Skip to main content

Controlling Supramolecular Assembly Using Electronic Effects

  • Chapter
  • First Online:
Electronic Effects in Organic Chemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 351))

Abstract

Through systematic structural studies using custom designed probe molecules, it has been shown that the balance between hydrogen-bonds in the context of supramolecular chemistry and crystal engineering can be understood and guided by a semiquantitative thermodynamic assessment that integrates theoretical and experimental views of solution-based molecular recognition events. Although pKa values can be used for ranking hydrogen-bond donors/acceptors within a family of compounds, they do not offer reliable information when comparing different functional groups. However, against a backdrop of a simple electrostatic interpretation of hydrogen bonds coupled with a focus on the primary non-covalent interactions, molecular electrostatic potential surfaces can be employed for guiding the synthesis of binary- and ternary co-crystals with the desired connectivity and dimensionality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For an up-to-date discussion of hydrogen-bond nomenclature, see the IUPAC Project: “Categorizing hydrogen bonding and other intermolecular interactions,” http://www.iupac.org/web/ins/2004-026-2-100.

  2. 2.

    The two ligands shown in Scheme 5 were constructed using Spartan ’04 (Wavefunction. Inc Irvine, CA). Their molecular geometries were optimized using AM1, and the maxima and minima in the molecular electrostatic potential surface. (0.002 e/au isosurface) were determined using a positive point charge in vacuum as the probe.

  3. 3.

    pKa values were obtained through calculations of the conjugate acids. The calculations were carried out using ACD/Solaris version 476, Advanced Chemistry Development, Inc. Toronto, ON, Canada, www.acdlabs.com, 1994–2005.

References

  1. HadĹľi D, Thompson WH (eds) (1959) Hydrogen bonding. Pergamon Press, Oxford

    Google Scholar 

  2. Pimentell GC, McClellan AL (1960) The hydrogen bond. W H Freeman, San Francisco

    Google Scholar 

  3. Pauling L (1963) The nature of the chemical bond. Cornell University Press, Ithaca

    Google Scholar 

  4. Hamilton WC, Ibers JA (1968) Hydrogen bonding in solids. Benjamin, New York

    Google Scholar 

  5. Emsley JE (1980) Chem Soc Rev 9:91

    Article  CAS  Google Scholar 

  6. Tuck DG (1968) Progr Inorg Chem 9:161

    Article  CAS  Google Scholar 

  7. Speakman JC (1972) Struct Bond 16:141

    Article  Google Scholar 

  8. Steiner T (2002) Angew Chem Int Ed 41:48

    Article  CAS  Google Scholar 

  9. Aakeröy CB, Salmon DJ (2005) CrystEngComm 7:439

    Article  Google Scholar 

  10. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, Berlin

    Book  Google Scholar 

  11. Lehn JM (1995) Supramolecular chemistry. VCH, Weinheim

    Book  Google Scholar 

  12. Scheiner S (1987) Hydrogen bonding. A theoretical perspective. Oxford University Press, Oxford

    Google Scholar 

  13. Umeyama H, Morokuma K (1977) J Am Chem Soc 99:1316

    Article  CAS  Google Scholar 

  14. Rebek J Jr (1990) Angew Chem Int Ed Engl 29:245

    Article  Google Scholar 

  15. Lehn JM (1990) Angew Chem Int Ed Engl 29:1304

    Article  Google Scholar 

  16. Neder KM, Whitlock HW Jr (1990) J Am Chem Soc 112:9412

    Article  CAS  Google Scholar 

  17. Kim EI, Paliwal S, Wilcox CS (1998) J Am Chem Soc 120:11192

    Article  CAS  Google Scholar 

  18. Wilcox CS, Kim EI, Romano D, Kuo LH, Burt AL, Curran DP (1995) Tetrahedron 51:621

    Article  CAS  Google Scholar 

  19. Coker A, Hibber F (1995) J Chem Soc Perkin Trans 2:1

    Article  Google Scholar 

  20. Elguero J, Marzin C, Katritzky AR, Linda P (1976) Advances in heterocyclic chemistry: supplement 1. Academic, New York

