Skip to main content

Combining NMR and X-ray Crystallography in Fragment-Based Drug Discovery: Discovery of Highly Potent and Selective BACE-1 Inhibitors

  • Chapter
  • First Online:
Fragment-Based Drug Discovery and X-Ray Crystallography

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 317))

Abstract

Fragment-based drug discovery (FBDD) has become increasingly popular over the last decade. We review here how we have used highly structure-driven fragment-based approaches to complement more traditional lead discovery to tackle high priority targets and those struggling for leads. Combining biomolecular nuclear magnetic resonance (NMR), X-ray crystallography, and molecular modeling with structure-assisted chemistry and innovative biology as an integrated approach for FBDD can solve very difficult problems, as illustrated in this chapter. Here, a successful FBDD campaign is described that has allowed the development of a clinical candidate for BACE-1, a challenging CNS drug target. Crucial to this achievement were the initial identification of a ligand-efficient isothiourea fragment through target-based NMR screening and the determination of its X-ray crystal structure in complex with BACE-1, which revealed an extensive H-bond network with the two active site aspartate residues. This detailed 3D structural information then enabled the design and validation of novel, chemically stable and accessible heterocyclic acylguanidines as aspartic acid protease inhibitor cores. Structure-assisted fragment hit-to-lead optimization yielded iminoheterocyclic BACE-1 inhibitors that possess desirable molecular properties as potential therapeutic agents to test the amyloid hypothesis of Alzheimer’s disease in a clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

ADMET:

Absorption distribution, metabolism, excretion, and toxicity

APP:

Amyloid precursor protein

Aβ:

Amyloid beta peptides ranging from 37 to 42 amino acids in length

BACE-1:

β-site APP cleaving enzyme

cLogP:

Computed partition coefficient of a compound

CNS:

Central nervous system

c-STD:

Competition saturation transfer difference

FBDD:

Fragment-based drug discovery

FBS:

Fragment-based screening

FQ:

Fit quality

HCS:

High concentration functional screening

HSQC:

Heteronuclear single quantum coherence

HTS:

High-throughput screening

IC50 :

Half maximal inhibitory concentration

ITC:

Isothermal calorimetry

K D :

Equilibrium dissociation constant

K I :

Equilibrium inhibition constant

LE:

Ligand efficiency

LLE:

Ligand lipophilicity efficiency

MW:

Molecular weight

NMR:

Nuclear magnetic resonance

PK:

Pharmacokinetics

SAR:

Structure–activity relationship

SPR:

Surface plasmon resonance

STD:

Saturation transfer difference

References

  1. Jahnke W, Erlanson DA (eds) (2006) Fragment-based approaches in drug discovery. In: Mannhold R, Kubinyi H, Folkers G (series eds) Methods and principles in medicinal chemistry, Vol 34. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  2. Zartler ER, Shapiro MJ (eds) (2008) Fragment-based drug discovery: a practical approach. Wiley, Chichester, UK

    Google Scholar 

  3. Rees DC, Congreve M, Murray CW, Carr R (2004) Fragment-based lead discovery. Nat Rev Drug Discov 3:660–672

    CAS  Google Scholar 

  4. Erlanson DA, McDowell RS, O’Brien T (2004) Fragment-based drug discovery. J Med Chem 47:3463–3482

    CAS  Google Scholar 

  5. Erlanson DA (2006) Fragment-based lead discovery: a chemical update. Curr Opin Biotechnol 17:643–652

    CAS  Google Scholar 

  6. Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6:211–219

    CAS  Google Scholar 

  7. Wyss DF, Eaton HL (2007) Fragment-based approaches to lead discovery. Front Drug Des Discov 3:171–202

    CAS  Google Scholar 

  8. Alex AA, Flocco MM (2007) Fragment-based drug discovery: what has it achieved so far? Curr Top Med Chem 7:1544–1567

    CAS  Google Scholar 

  9. Congreve M, Chessari G, Tisi D, Woodhead AJ (2008) Recent developments in fragment-based drug discovery. J Med Chem 51:3661–3680

    CAS  Google Scholar 

  10. de Kloe GE, Bailey D, Leurs R, de Esch IJP (2009) Transforming fragments into candidates: small becomes big in medicinal chemistry. Drug Discov Today 14:630–646

