Skip to main content

Chemical X-Ray Photodiffraction: Principles, Examples, and Perspectives

  • Chapter
  • First Online:
Advanced X-Ray Crystallography

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 315))

Abstract

X-ray photodiffraction (in the chemical literature also referred to as photocrystallography), which is based on the combination of X-ray diffraction methods with samples excited by UV or visible light to solve fundamental photochemical or photophysical issues, has developed in the last couple of decades into a very promising technique for direct observation of photoinduced chemical species in the solid state. The capability of providing direct information on very small perturbations in atomic positions and thus on the minute changes in molecular geometry during (or as a consequence of) photoexcitation appears to be the most important asset of this emerging analytical technique. When combined with other physicochemical methods, X-ray photodiffraction can be a powerful tool for analysis of steady-state photoinduced structures as well as slow or very fast time-dependent phenomena. Despite being a very useful approach, however, due to a number of practical requirements that it places with regard to the system to be studied, at the present stage of developments the technique is not widely and indiscriminately applicable to any photoinduced process. In some particular chemical systems the inherent pitfalls could be practically overcome by practical or theoretical means. In this short chapter, the basic principles of X-ray photodiffraction are briefly summarized, and the prospects of its application to “physical” and “chemical” problems is illustrated with selected examples from recent literature. Some possible future developments and alternative approaches with this and related methods are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Because the term “diffraction” describes the actual physical phenomenon, it is more general in meaning, and it is also frequently used by physicists and biologists, “X-ray photodiffraction” appears to be a more appropriate term than “photocrystallography” and thus it will be used throughout this article.

  2. 2.

    It may be argued whethere these examples, which have usually employed X-ray diffraction analysis of previously UV irradiated crystals, fall within the domain of the X-ray photodiffraction methods or solid state photochemistry, and whether the term ‘X-ray photodiffraction' should be reserved only for time-dependent studies. Although that in the original publications many of these examples have not been labeled as such, because they involve application of XRD methods to study photochemical reactions, we believe that they should be considered as part of the X-ray photodiffraction method in its broadest definition.

References

  1. Clegg W (2000) Synchrotron chemical crystallography. J Chem Soc Dalton Trans 3223–3232

    Google Scholar 

  2. Ren Z, Bourgeois D, Helliwell JR, Moffat K, Šrajer V, Stoddard BL (1999) Laue crystallography: coming of age. J Synchrotron Radiat 6:891–917

    Article  CAS  Google Scholar 

  3. Šrajer V, T-y T, Ursby T, Pradervand C, Ren Z, Adachi S, Schildkamp W, Bourgeois D, Wulff M, Moffat K (1996) Photolysis of the carbon monoxide complex of myoglobin: nanosecond time-resolved crystallography. Science 274:1726–1729

    Article  Google Scholar 

  4. Petsko GA, Ringe D (2000) Observation of unstable species in enzyme-catalyzed transformations using protein crystallography. Curr Opin Chem Biol 4:89–94

    Article  CAS  Google Scholar 

  5. Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J (2000) Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406:752–757

    Article  CAS  Google Scholar 

  6. Schlichting I (2000) Crystallographic structure determination of unstable species. Acc Chem Res 33:532–538

    Article  CAS  Google Scholar 

  7. Wulff M, Schotte F, Naylor G, Bourgeois D, Moffat K, Mourou G (1997) Time-resolved structures of macromolecules at the ESRF: single-pulse Laue diffraction, stroboscopic data collection and femtosecond flash photolysis. Nucl Instr Meth Phys Res A 398:69–84

    Article  CAS  Google Scholar 

  8. Moffat K (1998) Time-resolved crystallography. Acta Cryst A 54:833–841

    Article  CAS  Google Scholar 

  9. Moffat K (2001) Time-resolved biochemical crystallography: a mechanistic perspective. Chem Rev 101:1569–1581

    Article  CAS  Google Scholar 

  10. Coppens P (2002) Time-resolved chemistry at atomic resolution. Faraday Discuss 122:1–11

    Article  Google Scholar 

  11. Coppens P (2003) What can time-resolved diffraction tell us about transient species?: excited-state structure determination at atomic resolution. Chem Commun 1317–1320

