Skip to main content

Dynamic QM/MM: A Hybrid Approach to Simulating Gas-Liquid Interactions

  • Chapter
  • First Online:
Multiscale Molecular Methods in Applied Chemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 307))

Abstract

In this chapter we describe molecular dynamics simulation methods in which the system being studied is divided into a region where quantum mechanics (QM) is used to determine forces for doing Born-Oppenheimer direct dynamics calculations (i.e., doing electronic structure calculations on the fly to determine energies and forces) and another region where empirical potentials that are commonly used in molecular mechanics (MM) calculations are used to determine forces. The two regions are linked through an embedding process that may or may not involve the possibility that atoms can be passed back and forth between regions at each time step. The idea with this dynamic QM/MM methodology is that one uses QM calculations to define the potential surface in portions of the system where reaction occurs, and MM to determine forces in what is typically a much larger region where no reaction occurs. This approach thereby enables the description of chemical reactions in the QM region, which is a technology that can be used in many different applications. We illustrate its use by describing work that we have done with gas–liquid reactions in which a reactive atom (such as an oxygen or fluorine atom) reacts with the surface of a liquid and the products can either remain in the liquid or emerge into the gas phase. Applications to hydrocarbon and ionic liquids are described, including the characterization of reaction mechanisms at hyperthermal energies, and the determination of product branching and product energy distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acevedo O, Jorgensen WL (2010) Advances in quantum and molecular mechanical (QM/MM) simulations for organic and enzymatic reactions. Acc Chem Res 43:142–151

    Article  CAS  Google Scholar 

  2. Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W (2010) P450 enzymes: their structure, reactivity, and selectivity-modeled by QM/MM calculations. Chem Rev 110:949–1017

    Article  CAS  Google Scholar 

  3. Higashi M, Truhlar DG (2008) Electrostatically embedded multiconfiguration molecular mechanics based on the combined density functional and molecular mechanical method. J Chem Theory Comput 4:790–803

    Article  CAS  Google Scholar 

  4. Kamerlin SCL, Haranczyk M, Warshel A (2009) Progress in ab initio QM/MM free-energy simulations of electrostatic energies in proteins: accelerated QM/MM studies of pK(a), redox reactions and solvation free energies. J Phys Chem B 113:1253–1272

    Article  CAS  Google Scholar 

  5. Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem 48:1198–1229

    Article  CAS  Google Scholar 

  6. Cui Q, Karplus M (2000) Molecular properties from combined QM/MM methods. 2. Chemical shifts in large molecules. J Phys Chem B 104:3721–3743

    Article  CAS  Google Scholar 

  7. Cui Q, Karplus M (2000) Molecular properties from combined QM/MM methods. I. Analytical second derivative and vibrational calculations. J Chem Phys 112:1133–1149

    Article  CAS  Google Scholar 

  8. Gao JL, Truhlar DG (2002) Quantum mechanical methods for enzyme kinetics. Annu Rev Phys Chem 53:467–505

    Article  CAS  Google Scholar 

  9. Konig PH, Hoffmann M, Frauenheim T, Cui Q (2005) A critical evaluation of different QM/MM frontier treatments with SCC-DFTB as the QM method. J Phys Chem B 109:9082–9095

    Article  CAS  Google Scholar 

  10. Lin H, Truhlar DG (2005) Redistributed charge and dipole schemes for combined quantum mechanical and molecular mechanical calculations. J Phys Chem A 109:3991–4004

    Article  CAS  Google Scholar 

  11. Riccardi D, Schaefer P, Cui Q (2005) pK(a) calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols. J Phys Chem B 109:17715–17733

    Article  CAS  Google Scholar 

  12. Shurki A, Warshel A (2003) Structure/function correlations of proteins using MM, QM/MM, and related approaches: methods, concepts, pitfalls, and current progress. In: Adv Protein Chem 66:249–313