    Google Scholar 

  11. Chessari G, Woodhead AJ (2009) From fragment to clinical candidate-a historical perspective. Drug Discov Today 14:668–675

    CAS  Google Scholar 

  12. Murray CW, Rees DC (2009) The rise of fragment-based drug discovery. Nat Chem 1:187–192

    CAS  Google Scholar 

  13. Schulz MN, Hubbard RE (2009) Recent progress in fragment-based lead discovery. Curr Opin Pharm 9:615–621

    CAS  Google Scholar 

  14. Murray CW, Blundell TL (2010) Structural biology in fragment-based drug design. Curr Opin Struct Biol 20:497–507

    CAS  Google Scholar 

  15. Gozalbes R, Carbajo RJ, Pineda-Lucena A (2010) Contributions of computational chemistry and biophysical techniques to fragment-based drug discovery. Curr Med Chem 17:1769–1794

    CAS  Google Scholar 

  16. Fink T, Bruggesser H, Reymond JL (2005) Virtual exploration of the small-molecule chemical universe below 160 Daltons. Angew Chem Int Ed Engl 44:1504–1508

    CAS  Google Scholar 

  17. Fink T, Reymond JL (2007) Virtual exploration of the chemical universe up to 11 atoms of C, N, O, F: assembly of 26.4 million structures (110.9 million stereoisomers) and analysis for new ring systems, stereochemistry, physicochemical properties, compound classes, and drug discovery. J Chem Inf Model 47:342–353

    CAS  Google Scholar 

  18. Hann MM, Leach RL, Harper G (2001) Molecular complexity and its impact on the probability of finding leads for drug discovery. J Chem Inf Comput Sci 41:856–864

    CAS  Google Scholar 

  19. Coyne AG, Scott DE, Abell C (2010) Drugging challenging targets using fragment-based approaches. Curr Opin Chem Biol 14:299–307

    CAS  Google Scholar 

  20. Congreve M, Carr R, Murray CW, Jhoti H (2003) A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today 8:876–877

    Google Scholar 

  21. Hopkins AL, Groom CR, Alex A (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 9:430–431

    Google Scholar 

  22. Abad-Zapatero C, Metz JT (2005) Ligand efficiency indices as guideposts for drug discovery. Drug Discov Today 10:464–469

    Google Scholar 

  23. Verdonk ML, Rees DC (2008) Group efficiency: a guideline for hits-to-leads chemistry. ChemMedChem 3:1179–1180

    CAS  Google Scholar 

  24. Reynolds CH, Bembenek SD, Tounge BA (2007) The role of molecular size in ligand efficiency. Bioorg Med Chem Lett 42:4258–4261

    Google Scholar 

  25. Reynolds CH, Tounge BA, Bembenek SD (2008) Ligand binding efficiency: trends, physical basis, and implications. J Med Chem 51:2432–2438

    CAS  Google Scholar 

  26. Bembenek SD, Tounge BA, Reynolds CH (2009) Ligand efficiency and fragment-based drug discovery. Drug Discov Today 14:278–283

    CAS  Google Scholar 

  27. Nissink JWM (2009) Simple size-independent measure of ligand efficiency. J Chem Inf Model 49:1617–1622

    CAS  Google Scholar 

  28. Orita M, Ohno K, Niimi T (2009) Two ‘golden ratio’ indices in fragment-based drug discovery. Drug Discov Today 14:321–328

    CAS  Google Scholar 

  29. Leeson PD, Springthorpe B (2007) The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 6:881–890

    CAS  Google Scholar 

  30. Keseru GM, Makara GM (2009) The influence of lead discovery strategies on the properties of drug candidates. Nat Rev Drug Discov 8:203–212

    Google Scholar 

  31. Hajduk PJ (2006) Fragment-based drug design: how big is too big? J Med Chem 49:6972–6976

    CAS  Google Scholar 

  32. Perola E (2010) An analysis of the binding efficiencies of drugs and their leads in successful drug discovery programs. J Med Chem 53:2986–2997

    CAS  Google Scholar 

  33. Abad-Zapatero C, Perisic O, Wass J, Bento AP, Overington J, Al-Lazikani B, Johnson ME (2010) Ligand efficiency indices for an effective mapping of chemico-biological space: the concept of an atlas-like representation. Drug Discov Today 15:804–811