    Google Scholar 

  12. Coppens P, Novozhilova I, Kovalevsky A (2002) Chem Rev 102:861–884

    Article  CAS  Google Scholar 

  13. Coppens P, Benedict J, Messerschmidt M, Novozhilova I, Graber T, Chen Y-S, Vorontsov I, Scheins S, Zheng S-L (2010) Time-resolved synchrotron diffraction and theoretical studies of very short-lived photo-induced molecular species. Acta Crystallogr A 66:179–188

    Article  Google Scholar 

  14. Cole JM, Raithby PR, Wulff M, Schotte F, Plech A, Teat SJ, Bushnell-Wye G (2002) Nanosecond time-resolved crystallography of photo-induced species: case study and instrument development for high-resolution excited-state single-crystal structure determination. Faraday Discuss 122:119–129

    Article  Google Scholar 

  15. Cole JM (2004) Single-crystal X-ray diffraction studies of photo-induced molecular species. Chem Soc Rev 33:501–513

    Article  CAS  Google Scholar 

  16. Cole JM (2008) X-Ray diffraction of photolytically induced molecular species in single crystals. In: Boeyens JCA, Ogilvie JF (eds) Models, mysteries, and magic of molecules. Springer, Heidelberg, pp 29–62

    Google Scholar 

  17. Ohashi Y (2008) Structural determination of unstable species. In: Boeyens JCA, Ogilvie JF (eds) Models, mysteries, and magic of molecules. Springer, Heidelberg, pp 109–135

    Google Scholar 

  18. Ohashi Y (1998) Real-time in situ observation of chemical reactions. Acta Crystallogr A 54:842–849

    Article  Google Scholar 

  19. Raithby PR (2007) Small-molecule chemical crystallography – from three to four dimensions: a personal perspective. Crystallogr Rev 13:121–142

    Article  CAS  Google Scholar 

  20. Naumov P (2010) Direct observation of dynamic solid-state processes with X-ray diffraction. In: Pignataro B (ed) Ideas in chemistry and molecular sciences. Advances in nanotechnology, materials and devices. Wiley-VCH, Weinheim, pp 207–224

    Google Scholar 

  21. Johmoto K, Sekine A, Uekusa H, Ohashi Y (2009) Elongated lifetime of unstable colored species by intermolecular hydrogen bonds formation in photochromic crystals. Bull Chem Soc Jpn 82:50–57

    Article  CAS  Google Scholar 

  22. Naumov P, Sekine A, Uekusa H, Ohashi Y (2002) Structure of the photocolored 2-(2',4'-dinitrobenzyl)pyridine crystal: two-photon induced solid-state proton transfer with minor structural perturbation. J Am Chem Soc 124:8540–8541

    Article  CAS  Google Scholar 

  23. Naumov P, Yu P, Sakurai K (2008) Electronic tera-order stabilization of photoinduced metastable species: structure of the photochromic product of spiropyran determined with in situ single crystal X-ray photodiffraction. J Phys Chem A 112:5810–5814

    Article  CAS  Google Scholar 

  24. Naumov P, Hill JP, Sakurai K, Tanaka M, Ariga K (2007) Structural study of the thermally induced and photoinduced phase transitions of the 1,3,5-trithia-2,4,6-triazapentalenyl (TTTA) radical. J Phys Chem A 111:6449–6455

    Article  CAS  Google Scholar 

  25. Hosomi H, Ohba S, Tanaka K, Toda F (2000) The first in situ observation of intramolecular rotation and cyclization of anilide by an X-ray study: partial single-crystal to single-crystal photocyclization of N-methyl-N-{(E)-methylmethacrolyl}anilide in inclusion crystals. J Am Chem Soc 122:1818–1819

    Article  CAS  Google Scholar 

  26. Kodani T, Matsuda K, Yamada T, Kobatake S, Irie M (2000) Reversible diastereoselective photocyclization of a diarylethene in a single-crystalline phase. J Am Chem Soc 122:9631–9637

