Fragment-Based Approaches and Computer-Aided Drug Discovery

  • Didier RognanEmail author
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 317)


Fragment-based design has significantly modified drug discovery strategies and paradigms in the last decade. Besides technological advances and novel therapeutic avenues, one of the most significant changes brought by this new discipline has occurred in the minds of drug designers. Fragment-based approaches have markedly impacted rational computer-aided design both in method development and in applications. The present review illustrates the importance of molecular fragments in many aspects of rational ligand design, and discusses how thinking in “fragment space” has boosted computational biology and chemistry.


Docking Drug design Fragment Library 


  1. 1.
    Shuker SB, Hajduk PJ, Meadows RP et al (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534CrossRefGoogle Scholar
  2. 2.
    Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3:711–715CrossRefGoogle Scholar
  3. 3.
    Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351CrossRefGoogle Scholar
  4. 4.
    Schreiber SL (2000) Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287:1964–1969CrossRefGoogle Scholar
  5. 5.
    Pereira DA, Williams JA (2007) Origin and evolution of high throughput screening. Br J Pharmacol 152:53–61CrossRefGoogle Scholar
  6. 6.
    Lipinski CA, Lombardo F, Dominy BW et al (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26CrossRefGoogle Scholar
  7. 7.
    Hann MM, Leach AR, Harper G (2001) Molecular complexity and its impact on the probability of finding leads for drug discovery. J Chem Inf Comput Sci 41:856–864CrossRefGoogle Scholar
  8. 8.
    Congreve M, Marshall F (2010) The impact of GPCR structures on pharmacology and structure-based drug design. Br J Pharmacol 159:986–996CrossRefGoogle Scholar
  9. 9.
    Congreve M, Chessari G, Tisi D et al (2008) Recent developments in fragment-based drug discovery. J Med Chem 51:3661–3680CrossRefGoogle Scholar
  10. 10.
    Murray CW, Rees DC (2009) The rise of fragment-based drug discovery. Nat Chem 1:187–192CrossRefGoogle Scholar
  11. 11.
    Orita M, Warizaya M, Amano Y et al (2009) Advances in fragment-based drug discovery platforms. Expert Opin Drug Discov 4:1125–1144CrossRefGoogle Scholar
  12. 12.
    Warr WA (2009) Fragment-based drug discovery. J Comput Aided Mol Des 23:453–458CrossRefGoogle Scholar
  13. 13.
    Erlanson DA (2006) Fragment-based lead discovery: a chemical update. Curr Opin Biotechnol 17:643–652CrossRefGoogle Scholar
  14. 14.
    Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6:211–219CrossRefGoogle Scholar
  15. 15.
    Law R, Barker O, Barker JJ et al (2009) The multiple roles of computational chemistry in fragment-based drug design. J Comput Aided Mol Des 23:459–473CrossRefGoogle Scholar
  16. 16.
    Jencks WP (1981) On the attribution and additivity of binding energies. Proc Natl Acad Sci USA 78:4046–4050CrossRefGoogle Scholar
  17. 17.
    Kuntz ID, Chen K, Sharp KA et al (1999) The maximal affinity of ligands. Proc Natl Acad Sci USA 96:9997–10002CrossRefGoogle Scholar
  18. 18.
    Hopkins AL, Groom CR, Alex A (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 9:430–431CrossRefGoogle Scholar
  19. 19.
    Reynolds CH, Bembenek SD, Tounge BA (2007) The role of molecular size in ligand efficiency. Bioorg Med Chem Lett 17:4258–4261CrossRefGoogle Scholar
  20. 20.
    Orita M, Ohno K, Niimi T (2009) Two ‘Golden Ratio’ indices in fragment-based drug discovery. Drug Discov Today 14:321–328CrossRefGoogle Scholar
  21. 21.
    Abad-Zapatero C, Perisic O, Wass J et al (2010) Ligand efficiency indices for an effective mapping of chemico-biological space: the concept of an atlas-like representation. Drug Discov Today 15:804–811CrossRefGoogle Scholar
  22. 22.
    Murray CW, Verdonk ML (2002) The consequences of translational and rotational entropy lost by small molecules on binding to proteins. J Comput Aided Mol Des 16:741–753CrossRefGoogle Scholar
  23. 23.