    CAS  Google Scholar 

  34. Schultes S, de Graaf C, Haaksma EEJ, de Esch IJP, Leurs R, Kramer O (2010) Ligand efficiency as a guide in fragment hit selection and optimization. Drug Discov Today Technol 7:e157–e162

    CAS  Google Scholar 

  35. Ferenczy GG, Keseru GM (2010) Thermodynamics guided lead discovery and optimization. Drug Discov Today 15:919–932

    CAS  Google Scholar 

  36. Ladbury JE, Klebe G, Freire E (2010) Adding calorimetric data to decision making in lead discovery: a hot tip. Nat Rev Drug Discov 9:23–27

    CAS  Google Scholar 

  37. Teague SJ et al (1999) The design of lead like combinatorial libraries. Angew Chem Int Ed Engl 38:3743–3748

    CAS  Google Scholar 

  38. Oprea TI et al (2001) Is there a difference between leads and drugs? A historical perspective. J Chem Inf Comput Sci 41:1308–1315

    CAS  Google Scholar 

  39. Hann MM, Oprea TI (2004) Pursuing the leadlikeness concept in pharmaceutical research. Curr Opin Chem Biol 8:255–263

    CAS  Google Scholar 

  40. Dalvit C (2009) NMR methods in fragment screening: theory and a comparison with other biophysical techniques. Drug Discov Today 14:1051–1057

    CAS  Google Scholar 

  41. Retra K, Irth H, Muijlwijk-Koezen JE (2010) Surface plasmon resonance biosensor analysis as a useful tool in FBDD. Drug Discov Today Technol 7:e181–e187

    CAS  Google Scholar 

  42. Jhoti H, Cleasby A, Verdonk M, Williams G (2007) Fragment-based screening using X-ray crystallography and NMR spectroscopy. Curr Opin Chem Biol 11:485–493

    CAS  Google Scholar 

  43. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high affinity ligands for proteins: SAR by NMR. Science 274:1531–1534

    CAS  Google Scholar 

  44. Hajduk PJ, Augeri DJ, Mack J, Mendoza R, Yang J, Betz SF, Fesik SW (2000) NMR-based screening of proteins containing 13 C-labeled methyl groups. J Am Chem Soc 122:7898–7904

    CAS  Google Scholar 

  45. Mayer M, Meyer B (2001) Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc 123:6108–6117

    CAS  Google Scholar 

  46. Wang YS, Liu D, Wyss DF (2004) Competition STD NMR for the detection of high-affinity ligands and NMR-based screening. Magn Reson Chem 42:485–499

    CAS  Google Scholar 

  47. McCoy MA, Senior MM, Wyss DF (2005) Screening of protein kinases by ATP-STD NMR spectroscopy. J Am Chem Soc 127:7978–7979

    CAS  Google Scholar 

  48. Dalvit C (2008) Theoretical analysis of the competition ligand-based NMR experiments and selected applications to fragment screening and binding constant measurements. Concepts Magn Reson A 32A:341–372

    CAS  Google Scholar 

  49. Dalvit C, Ardini E, Flocco M, Fogliatto GP, Mongelli N, Veronesi M (2003) A general NMR method for rapid, efficient, and reliable biochemical screening. J Am Chem Soc 125:14620–14625

    CAS  Google Scholar 

  50. Jacoby E, Davies J, Blommers MJ (2003) Design of small molecule libraries for NMR screening and other applications in drug discovery. Curr Top Med Chem 3:11–23

    CAS  Google Scholar 

  51. Baurin N, Aboul-Ela F, Barril X, Davis B, Drysdale M, Dymock B, Finch H, Fromont C, Richardson C, Simmonite H, Hubbard RE (2004) Design and characterization of libraries of molecular fragments for use in NMR screening against protein targets. J Chem Inf Comput Sci 44:2157–2166

    CAS  Google Scholar 

  52. Blomberg N, Cosgrove DA, Kenny PW, Kolmodin K (2009) Design of compound libraries for fragment screening. J Comput Aided Mol Des 23:513–525

    CAS  Google Scholar 

  53. Chen IJ, Hubbard RE (2009) Lessons for fragment library design: analysis of output from multiple screening campaigns. J Comput Aided Mol Des 23:603–620

    Google Scholar 

  54. Boyd SM, de Kloe GE (2010) Fragment library design: efficiently hunting drugs in chemical space. Drug Discov Today Technol 7:e173–e180

