores. J Chem Phys 126(11):114703

    Google Scholar 

  128. Gramzow M, Klapp SHL (2007) Capillary condensation and orientational ordering of confined polar fluids. Phys Rev E 75(1):011605

    Google Scholar 

  129. Lyklema J (1991) Fundamentals in interface and colloid science, vol I: Fundamentals. Academic, London

    Google Scholar 

  130. Lu WY, Kim T, Han AJ, Chen X, Qiao Y (2009) Eletrowetting effect in a nanoporous silica. Langmuir 25(16):9463–9466

    CAS  Google Scholar 

  131. Anishkin A, Akitake B, Kamaraju K, Chiang CS, Sukharev S (2009) Hydration properties of mechanosensitive channel pores define the energetics of gating. J Phys Condens Matter 22(45):4120

    Google Scholar 

  132. Garate JA, English NJ, MacElroy JMD (2009) Carbon nanotube assisted water self-diffusion across lipid membranes in the absence and presence of electric fields. Mol Simul 35(1–2):3–12

    CAS  Google Scholar 

  133. Garate JA, English NJ, MacElroy JMD (2009) Static and alternating electric field and distance-dependent effects on carbon nanotube-assisted water self-diffusion across lipid membranes. J Chem Phys 131(11):114508

    Google Scholar 

  134. Grzelczak M, Vermant J, Furst EM, Liz-Marzan LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4(7):3591–3605

    CAS  Google Scholar 

  135. Sun S, Wong JTY, Zhang TY (2011) Molecular dynamics simulations of phase transition of lamellar lipid membrane in water under an electric field. Soft Matter 7(1):147–152

    CAS  Google Scholar 

  136. Girault HH (2006) Electrowetting: shake, rattle and roll. Nat Mater 5(11):851–852

    CAS  Google Scholar 

  137. Daub CD, Bratko D, Luzar A. Electric control of wetting by salty nanodrops: molecular dynamics simulations (submitted)

    Google Scholar 

  138. von Domaros M, Wang J, Bratko D, Kirchner B, Luzar A. Dynamics at a Janus interface (work in progress)

    Google Scholar 

Download references

Acknowledgements

We thank Kevin Leung for his contribution to some of the work reviewed here. We gratefully acknowledge the financial support from the National Science Foundation (CHE-0718724) and the U.S. Department of Energy (DE-SC-0004406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alenka Luzar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Daub, C.D., Bratko, D., Luzar, A. (2011). Nanoscale Wetting Under Electric Field from Molecular Simulations. In: Kirchner, B., Vrabec, J. (eds) Multiscale Molecular Methods in Applied Chemistry. Topics in Current Chemistry, vol 307. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_188

Download citation

Publish with us

Policies and ethics