    Borsi V, Calderone V, Fragai M et al (2010) Entropic contribution to the linking coefficient in fragment based drug design: a case study. J Med Chem 53:4285–4289CrossRefGoogle Scholar
  24. 24.
    Babaoglu K, Shoichet BK (2006) Deconstructing fragment-based inhibitor discovery. Nat Chem Biol 2:720–723CrossRefGoogle Scholar
  25. 25.
    Chung S, Parker JB, Bianchet M et al (2009) Impact of linker strain and flexibility in the design of a fragment-based inhibitor. Nat Chem Biol 5:407–413CrossRefGoogle Scholar
  26. 26.
    Blum LC, Reymond JL (2009) 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J Am Chem Soc 131:8732–8733CrossRefGoogle Scholar
  27. 27.
    Siegal G, Ab E, Schultz J (2007) Integration of fragment screening and library design. Drug Discov Today 12:1032–1039CrossRefGoogle Scholar
  28. 28.
    Congreve M, Carr R, Murray C et al (2003) A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today 8:876–877CrossRefGoogle Scholar
  29. 29.
    Baurin N, Aboul-Ela F, Barril X et al (2004) Design and characterization of libraries of molecular fragments for use in NMR screening against protein targets. J Chem Inf Comput Sci 44:2157–2166CrossRefGoogle Scholar
  30. 30.
    Schuffenhauer A, Ruedisser S, Marzinzik AL et al (2005) Library design for fragment based screening. Curr Top Med Chem 5:751–762CrossRefGoogle Scholar
  31. 31.
    Venhorst J, Núñez S, Kruse CG (2010) Design of a high fragment efficiency library by molecular graph theory. ACS Med Chem Lett 1:499–503CrossRefGoogle Scholar
  32. 32.
    Gianti E, Sartori L (2008) Identification and selection of “privileged fragments” suitable for primary screening. J Chem Inf Model 48:2129–2139CrossRefGoogle Scholar
  33. 33.
    Lewell XQ, Judd DB, Watson SP et al (1998) RECAP–retrosynthetic combinatorial analysis procedure: a powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry. J Chem Inf Comput Sci 38:511–522CrossRefGoogle Scholar
  34. 34.
    Maass P, Schulz-Gasch T, Stahl M et al (2007) Recore: a fast and versatile method for scaffold hopping based on small molecule crystal structure conformations. J Chem Inf Model 47:390–399CrossRefGoogle Scholar
  35. 35.
    Degen J, Wegscheid-Gerlach C, Zaliani A et al (2008) On the art of compiling and using ‘drug-like’ chemical fragment spaces. ChemMedChem 3:1503–1507CrossRefGoogle Scholar
  36. 36.
    Mauser H, Stahl M (2007) Chemical fragment spaces for de novo design. J Chem Inf Model 47:318–324CrossRefGoogle Scholar
  37. 37.
    Lameijer EW, Kok JN, Back T et al (2006) Mining a chemical database for fragment co-occurrence: discovery of “chemical cliches”. J Chem Inf Model 46:553–562CrossRefGoogle Scholar
  38. 38.
    Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730CrossRefGoogle Scholar
  39. 39.
    Hajduk PJ, Huth JR, Fesik SW (2005) Druggability indices for protein targets derived from NMR-based screening data. J Med Chem 48:2518–2525CrossRefGoogle Scholar
  40. 40.
    Ciulli A, Williams G, Smith AG et al (2006) Probing hot spots at protein-ligand binding sites: a fragment-based approach using biophysical methods. J Med Chem 49:4992–5000CrossRefGoogle Scholar
  41. 41.
    Mattos C, Ringe D (1996) Locating and characterizing binding sites on proteins. Nat Biotechnol 14:595–599CrossRefGoogle Scholar
  42. 42.
    Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28:849–857CrossRefGoogle Scholar
  43. 43.
    Rognan D, Scapozza L, Folkers G et al (1995) Rational design of nonnatural peptides as high-affinity ligands for the HLA-B*2705 human leukocyte antigen. Proc Natl Acad Sci USA 92:753–757CrossRefGoogle Scholar
  44. 44.
    von Itzstein M, Dyason JC, Oliver SW et al (1996) A study of the active site of influenza virus sialidase: an approach to the rational design of novel anti-influenza drugs. J Med Chem 39:388–391CrossRefGoogle Scholar
  45. 45.