    CAS  Google Scholar 

  55. Gleeson MP (2008) Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem 51:817–834

    CAS  Google Scholar 

  56. Wenlock MC, Austin RP, Barton P, Davis AM, Leeson PD (2003) A comparison of physicochemical property profiles of development and marketed oral drugs. J Med Chem 46:1250–1256

    CAS  Google Scholar 

  57. Mortenson PN, Murray CW (2009) Ligand lipophilicity efficiency – assessing lipophilicity of fragments and early hits. Presented at RSC Fragments 2009, Astra Zeneca Alderley Park, UK, 4–5 March 2009, Poster 9

    Google Scholar 

  58. Freire E (2008) Do enthalpy and entropy distinguish first in class from best in class? Drug Discov Today 13:869–874

    CAS  Google Scholar 

  59. Scott AD, Phillips C, Alex A, Flocco M, Bent A, Randall A, O’Brien R, Damian L, Jones LH (2009) Thermodynamic optimisation in drug discovery: a case study using carbonic anhydrase inhibitors. ChemMedChem 4:1985–1989

    CAS  Google Scholar 

  60. Ward HJ, Holdgate GA (2001) Isothermal titration calorimetry in drug discovery. Prog Med Chem 38:309–376

    CAS  Google Scholar 

  61. Chung S, Parker JB, Bianchet M, Amzel LM, Stivers JT (2009) Impact of linker strain and flexibility in the design of a fragment-based inhibitor. Nat Chem Biol 5:407–413

    CAS  Google Scholar 

  62. Barelier S, Pons J, Marcillat O, Lancelin J-M, Krimm I (2010) Fragment-based deconstruction of Bcl-xL inhibitors. J Med Chem 53:2577–2588

    CAS  Google Scholar 

  63. Ji H, Li H, Martasek P, Roman LJ, Poulos TL, Silverman RB (2009) Discovery of highly potent and selective inhibitors of neuronal nitric oxide synthase by fragment hopping. J Med Chem 52:779–797

    CAS  Google Scholar 

  64. Levy-Lehad E, Wijsman E, Nemens E, Anderson A, Goddard KA, Weber JL (1995) A familial Alzheimer’s disease locus on chromosome 1. Science 269:970–973

    Google Scholar 

  65. Melnikova I (2007) Therapies for Alzheimer’s disease. Nat Rev Drug Discov 6:341–342

    CAS  Google Scholar 

  66. Mount C, Downton C (2006) Alzheimer disease: progress or profit? Nat Med 12:780–784

    CAS  Google Scholar 

  67. Moreira PI, Zhu X, Nunomura A, Smith MA, Perry G (2006) Therapeutic options in Alzheimer’s disease. Expert Rev Neurother 6:897–910

    CAS  Google Scholar 

  68. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    CAS  Google Scholar 

  69. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8:101–112

    CAS  Google Scholar 

  70. Korczyn AD (2008) The amyloid cascade hypothesis. Alzheimers Dement 4:176–178

    CAS  Google Scholar 

  71. Hardy J (2006) Has the amyloid cascade hypothesis for Alzheimer’s been proved? Curr Alzheimer Res 3:71–73

    CAS  Google Scholar 

  72. Selkoe D (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    CAS  Google Scholar 

  73. Archer HA, Edison P, Brooks DJ, Barnes J, Frost C, Yeatman T (2006) Amyloid load and cerebral atrophy in Alzheimer’s disease: a 11 C-BIP positron emission tomography study. Ann Neurol 60:145–147

    Google Scholar 

  74. Olson MI, Shaw CM (1969) Presenile dementia and Alzheimer’s disease in mongolism. Brain 92:147–156

    CAS  Google Scholar 

  75. Mann DMA (1998) Alzheimer’s disease and Down’s syndrome. Histopathology 13:125–137

    Google Scholar 

  76. Prasher VP, Farrer MJ, Kessling AM, Fisher EMC, West RJ, Barber SPC, Butler AC (1998) Molecular mapping of IIv Alzheimer-type dementia in Down’s syndrome. Ann Neurol 43:380–383

    CAS  Google Scholar 

  77. Pike CJ, Walencewicz AJ, Glabe CG, Cotman CW (1991) In vitro aging of amyloid-beta protein causes peptide aggregation and neurotoxicity. Brain Res 573:311–314