    Article  CAS  Google Scholar 

  27. Hosoya T, Uekusa H, Ohashi Y, Ohhara T, Kimura H, Noda Y (2003) Deuterium migration mechanism in chiral thiolactam formation by neutron diffraction analysis. Chem Lett 32:742–743

    Article  CAS  Google Scholar 

  28. Leibovitch M, Olovsson G, Scheffer JR, Trotter J (1998) An investigation of the Yang photocyclization reaction in the solid state: asymmetric induction studies and crystal structure-reactivity relationship. J Am Chem Soc 120:12755–12769

    Article  CAS  Google Scholar 

  29. Natarajan A, Tsai CK, Khan SI, McCarren P, Houk KN, Garcia-Garibay MA (2007) The photorearrangement of α-santonin is a single-crystal-to-single-crystal reaction: a long kept secret in solid-state organic chemistry revealed. J Am Chem Soc 129:9846–9847

    Article  CAS  Google Scholar 

  30. Schmidt GMJ (1971) Photodimerization in the solid state. Pure Appl Chem 27:647–678

    Article  CAS  Google Scholar 

  31. Cohen MD (1975) The photochemistry of organic solids. Angew Chem Int Ed Engl 14:386–393

    Article  Google Scholar 

  32. Enkelmann V, Wegner G (1993) Single-crystal-to-single-crystal photodimerization of cinnamic acid. J Am Chem Soc 115:10390–10391

    Article  CAS  Google Scholar 

  33. Novak K, Enkelmann V, Wegner G, Wagener KB (1993) Crystallographic study of a single crystal to single crystal photodimerization and its thermal reverse reaction. Angew Chem Int Ed Engl 32:1614–1616

    Article  Google Scholar 

  34. MacGillivray LR, Papaefstathiou GS, Friscic T, Hamilton TD, Bucar D-K, Chu Q, Varshney DB, Georgiev IG (2008) Supramolecular control of reactivity in the solid state: from templates to ladderanes to metal-organic frameworks. Acc Chem Res 41:280–291

    Article  CAS  Google Scholar 

  35. Hasegawa M (1983) Photopolymerization of diolefin crystals. Chem Rev 83:507–518

    Article  CAS  Google Scholar 

  36. Tanaka K, Toda F, Mochizuki E, Yasui N, Kai Y, Miyahara I, Hirotsu K (1999) Enantioselective single-crystal-to-single-crystal photodimerization of coumarin and thiocoumarin in inclusion compounds with chiral host compounds. Angew Chem Int Ed Engl 38:3523–3525

    Article  CAS  Google Scholar 

  37. Tanaka K, Mochizuki E, Yasui N, Kai Y, Miyahara I, Hirotsu K, Toda F (2000) Single-crystal-to-single-crystal enantioselective [2+2] photodimerization of coumarin, thiocoumarin and cyclohex-2-enone in the inclusion complexes with chiral host compounds. Tetrahedron 56:6853–6865

    Article  CAS  Google Scholar 

  38. Balakrishna RB, Burjor C, Anand P, Ramamurthy V (2010) Thiourea as a template for photodimerization of azastilbenes. J Am Chem Soc 132:13434–13442

    Article  Google Scholar 

  39. Yang S-Y, Naumov P, Fukuzumi S (2009) Topochemical limits for solid-state photoreactivity by fine tuning of the π-π interactions. J Am Chem Soc 131:7247–7249

    Article  CAS  Google Scholar 

  40. Sharma CVK, Panneerselvam K, Shimoni L, Katz H, Carrell HL, Desiraju GR (1994) 3-(3',5'-Dinitrophenyl)-4-(2',5'-dimethoxyphenyl)cyclobutane-1,2-dicarboxylic acid: engineered topochemical synthesis and molecular and supramolecular properties. Chem Mater 6:1282–1292

    Article  CAS  Google Scholar 

  41. Anthony A, Desiraju GR, Jetti RKR, Kuduva SS, Madhavi NNL, Nangia A, Thaimattam R, Thalladi VR (1998) Crystal engineering: some further strategies. Mater Res Bull 1:1–18