    Google Scholar 

  21. Almlöf J, Kvick Å, Olovsson I (1971) Acta Crystallogr B 27:1201

    Article  Google Scholar 

  22. Kvick Ă…, Olovsson I (1968) Ark Kem 30:71

    CAS  Google Scholar 

  23. Boer FP (1972) Acta Crystallogr 28:3200

    Article  CAS  Google Scholar 

  24. Desiraju GR (1995) Angew Chem Int Ed Engl 34:2311

    Article  CAS  Google Scholar 

  25. Etter MC (1991) J Phys Chem 95:4601

    Article  CAS  Google Scholar 

  26. Etter MC (1990) Acc Chem Res 23:120

    Article  CAS  Google Scholar 

  27. Abraham MH (1993) Chem Soc Rev 22:73

    Article  CAS  Google Scholar 

  28. Shan S, Loh S, Herschlag D (1996) Science 272:97

    Article  CAS  Google Scholar 

  29. Chen DL, McLaughlin LW (2000) J Org Chem 65:7468

    Article  CAS  Google Scholar 

  30. Hunter CA (2004) Angew Chem Int Ed 43:5310

    Article  CAS  Google Scholar 

  31. Abraham MA, Platts JA (2001) J Org Chem 66:3484

    Article  CAS  Google Scholar 

  32. Hansch C, Leo A, Taft RW (1991) Chem Rev 91:165

    Article  CAS  Google Scholar 

  33. Lu YX, Zou JW, Fan JC, Zhao WN, Jiang YJ, Yu QS (2009) J Comput Chem 30:725

    Article  CAS  Google Scholar 

  34. Aakeröy CB, Beatty AM, Leinen DS (2000) Cryst Growth Des 1:47

    Article  Google Scholar 

  35. Aakeröy CB, Salmon DJ, Smith MM, Desper J (2006) Cryst Growth Des 6:1033

    Article  Google Scholar 

  36. Aakeröy CB, Fasulo ME, Desper J (2006) CrystEngComm 8:586

    Article  Google Scholar 

  37. Aakeröy CB, Desper J, Leonard B, Urbina JF (2005) CrystEngComm 5:865

    Google Scholar 

  38. Aakeröy CB, Hussain I, Desper J (2006) Cryst Growth Des 6:474

    Article  Google Scholar 

  39. Bhogala BR, Basavoju S, Nangia A (2005) Cryst Growth Des 5:1683

    Article  CAS  Google Scholar 

  40. Curtis SM, Le N, Fowler FW, Lauher JW (2005) Cryst Growth Des 5:2313

    Article  CAS  Google Scholar 

  41. Saha BK, Nangia A, Jaskolski M (2005) CrystEngComm 7:355

    Article  CAS  Google Scholar 

  42. Vishweshwar P, McMahon JA, Peterson ML, Hickey MB, Shattock TR, Zaworotko MJ (2005) Chem Commun 4601

    Google Scholar 

  43. Hosseini MW (2004) CrystEngComm 6:318

    Article  CAS  Google Scholar 

  44. Desiraju GR (2002) Acc Chem Res 35:565

    Article  CAS  Google Scholar 

  45. Hartshorn CM, Steel PJ (1995) Aust J Chem 48:1587

    Article  CAS  Google Scholar 

  46. Aakeröy CB, Beatty AM, Helfrich BH (2002) J Am Chem Soc 124:14425

    Article  Google Scholar 

  47. Allen FH (2002) Acta Cryst B 58:380

    Article  Google Scholar 

  48. Aakeröy CB, Desper J, Urbina JF (2005) Chem Commun 2820

    Google Scholar 

  49. Aakeröy CB, Desper J, Leonard B, Urbina JF (2005) Cryst Growth Des 5:865

    Article  Google Scholar 

  50. Aakeröy CB, Desper J, Scott BMT (2006) Chem Commun 1445

    Google Scholar 

  51. Aakeröy CB, Beatty AM, Helfrich BA (2001) Angew Chem Int Ed Engl 40:3240

    Article  Google Scholar 

  52. Vishweshwar P, Nangia A, Lynch VM (2003) CrystEngComm 5:164

    Article  CAS  Google Scholar 

  53. Aakeröy CB, Desper J, Smith MM (2007) Chem Commun 3936

    Google Scholar 

  54. Abraham MH (1993) Pure Appl Chem 65:2503

    Article  CAS  Google Scholar 

  55. Schneider HJ (2003) Methods Princ Med Chem 19 (Protein-Ligand Interactions) 21:50

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christer B. Aakeröy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aakeröy, C.B., Epa, K. (2011). Controlling Supramolecular Assembly Using Electronic Effects. In: Kirchner, B. (eds) Electronic Effects in Organic Chemistry. Topics in Current Chemistry, vol 351. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_155

Download citation

Publish with us

Policies and ethics