    Google Scholar 

  78. Lorenzo A, Yankner B (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci USA 91:12243–12247

    CAS  Google Scholar 

  79. Iversen LL, Mortishire-Sith RJ, Pollack SJ, Shearman MS (1995) The toxicity in vitro of beta-amyloid protein. Biochem J 311:1–16

    CAS  Google Scholar 

  80. Tsai J, Grutzendler J, Duff K, Gan W (2004) Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat Neurosci 7:1181–1183

    CAS  Google Scholar 

  81. Mor F, Monsonego A (2006) Immunization therapy in Alzheimer’s disease. Expert Rev Neurother 6:653–659

    CAS  Google Scholar 

  82. Qu B, Boyer PJ, Johnston SA, Hynan LS, Rosenberg RN (2006) Aβ42 gene vaccination reduces brain amyloid plaque burden in transgenic mice. J Neurol Sci 244:151–158

    CAS  Google Scholar 

  83. Bayer AJ, Bullock R, Jones RW, Wilkinson D, Paterson KR, Jenkins L (2005) Evaluation of the safety and immunogenicity of syntheticAβ42 (AN1792) in patients with AD. Neurology 64:94–101

    CAS  Google Scholar 

  84. Gilman S, Koller M, Black RS, Jenkins L, Griffith SG, Fox NC (2005) Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64:1553–1562

    CAS  Google Scholar 

  85. Hock C, Konietzko U, Streffer JR, Tracy J, Signorell A, Muller-Tilmanns B (2003) Antibodies against b-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 38:547–554

    CAS  Google Scholar 

  86. Fox NC, Black RS, Gilman S, Rossor MN, Griffith SG, Jenkins L (2005) Effects of Ab immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology 64:1563–1572

    CAS  Google Scholar 

  87. DaSilva KA, Aubert I, McLaurin J (2006) Vaccine development for Alzheimer’s disease. Curr Pharm Des 12:4283–4293

    CAS  Google Scholar 

  88. Hussain I, Powell D, Howlett DR, Tew DG, Meek TD, Chapman C, Gloger IS, Murphy KE, Southan CD, Ryan DM, Smith TS, Simmons DL, Walsh FS, Dingwall C, Christie G (1999) Identification of a novel aspartic protease (Asp 2) as beta-secretase. Mol Cell Neurosci 14:419–427

    CAS  Google Scholar 

  89. Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, Doan M, Dovey HF, Frigon N, Hong J, Jacobson-Croak K, Jewett N, Keim P, Knops J, Lieberburg I, Power M, Tan H, Tatsuno G, Tung J, Schenk D (1999) Purification and cloning of amyloid precursor protein beta secretase from human brain. Nature 402:537–540

    CAS  Google Scholar 

  90. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741

    CAS  Google Scholar 

  91. Yan R, Bienkowski MJ, Shuck ME, Miao H, Tory MC, Pauley AM, Brashier JR, Stratman NC, Mathews WR, Buhl AE, Carter DB, Tomasselli AG, Parodi LA, Heinrikson RL, Gurney ME (1999) Membrane-anchored aspartyl protease with Alzheimer’s disease beta-secretase activity. Nature 402:533–537

    CAS  Google Scholar 

  92. Farzan M, Schnitzler CE, Vasilieva N, Leung D, Choe H (2000) BACE2, a beta-secretase homolog, cleaves at the beta site and within the amyloid-beta region of the amyloid-beta precursor protein. Proc Natl Acad Sci USA 97:9712–9717

    CAS  Google Scholar 

  93. Saunders AJ, Kim T-M, Tanzi RE (1999) BACE maps to chromosome 11 and a BACE homolog, BACE2, reside in the obligate Down syndrome region of chromosome 21. Science 286:1255a

    Google Scholar 

  94. Luo Y, Bolon B, Kahn S, Bennett BD, Babu-Khan S, Denis P, Fan W, Kha H, Zhang J, Gong Y, Martin L, Louis JC, Yan Q, Richards WG, Citron M, Vassar R (2001) Mice deficient in BACE1, the Alzheimer’s beta secretase, have normal phenotype and abolished beta-amyloid generation. Nat Neurosci 4:231–232

    CAS  Google Scholar 

  95. Luo Y, Bolon B, Damore MA, Fitzpatrick D, Liu H, Zhang J, Yan Q, Vassar R, Citron M (2003) BACE1 (beta secretase) knockout mice do not acquire compensatory gene expression changes or develop neural lesions over time. Neurobiol Dis 14:81–88