    CAS  Google Scholar 

  42. Kaftory M, Shteiman V, Lavy T, Scheffer JR, Yang J, Enkelmann V (2005) Discrimination in the solid state photodimerization of 1-methyl-5,6-diphenylpyrazin-2-one. Eur J Org Chem 847–853

    Google Scholar 

  43. Lavy T, Kaftory M (2007) Channels formation through photodimerization of guest molecules within solid inclusion compounds. CrystEngComm 9:123–127

    Article  CAS  Google Scholar 

  44. Nagarathinam M, Peedikakkal AMP, Vittal JJ (2008) Stacking of double bonds for photochemical [2+2] cycloaddition reactions in the solid state. Chem Commun 5277–5288

    Google Scholar 

  45. Deng-Ke C, Thekku VS, Mark B, Gilad G, Jason BB, Menahem K (2010) Kinetics of solid state photodimerization of 1,4-dimethyl-2-pyridinone in its molecular compound. J Phys Chem A 114:7377–7381

    Article  Google Scholar 

  46. Mir MH, Koh LL, Tan GK, Vittal JJ (2010) Single-crystal to single-crystal photochemical structural transformations of interpenetrated 3D coordination polymers by [2+2] cycloaddition reactions. Angew Chem Int Ed Engl 49:390–393

    CAS  Google Scholar 

  47. Davaasambuu J, Busse G, Techert S (2006) Aspects of the photodimerization mechanism of 2,4-dichlorocinnamic acid studied by kinetic photocrystallography. J Phys Chem A 110:3261–3265

    Article  CAS  Google Scholar 

  48. Fang G, Javier M-R, Zhigang P, Colan EH, Kenneth DMH (2008) Direct structural understanding of a topochemical solid state photopolymerization reaction. J Phys Chem C 112:19793–19796

    Article  Google Scholar 

  49. Turowska-Tyrk I (2001) Structural transformations in a crystal during the photochemical reaction of 2-benzyl-5-benzylidenecyclopentanone. Chem Eur J 7:3401–3405

    Article  CAS  Google Scholar 

  50. Moré R, Busse G, Hallmann J, Paulmann C, Scholz M, Techert S (2010) Photodimerization of crystalline 9-anthracenecarboxylic acid: a nontopotactic autocatalytic transformation. J Phys Chem C 114:4142–4148

    Article  Google Scholar 

  51. Naumov P, Makreski P, Jovanovski G (2007) Direct atomic scale observation of linkage isomerization of As4S4 clusters during the photoinduced transition of realgar to pararealgar. Inorg Chem 46:10624–10631

    Article  CAS  Google Scholar 

  52. Naumov P, Makreski P, Gj P, Runčevski T, Jovanovski G (2010) Visualization of a discrete solid-state process with steady-state X-ray diffraction: observation of hopping of sulfur atoms in single crystals of realgar. J Am Chem Soc 132:11398–11401

    Article  CAS  Google Scholar 

  53. Naumov P, Sakurai K, Tanaka M, Hara H (2007) Direct observation of aminyl radical intermediate during single-crystal to single-crystal photoinduced Orton rearrangement. J Phys Chem B 111:10373–10378

    Article  CAS  Google Scholar 

  54. Boldyreva EV (2001) Structural aspects of intramolecular solid-state linkage isomerization in Co(III) pentaammine nitro/nitrito complexes. Russ J Coord Chem 27:1–28

    Article  Google Scholar 

  55. Boldyreva EV, Sidelnikov AA, Chupakhin AP, Lyakhov NZ, Boldyrev VV (1984) Deformation and fragmentation of crystals of [Co(NH3)5NO2]X2 (X = Cl, Br, NO 3 ) during photochemical linkage isomerization. Proc Acad Sci USSR 277:893–896

    CAS  Google Scholar 

  56. Boldyreva EV, Sidel"nikov AA (1987) Effect of mechanical stresses on the photoisomerization in the crystals of Co(III) nitropentaammines. Proc Sib Dept Acad Sci USSR 5:139–145