    Miranker A, Karplus M (1991) Functionality maps of binding sites: a multiple copy simultaneous search method. Proteins 11:29–34CrossRefGoogle Scholar
  46. 46.
    Eisen MB, Wiley DC, Karplus M et al (1994) HOOK: a program for finding novel molecular architectures that satisfy the chemical and steric requirements of a macromolecule binding site. Proteins 19:199–221CrossRefGoogle Scholar
  47. 47.
    Schubert CR, Stultz CM (2009) The multi-copy simultaneous search methodology: a fundamental tool for structure-based drug design. J Comput Aided Mol Des 23:475–489CrossRefGoogle Scholar
  48. 48.
    Bohm HJ (1992) The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6:61–78CrossRefGoogle Scholar
  49. 49.
    Verdonk ML, Cole JC, Taylor R (1999) SuperStar: a knowledge-based approach for identifying interaction sites in proteins. J Mol Biol 289:1093–1108CrossRefGoogle Scholar
  50. 50.
    Dennis S, Kortvelyesi T, Vajda S (2002) Computational mapping identifies the binding sites of organic solvents on proteins. Proc Natl Acad Sci USA 99:4290–4295CrossRefGoogle Scholar
  51. 51.
    Brenke R, Kozakov D, Chuang GY et al (2009) Fragment-based identification of druggable ‘hot spots’ of proteins using Fourier domain correlation techniques. Bioinformatics 25:621–627CrossRefGoogle Scholar
  52. 52.
    Chuang GY, Kozakov D, Brenke R et al (2009) Binding hot spots and amantadine orientation in the influenza a virus M2 proton channel. Biophys J 97:2846–2853CrossRefGoogle Scholar
  53. 53.
    Landon MR, Lieberman RL, Hoang QQ et al (2009) Detection of ligand binding hot spots on protein surfaces via fragment-based methods: application to DJ-1 and glucocerebrosidase. J Comput Aided Mol Des 23:491–500CrossRefGoogle Scholar
  54. 54.
    Guvench O, MacKerell AD Jr (2009) Computational fragment-based binding site identification by ligand competitive saturation. PLoS Comput Biol 5:e1000435CrossRefGoogle Scholar
  55. 55.
    Kasahara K, Kinoshita K, Takagi T (2010) Ligand-binding site prediction of proteins based on known fragment-fragment interactions. Bioinformatics 26:1493–1499CrossRefGoogle Scholar
  56. 56.
    Huang N, Jacobson MP (2010) Binding-site assessment by virtual fragment screening. PLoS One 5:e10109CrossRefGoogle Scholar
  57. 57.
    Irwin JJ, Shoichet BK (2005) ZINC–a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182CrossRefGoogle Scholar
  58. 58.
    Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49:377–389CrossRefGoogle Scholar
  59. 59.
    Schmidtke P, Barril X (2010) Understanding and predicting druggability. A high-throughput method for detection of drug binding sites. J Med Chem 53:5858–5867CrossRefGoogle Scholar
  60. 60.
    Schneider G, Fechner U (2005) Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 4:649–663CrossRefGoogle Scholar
  61. 61.
    Loving K, Alberts I, Sherman W (2010) Computational approaches for fragment-based and de novo design. Curr Top Med Chem 10:14–32CrossRefGoogle Scholar
  62. 62.
    Moitessier N, Englebienne P, Lee D et al (2008) Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br J Pharmacol 153(Suppl 1):S7–S26Google Scholar
  63. 63.
    Kuntz ID, Blaney JM, Oatley SJ et al (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161:269–288CrossRefGoogle Scholar
  64. 64.
    B-Rao C, Subramanian J, Sharma SD (2009) Managing protein flexibility in docking and its applications. Drug Discov Today 14:394–400CrossRefGoogle Scholar
  65. 65.
    Rarey M, Kramer B, Lengauer T (1999) The particle concept: placing discrete water molecules during protein-ligand docking predictions. Proteins 34:17–28CrossRefGoogle Scholar
  66. 66.