    CAS  Google Scholar 

  96. Willem M, Garratt AN, Novak B, Citron M, Kaufmann S, Rittger A, DeStrooper B, Saftig P, Birchmeier C, Haass C (2006) Control of peripheral nerve myelination by the β-secretase BACE1. Science 314:664–666

    CAS  Google Scholar 

  97. Wang H, Song L, Laird F, Wong PC, Lee H-K (2008) BACE1 knock-outs display deficits in activity-dependent potentiation of synaptic transmission at mossy fiber to CA3 synapses in the hippocampus. J Neurosci 28:8677–8681

    CAS  Google Scholar 

  98. Ohno M, Sametsky EA, Younkin LH, Oakley H, Younkin SG, Citron M, Vassar R, Disterhoft JF (2004) BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer’s disease. Neuron 41:27–33

    CAS  Google Scholar 

  99. Ghosh AK, Shin D, Downs D, Koelsch G, Lin X, Ermolieff J, Tang J (2000) Design of potent inhibitors for human brain memapsin 2 (β-secretase). J Am Chem Soc 122:3522–3523

    CAS  Google Scholar 

  100. Hong L, Koelsch G, Lin X, Wu S, Terzyan S, Ghosh AK, Zhang XC, Tang J (2000) Structure of the protease domain of memapsin 2 (β-secretase) complexed with inhibitor. Science 290:150–153

    CAS  Google Scholar 

  101. Stachel SJ (2009) Progress toward the development of a viable BACE-1 inhibitor. Drug Dev Res 70:101–110

    CAS  Google Scholar 

  102. Durham TB, Shepherd TA (2006) Progress toward the discovery and development of efficacious BACE inhibitors. Curr Opin Drug Discov Dev 9:776–791

    CAS  Google Scholar 

  103. Maillard MC, Hom RK, Benson TE, Moon JB, Mamo S, Bienkowski M, Tomasselli AG, Woods DD, Prince DB, Paddock DJ, Emmons TL, Tucker JA, Dappen MS, Brogley L, Thorsett ED, Jewett N, Sinha S, Varghese J (2007) Design, synthesis, and crystal structure of hydroxyethyl secondary amine-based peptidomimetic inhibitors of human beta -secretase. J Med Chem 50:776–781

    CAS  Google Scholar 

  104. Wang YS, Strickland C, Voigt JH, Kennedy ME, Beyer BM, Senior MM, Smith EM, Nechuta TL, Madison VS, Czarniecki M, McKittrick BA, Stamford AW, Parker EM, Hunter JC, Greenlee WJ, Wyss DF (2010) Application of fragment-based NMR screening, X-ray crystallography, structure-based design, and focused chemical library design to identify novel μM leads for the development of nM BACE-1 (β-site APP cleaving enzyme 1) inhibitors. J Med Chem 53:942–950

    CAS  Google Scholar 

  105. Zhu Z, Sun ZY, Ye Y, Voigt J, Strickland C, Smith EM, Cumming J, Wang L, Wong J, Wang YS, Wyss DF, Chen X, Kuvelkar R, Kennedy ME, Favreau L, Parker E, McKittrick BA, Stamford A, Czarniecki M, Greenlee W, Hunter JC (2010) Discovery of cyclic acylguanidines as highly potent and selective β-site amyloid cleaving enzyme (BACE) inhibitors: part I – inhibitor design and validation. J Med Chem 53:951–965

    CAS  Google Scholar 

  106. Geschwindner S, Olsson LL, Albert JS, Deinum J, Edwards PD, de Beer T, Folmer RH (2007) Discovery of a novel warhead against β-secretase through fragment-based lead generation. J Med Chem 50:5903–5911

    CAS  Google Scholar 

  107. Kuglstatter A, Stahl M, Peters JU, Huber W, Stihle M, Schlatter D, Benz J, Ruf A, Roth D, Enderle T, Hennig M (2008) Tyramine fragment binding to BACE-1. Bioorg Med Chem Lett 18:1304–1307

    CAS  Google Scholar 

  108. Murray CW, Callaghan O, Chessari G, Cleasby A, Congreve M, Frederickson M, Hartshorn MJ, McMenamin R, Patel S, Wallis N (2007) Application of fragment screening by X-ray crystallography to β-secretase. J Med Chem 50:1116–1123