    Google Scholar 

  57. Boldyreva EV, Podberezskaya NV, Virovets AV, Burleva LP, Dulepov VE (1993) X-ray powder diffraction study of linkage nitro-nitrito isomerization in [Co(NH3)5NO2]XY -> [Co (NH3)5ONO]XY (XY = 2Cl, 2Br, 2I, Cl(NO3), 2(NO3)). J Struct Chem 34:128–138

    CAS  Google Scholar 

  58. Dulepov VE, Boldyreva EV (1994) A comparative study of the kinetics of solid state linkage isomerization [Co(NH3)5ONO]XY ⇔ [Co(NH3)5NO2]XY (XY = Cl2, Br2, I2, (NO3)2, Cl(NO3)). React Kin Catal Lett 53:289–296

    Article  CAS  Google Scholar 

  59. Masciocchi N, Kolyshev A, Dulepov V, Boldyreva E, Sironi A (1994) Study of the linkage isomerization [Co(NH3)5NO2]Br2 ⇔ [Co(NH3)5ONO]Br2 in the solid state by X-ray powder diffraction. Inorg Chem 33:2579–2585

    Article  CAS  Google Scholar 

  60. Kovalevsky AY, Bagley KA, Cole JM, Coppens P (2002) The first photocrystallographic evidence for light-induced metastable linkage isomers of ruthenium sulfur dioxide complexes. J Am Chem Soc 124:9241–9248

    Article  CAS  Google Scholar 

  61. Kovalevsky AY, Bagley KA, Cole JM, Coppens P (2003) Light-induced metastable linkage isomers of ruthenium sulfur dioxide complexes. Inorg Chem 42:140–147

    Article  CAS  Google Scholar 

  62. Nakai H, Mizuno M, Nishioka T, Koga N, Shiomi K, Miyano Y, Irie M, Breedlove BK, Kinoshita I, Hayashi Y, Ozawa Y, Yonezawa T, Toriumi K, Isobe K (2006) Direct observation of photochromic dynamics in the crystalline state of an organorhodium dithionite complex. Angew Chem Int Ed 45:6473–6476

    Article  CAS  Google Scholar 

  63. Presseprich MR, White MA, Vekhter Y, Coppens P (1994) Analysis of a metastable electronic excited state of sodium nitroprusside by X-ray crystallography. J Am Chem Soc 116:5233–5238

    Article  Google Scholar 

  64. Yasuda N, Kanazawa M, Uekusa H, Ohashi Y (2002) Excited-state structure of a platinum complex by X-ray analysis. Chem Lett 1132–1133

    Google Scholar 

  65. Yasuda N, Uekusa H, Ohashi Y (2004) X-Ray analysis of excited-state structures of the diplatinum complex anions in five crystals with different cations. Bull Chem Soc Jpn 77:933–944

    Article  CAS  Google Scholar 

  66. Hoshino M, Uekusa H, Ohashi Y (2006) X-Ray analysis of excited-state molecular structure of [AuCl(PPh3)2]. Bull Chem Soc Jpn 79:1362–1366

    Article  CAS  Google Scholar 

  67. Hoshino M, Sekine A, Uekusa H, Ohashi J (2005) X-Ray analysis of bond elongation in VO(acac)2 in the excited state. Chem Lett 34:1228–1229

    Article  CAS  Google Scholar 

  68. Kusz J, Spiering H, Gütlich P (2000) X-Ray study of the light-induced metastable state of a spin-crossover compound. J Appl Crystallogr 33:201–205

    Article  CAS  Google Scholar 

  69. Huby N, Guérin L, Collet E, Toupet L, Ameline J-C, Cailleau H, Roisnel T, Tayagaki T, Tanaka K (2004) Photoinduced spin transition probed by x-ray diffraction. Phys Rev B 69:020101-1–0201010-4

    Google Scholar 

  70. Marchivie M, Guionneau P, Howard JAK, Chastnet G, Letard J-F, Goeta AE, Chasseau D (2001) Structural characterization of a photoinduced molecular switch. J Am Chem Soc 124:194–195