    Klebe G, Mietzner T (1994) A fast and efficient method to generate biologically relevant conformations. J Comput Aided Mol Des 8:583–606CrossRefGoogle Scholar
  67. 67.
    Sun Y, Ewing TJ, Skillman AG et al (1998) CombiDOCK: structure-based combinatorial docking and library design. J Comput Aided Mol Des 12:597–604CrossRefGoogle Scholar
  68. 68.
    Zsoldos Z, Reid D, Simon A et al (2007) eHiTS: a new fast, exhaustive flexible ligand docking system. J Mol Graph Model 26:198–212CrossRefGoogle Scholar
  69. 69.
    Huang D, Caflisch A (2010) Library screening by fragment-based docking. J Mol Recognit 23:183–193Google Scholar
  70. 70.
    Verdonk ML, Berdini V, Hartshorn MJ et al (2004) Virtual screening using protein-ligand docking: avoiding artificial enrichment. J Chem Inf Comput Sci 44:793–806CrossRefGoogle Scholar
  71. 71.
    Marcou G, Rognan D (2007) Optimizing fragment and scaffold docking by use of molecular interaction fingerprints. J Chem Inf Model 47:195–207CrossRefGoogle Scholar
  72. 72.
    Li Y, Shen J, Sun X et al (2010) Accuracy assessment of protein-based docking programs against RNA targets. J Chem Inf Model 50:1134–1146CrossRefGoogle Scholar
  73. 73.
    Verdonk ML, Cole JC, Hartshorn MJ et al (2003) Improved protein-ligand docking using GOLD. Proteins 52:609–623CrossRefGoogle Scholar
  74. 74.
    Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749CrossRefGoogle Scholar
  75. 75.
    Sandor M, Kiss R, Keseru GM (2010) Virtual fragment docking by Glide: a validation study on 190 protein-fragment complexes. J Chem Inf Model 50:1165–1172CrossRefGoogle Scholar
  76. 76.
    Boehm HJ, Boehringer M, Bur D et al (2000) Novel inhibitors of DNA gyrase: 3D structure based biased needle screening, hit validation by biophysical methods, and 3D guided optimization. A promising alternative to random screening. J Med Chem 43:2664–2674CrossRefGoogle Scholar
  77. 77.
    Makino S, Kayahara T, Tashiro K et al (2001) Discovery of a novel serine protease inhibitor utilizing a structure-based and experimental selection of fragments technique. J Comput Aided Mol Des 15:553–559CrossRefGoogle Scholar
  78. 78.
    Pickett SD, Sherborne BS, Wilkinson T et al (2003) Discovery of novel low molecular weight inhibitors of IMPDH via virtual needle screening. Bioorg Med Chem Lett 13:1691–1694CrossRefGoogle Scholar
  79. 79.
    Carbone V, Ishikura S, Hara A et al (2005) Structure-based discovery of human L-xylulose reductase inhibitors from database screening and molecular docking. Bioorg Med Chem 13:301–312CrossRefGoogle Scholar
  80. 80.
    Warner SL, Bashyam S, Vankayalapati H et al (2006) Identification of a lead small-molecule inhibitor of the Aurora kinases using a structure-assisted, fragment-based approach. Mol Cancer Ther 5:1764–1773CrossRefGoogle Scholar
  81. 81.
    Rummey C, Nordhoff S, Thiemann M et al (2006) In silico fragment-based discovery of DPP-IV S1 pocket binders. Bioorg Med Chem Lett 16:1405–1409CrossRefGoogle Scholar
  82. 82.
    Teotico DG, Babaoglu K, Rocklin GJ et al (2009) Docking for fragment inhibitors of AmpC beta-lactamase. Proc Natl Acad Sci USA 106:7455–7460CrossRefGoogle Scholar
  83. 83.
    Chen D, Misra M, Sower L et al (2008) Novel inhibitors of anthrax edema factor. Bioorg Med Chem 16:7225–7233CrossRefGoogle Scholar
  84. 84.
    Chen Y, Shoichet BK (2009) Molecular docking and ligand specificity in fragment-based inhibitor discovery. Nat Chem Biol 5:358–364CrossRefGoogle Scholar
  85. 85.