    CAS  Google Scholar 

  109. Congreve M, Aharony D, Albert J, Callaghan O, Campbell J, Carr RA, Chessari G, Cowan S, Edwards PD, Frederickson M, McMenamin R, Murray CW, Patel S, Wallis N (2007) Application of fragment screening by X-ray crystallography to the discovery of aminopyridines as inhibitors of β-secretase. J Med Chem 50:1124–1132

    CAS  Google Scholar 

  110. Edwards PD, Albert JS, Sylvester M, Aharony D, Andisik D, Callaghan O, Campbell JB, Carr RA, Chessari G, Congreve M, Frederickson M, Folmer RH, Geschwindner S, Koether G, Kolmodin K, Krumrine J, Mauger RC, Murray CW, Olsson LL, Patel S, Spear N, Tian G (2007) Application of fragment-based lead generation to the discovery of novel, cyclic amidine β-secretase inhibitors with nanomolar potency, cellular activity, and high ligand efficiency. J Med Chem 50:5912–5925

    CAS  Google Scholar 

  111. Yang W, Fucini RV, Fahr BT, Randal M, Lind KE, Lam MB, Lu W, Lu Y, Cary DR, Romanowski MJ, Colussi D, Pietrak B, Allison TJ, Munshi SK, Penny DM, Pham P, Sun J, Thomas AE, Wilkinson JM, Jacobs JW, McDowell RS, Ballinger MD (2009) Fragment-based discovery of nonpeptidic BACE-1 inhibitors using tethering. Biochemistry 48:4488–4496

    CAS  Google Scholar 

  112. Godemann R, Madden J, Krämer J, Smith M, Fritz U, Hesterkamp T, Barker J, Höppner S, Hallett D, Cesura A, Ebneth A, Kemp J (2009) Fragment-based discovery of BACE1 inhibitors using functional assays. Biochemistry 48:10743–10751

    CAS  Google Scholar 

  113. Madden J, Dod JR, Godemann R, Kraemer J, Smith M, Biniszkiewicz M, Hallett DJ, Barker J, Dyekjaer JD, Hesterkamp T (2010) Fragment-based discovery and optimization of BACE1 inhibitors. Bioorg Med Chem Lett 20:5329–5333

    CAS  Google Scholar 

  114. Wang Y-S, Beyer BM, Senior MM, Wyss DF (2005) Characterization of autocatalytic conversion of precursor BACE1 by heteronuclear NMR spectroscopy. Biochemistry 44:16594–16601

    CAS  Google Scholar 

  115. Liu D, Wang Y-S, Gesell JJ, Wilson E, Beyer BM, Wyss DF (2004) Backbone resonance assignments of the 45.3 kDa catalytic domain of human BACE1. J Biomol NMR 29:425–426

    CAS  Google Scholar 

  116. Stamford A (2010) Discovery of small molecule, orally active and brain penetrant BACE1 inhibitors. Paper presented at 239th ACS National Meeting, San Francisco, CA, 21–25 March 2010

    Google Scholar 

Download references

Acknowledgments

We would like to thank Mark McCoy and Jennifer Gesell for their many successful contributions to fragment-based NMR screening and FBDD, and Zhong-Yue Sun, Matthew E. Kennedy, Brian M. Beyer, Mary M. Senior, Elizabeth M. Smith, Terry L. Nechuta, Yuanzan Ye, Jared Cumming, Lingyan Wang, Jesse Wong, Xia Chen, Reshma Kuvelkar, Leonard Favreau, Vincent S. Madison, Michael Czarniecki, Brian A. McKittrick, Eric M. Parker, John C. Hunter, and William J. Greenlee for their invaluable contributions to the BACE-1 work and for their exceptional teamwork, as well as many other colleagues who have contributed to the success of this project over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel F. Wyss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin-Heidelberg

About this chapter

Cite this chapter

Wyss, D.F. et al. (2011). Combining NMR and X-ray Crystallography in Fragment-Based Drug Discovery: Discovery of Highly Potent and Selective BACE-1 Inhibitors. In: Davies, T., Hyvönen, M. (eds) Fragment-Based Drug Discovery and X-Ray Crystallography. Topics in Current Chemistry, vol 317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_183

Download citation

Publish with us

Policies and ethics