    Article  Google Scholar 

  71. Svendsen H, Overgaard J, Chevallier M, Collet E, Iversen BB (2009) Angew Chem Int Ed 48:2780–2783

    Article  CAS  Google Scholar 

  72. Lindenberg AM, Kang I, Johnson SL, Missalla T, Heimann PA, Chang Z, Larsson J, Bucksbaum PH, Kapteyn HC, Padmore HA, Lee RW, Wark JS, Falcone RW (2000) Time-resolved X-ray diffraction from coherent phonons during a laser-induced phase transition. Phys Rev Lett 84:111–114

    Article  CAS  Google Scholar 

  73. Rose-Petruck C, Jimenez R, Guo T, Cavalleri A, Siders CW, Ráksi F, Squier JA, Walker BC, Wilson KR, Barty CPJ (1999) Picosecond-milliangstrom lattice dynamics measured by ultrafast X-ray diffraction. Nature 398:310–312

    Article  CAS  Google Scholar 

  74. Rischel C, Rousse A, Uschmann I, Albouy P-A, Geindre J-P, Audebert P, Gauthier J-C, Förster E, Martin J-L, Antonetti A (1997) Femtosecond time-resolved X-ray diffraction from laser-heated organic films. Nature 390:490–492

    Article  CAS  Google Scholar 

  75. Sokolowski-Tinten K, Blome C, Blums J, Cavalleri A, Dietrich C, Tarasevitch A, Uschmann I, Förster E, Kammler M, Horn-von-Hoegen M, von der Linde D (2003) Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability unit. Nature 422:287–289

    Article  CAS  Google Scholar 

  76. Rousse A, Rischel C, Fourmaux S, Uschmann I, Sebban S, Grillon G, Balcou Ph, Förster E, Geindre JP, Audebert P, Gauthier JC, Hulin D (2001) Non-thermal melting in semiconductors measured at femtosecond resolution. Nature 410:65–68

    Article  CAS  Google Scholar 

  77. Cavalleri A, Tóth Cs, Siders CW, Squier JA, Ráksi F, Forget P, Kieffer JC (2001) Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys Rev Lett 87:237401-1–237401-4

    Google Scholar 

  78. Collet E, Lemée-Cailleau M-H, Buron-Le Cointe M, Cailleau H, Wulff M, Luty T, Koshihara S, Meyer M, Toupet L, Rabiller P, Techert S (2003) Laser-induced ferroelectric structural order in an organic charge-transfer crystal. Science 300:612–615

    Article  CAS  Google Scholar 

  79. Guerin L, Collet E, Lemée-Cailleau M-H, Buron-Le Cointe M, Cailleau H, Plech A, Wulff M, Koshihara S, Luty T (2004) Probing photoinduced phase transition in a charge-transfer molecular crystal by 100 picosecond X-ray diffraction. Chem Phys 299:163–170

    Article  CAS  Google Scholar 

  80. Hallmann J, Morgenroth W, Paulmann C, Davaasambuu J, Kong Q, Wulff M, Techert S (2009) Time-resolved X-ray diffraction of the photochromic α-styrylpyrylium trifluoromethanesulfonate crystal films reveals ultrafast structural switching. J Am Chem Soc 131:15018–15025

    Article  CAS  Google Scholar 

  81. Kim CD, Pillet S, Wu G, Fullagar WK, Coppens P (2002) Excited-state structure by time-resolved X-ray diffraction. Acta Cryst A 58:133–137

    Article  Google Scholar 

  82. Novozhilova IV, Volkov AV, Coppens P (2003) Theoretical analysis of the triplet excited state of the [Pt2(H2P2O5)4]4− ion and comparison with time-resolved X-ray and spectroscopic results. J Am Chem Soc 125:1079–1087

    Article  CAS  Google Scholar 

  83. Vorontsov II, Kovalevsky AY, Chen Y-S, Graber T, Gembicky M, Novozhilova IV, Omary MA, Coppens P (2005) Shedding light on the structure of a photoinduced transient excimer by time-resolved diffraction. Phys Rev Lett 94:193003-1–193003-4