    McLean LR, Zhang Y, Li H et al (2010) Fragment screening of inhibitors for MIF tautomerase reveals a cryptic surface binding site. Bioorg Med Chem Lett 20:1821–1824CrossRefGoogle Scholar
  86. 86.
    Englert L, Silber K, Steuber H et al (2010) Fragment-based lead discovery: screening and optimizing fragments for thermolysin inhibition. ChemMedChem 5:930–940Google Scholar
  87. 87.
    Ruda GF, Campbell G, Alibu VP et al (2010) Virtual fragment screening for novel inhibitors of 6-phosphogluconate dehydrogenase. Bioorg Med Chem 18:5056–5062CrossRefGoogle Scholar
  88. 88.
    Rohrig UF, Awad L, Grosdidier A et al (2010) Rational design of indoleamine 2,3-dioxygenase inhibitors. J Med Chem 53:1172–1189CrossRefGoogle Scholar
  89. 89.
    Mortier J, Masereel B, Remouchamps C et al (2010) NF-kappaB inducing kinase (NIK) inhibitors: identification of new scaffolds using virtual screening. Bioorg Med Chem Lett 20:4515–4520CrossRefGoogle Scholar
  90. 90.
    Gleeson MP, Gleeson D (2009) QM/MM as a tool in fragment based drug discovery. A cross-docking, rescoring study of kinase inhibitors. J Chem Inf Model 49:1437–1448CrossRefGoogle Scholar
  91. 91.
    Graves AP, Shivakumar DM, Boyce SE et al (2008) Rescoring docking hit lists for model cavity sites: predictions and experimental testing. J Mol Biol 377:914–934CrossRefGoogle Scholar
  92. 92.
    Novikov FN, Stroylov VS, Stroganov OV et al (2010) Improving performance of docking-based virtual screening by structural filtration. J Mol Model 16:1223–1230CrossRefGoogle Scholar
  93. 93.
    Deng Z, Chuaqui C, Singh J (2004) Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions. J Med Chem 47:337–344CrossRefGoogle Scholar
  94. 94.
    Kelly MD, Mancera RL (2004) Expanded interaction fingerprint method for analyzing ligand binding modes in docking and structure-based drug design. J Chem Inf Comput Sci 44:1942–1951CrossRefGoogle Scholar
  95. 95.
    Mpamhanga CP, Chen B, McLay IM et al (2006) Knowledge-based interaction fingerprint scoring: a simple method for improving the effectiveness of fast scoring functions. J Chem Inf Model 46:686–698CrossRefGoogle Scholar
  96. 96.
    Venhorst J, Nunez S, Terpstra JW et al (2008) Assessment of scaffold hopping efficiency by use of molecular interaction fingerprints. J Med Chem 51:3222–3229CrossRefGoogle Scholar
  97. 97.
    Loving K, Salam NK, Sherman W (2009) Energetic analysis of fragment docking and application to structure-based pharmacophore hypothesis generation. J Comput Aided Mol Des 23:541–554CrossRefGoogle Scholar
  98. 98.
    Fukunishi Y, Mashimo T, Orita M et al (2009) In silico fragment screening by replica generation (FSRG) method for fragment-based drug design. J Chem Inf Model 49:925–933CrossRefGoogle Scholar
  99. 99.
    Li H, Li C (2010) Multiple ligand simultaneous docking: orchestrated dancing of ligands in binding sites of protein. J Comput Chem 31:2014–2022CrossRefGoogle Scholar
  100. 100.
    Babine RE, Bleckman TM, Kissinger CR et al (1995) Design, synthesis and X-ray crystallographic studies of novel FKBP-12 ligands. Bioorg Med Chem Lett 5:1719–1724CrossRefGoogle Scholar
  101. 101.
    Rich DH, Bohacek RS, Dales NA et al (1997) Transformation of peptides into non-peptides. Synthesis of computer-generated enzyme inhibitors. Chimia 51:45–47Google Scholar
  102. 102.
    Bohm HJ, Banner DW, Weber L (1999) Combinatorial docking and combinatorial chemistry: design of potent non-peptide thrombin inhibitors. J Comput Aided Mol Des 13:51–56CrossRefGoogle Scholar
  103. 103.
    Honma T, Hayashi K, Aoyama T et al (2001) Structure-based generation of a new class of potent Cdk4 inhibitors: new de novo design strategy and library design. J Med Chem 44:4615–4627CrossRefGoogle Scholar
  104. 104.
    Schneider G, Lee ML, Stahl M et al (2000) De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks. J Comput Aided Mol Des 14:487–494CrossRefGoogle Scholar
  105. 105.
    Grzybowski BA, Ishchenko AV, Kim CY et al (2002) Combinatorial computational method gives new picomolar ligands for a known enzyme. Proc Natl Acad Sci USA 99:1270–1273CrossRefGoogle Scholar
  106. 106.
    Ji H, Zhang W, Zhang M et al (2003) Structure-based de novo design, synthesis, and biological evaluation of non-azole inhibitors specific for lanosterol 14alpha-demethylase of fungi. J Med Chem 46:474–485CrossRefGoogle Scholar
  107. 107.
    Vinkers HM, de Jonge MR, Daeyaert FF et al (2003) SYNOPSIS: SYNthesize and OPtimize System in Silico. J Med Chem 46:2765–2773CrossRefGoogle Scholar
  108. 108.
    Rogers-Evans M, Alanine AI, Bleicher KH et al (2004) Identification of novel cannabinoid receptor ligands via evolutionary de novo design and rapid parallel synthesis. QSAR & Comb Sci 23:426–430CrossRefGoogle Scholar
  109. 109.
    Pierce AC, Rao G, Bemis GW (2004) BREED: Generating novel inhibitors through hybridization of known ligands. Application to CDK2, p38, and HIV protease. J Med Chem 47:2768–2775CrossRefGoogle Scholar
  110. 110.
    Krier M, Araujo-Junior JX, Schmitt M et al (2005) Design of small-sized libraries by combinatorial assembly of linkers and functional groups to a given scaffold: application to the structure-based optimization of a phosphodiesterase 4 inhibitor. J Med Chem 48:3816–3822CrossRefGoogle Scholar
  111. 111.
    Heikkila T, Thirumalairajan S, Davies M et al (2006) The first de novo designed inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. Bioorg Med Chem Lett 16:88–92CrossRefGoogle Scholar
  112. 112.
    Roche O, Rodriguez Sarmiento RM (2007) A new class of histamine H3 receptor antagonists derived from ligand based design. Bioorg Med Chem Lett 17:3670–3675CrossRefGoogle Scholar
  113. 113.
    Vieth M, Erickson J, Wang J et al (2009) Kinase inhibitor data modeling and de novo inhibitor design with fragment approaches. J Med Chem 52:6456–6466CrossRefGoogle Scholar
  114. 114.
    Aronov AM, Bemis GW (2004) A minimalist approach to fragment-based ligand design using common rings and linkers: application to kinase inhibitors. Proteins 57:36–50CrossRefGoogle Scholar
  115. 115.
    Crisman TJ, Bender A, Milik M et al (2008) “Virtual fragment linking”: an approach to identify potent binders from low affinity fragment hits. J Med Chem 51:2481–2491CrossRefGoogle Scholar
  116. 116.
    Willett P (2006) Similarity-based virtual screening using 2D fingerprints. Drug Discov Today 11:1046–1053CrossRefGoogle Scholar
  117. 117.
    Bender A, Mussa HY, Gill GS et al (2004) Molecular surface point environments for virtual screening and the elucidation of binding patterns (MOLPRINT 3D). J Med Chem 47:6569–6583CrossRefGoogle Scholar
  118. 118.
    Nidhi GM, Davies JW et al (2006) Prediction of biological targets for compounds using multiple-category Bayesian models trained on chemogenomics databases. J Chem Inf Model 46:1124–1133CrossRefGoogle Scholar
  119. 119.
    Clark M, Wiseman JS (2009) Fragment-based prediction of the clinical occurrence of long QT syndrome and torsade de pointes. J Chem Inf Model 49:2617–2626CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Structural ChemogenomicsUMR 7200 CNRS-University of StrasbourgIllkirchFrance

Personalised recommendations