    Google Scholar 

  84. Busse G, Tschentscher T, Plech A, Wulff M, Frederichs B, Techert S (2002) Faraday Discuss 122:105–117

    Article  Google Scholar 

  85. Techert S, Zachariasse KA (2004) Structure determination of the intramolecular charge transfer state in crystalline 4-(diisopropylamino)benzonitrile from picoseconds X-ray diffraction. J Am Chem Soc 126:5593–5600

    Article  CAS  Google Scholar 

  86. Toda F (2002) Crystal engineering for molecular dynamics. CrystEngComm 4:215–222

    Article  CAS  Google Scholar 

  87. Garcia-Garibay M (2003) Engineering carbene rearrangements in crystals: from molecular information to solid-state reactivity. Acc Chem Res 36:491–498

    Article  CAS  Google Scholar 

  88. Coppens P, Zheng S-L, Gembicky M, Meeserschmidt M, Dominiak PM (2006) Supramolecular solids and time-resolved diffraction. CrystEngComm 8:735–741

    Article  CAS  Google Scholar 

  89. Zheng S-L, Vande Velde CML, Messerschmidt M, Volkov A, Gembicky M, Coppens P (2008) Supramolecular solids as a medium for single-crystal-to-single-crystal E/Z photoisomerization: kinetic study of the photoreactions of two Zn-coordinated tiglic acid molecules. Chem Eur J 14:706–713

    Article  CAS  Google Scholar 

  90. Poulin PR, Nelson KA (2006) Irreversible organic crystalline chemistry monitored in real time. Science 313:1756–1760

    Article  CAS  Google Scholar 

  91. Neutze R, Huldt G, Hajdu J, van der Spoel D (2004) Potential impact of an X-ray free electron laser on structural biology. Rad Phys Chem 71:905–916

    Article  CAS  Google Scholar 

  92. Neutze R, Wouts R, Techert S, Davidsson J, Kocsis M, Kirrander A, Schotte F, Wulff M (2001) Visualizing photochemical dynamics in solution through picoseconds X-ray scattering. Phys Rev Lett 87:195508-1–195508-4

    Google Scholar 

  93. Pham V-T, Gawelda W, Zaushitsyn Y, Kaiser M, Grolimund D, Johnson SL, Abela R, Bressler C, Chergui M (2007) Observation of the solvent shell reorganization around photoexcited atomic solutes by picoseconds X-ray absorption spectroscopy. J Am Chem Soc 129:1530–1531

    Article  CAS  Google Scholar 

  94. Tomov IV, Rentzepis PM (2004) Ultrafast time-resolved transient structures of solids and liquids by means of extended X-ray absorption fine structure. ChemPhysChem 5:27–35

    Article  CAS  Google Scholar 

  95. Chen LX, Jennings G, Liu T, Gosztola DJ, Hessler JP, Scaltrito DV, Meyer GJ (2002) Rapid excited-state structural reorganization captured by pulsed X-rays. J Am Chem Soc 124:10861–10867

    Article  CAS  Google Scholar 

  96. Chen LX, Shaw GB, Novozhilova I, Liu T, Jennings G, Attenkofer K, Meyer GJ, Coppens P (2003) MLCT state structure and dynamics of a copper(I) diimine complex characterized by pump-probe X-ray and laser spectroscopies and DFT calculations. J Am Chem Soc 125:7022–7034

    Article  CAS  Google Scholar 

  97. Harb M, Ernstorfer R, Dartigalongue T, Hebeisen CT, Jordan RE, Dwayne Miller RJ (2006) Carrier relaxation and lattice heating dynamics in silicon revealed by femtosecond electron diffraction. J Phys Chem B 110:25308–25313

    Article  CAS  Google Scholar 

  98. Henriksen NE, Møller KB (2008) On the theory of time-resolved X-ray diffraction. J Phys Chem B 112:558–567

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panče Naumov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Naumov, P. (2011). Chemical X-Ray Photodiffraction: Principles, Examples, and Perspectives. In: Rissanen, K. (eds) Advanced X-Ray Crystallography. Topics in Current Chemistry, vol 315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_156

Download citation

Publish with us

Policies and ethics