    Google Scholar 

  13. Bakowies D, Thiel W (1996) Hybrid models for combined quantum mechanical and molecular mechanical approaches. J Phys Chem 100:10580–10594

    Article  CAS  Google Scholar 

  14. Slavicek P, Martinez TJ (2006) Multicentered valence electron effective potentials: a solution to the link atom problem for ground and excited electronic states. J Chem Phys 124:084107

    Article  Google Scholar 

  15. Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) ONIOM: a multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. A test for Diels-Alder reactions and Pt(P(t-Bu)(3))(2) + H-2 oxidative addition. J Phys Chem 100:19357–19363

    Article  CAS  Google Scholar 

  16. Vreven T, Morokuma K (2000) On the application of the IMOMO (integrated molecular orbital plus molecular orbital) method. J Comp Chem 21:1419–1432

    Article  CAS  Google Scholar 

  17. Shoemaker JR, Burggraf LW, Gordon MS (1999) SIMOMM: an integrated molecular orbital/molecular mechanics optimization scheme for surfaces. J Phys Chem A 103:3245–3251

    Article  CAS  Google Scholar 

  18. Rode B, Hofer TS, Randold BR, Schwenk CF, Xenides D, Vchirawongkwin V (2006) Ab initio quantum mechanical charge field (qmcf) molecular dynamics: a QM/MM-MD procedure for accurate simulations of ions and complexes. Theor Chem Acc 115:77–85

    Article  CAS  Google Scholar 

  19. Lin H, Truhlar DG (2007) QM/MM: what have we learned, where are we, and where do we go from here? Theor Chem Acc 117:185–199

    Article  CAS  Google Scholar 

  20. Rappe AK, Goddard WA III (1991) Charge equilibration for molecular dynamics simulations. J Phys Chem 95:3358–3363

    Article  CAS  Google Scholar 

  21. Heyden A, Truhlar DG (2007) Adaptive partitioning in combined quantum mechanical and molecular mechanical calculations of potential energy functions for multiscale simulations. J Phys Chem A 111:2231–2241

    CAS  Google Scholar 

  22. Rohrig UF, Frank I, Hutter J, Laio A, VandeVondele J, Rothlisberger U (2003) QM/MM car-parrinello molecular dynamics study of the solvent effects on the ground stateand on the first excited singlet state of acetone in water. ChemPhysChem 4:1177–1182

    Article  Google Scholar 

  23. Kerdcharoen T, Morokuma K (2002) ONIOM-XS: an extension of the ONIOM method for molecular simulation in condensed phase. Chem Phys Lett 355:257–263

    Article  CAS  Google Scholar 

  24. Bolten K, Hase WL, Doubleday C Jr (1999) A QM/MM direct dynamics trajectory investigation of trimethlene decomposition in an argon bath. J Phys Chem B 103:3691–3698

    Article  Google Scholar 

  25. Stanton CL, Kuo I-FW, Munday CJ, Laino T, Houk KN (2007) QM/MM metadynamics study of the direct decarboxylation mechanism for orotidine-5′-monophosphage decarboxylase using two different QM regions: acceleration too small to explain rate of enzyme catalysis. J Phys Chem B 111:12573–12581

    Article  CAS  Google Scholar 

  26. Kerdcharoen T, Liedl KR, Rode BM (1996) A QM/MM simulation method applied to the solution of Li+ in liquid ammonia. Chem Phys 211:313–323

    Article  CAS  Google Scholar 

  27. Troya D, Schatz GC (2004) Hyperthermal chemistry in the gas phase and on surfaces: theoretical studies. Int Rev Phys Chem 23:341–373

    Article  CAS  Google Scholar 

  28. Kim D, Schatz GC (2007) Theoretical investigation of hyperthermal reactions at the gas-liquid interface: O (3P) and squalane. J Phys Chem A 111:5019–5031

    Article  CAS  Google Scholar 

  29. Radak B, Yockel S, Kim D, Schatz GC (2008) Modeling reactive scattering of F(2P) at a liquid squalane interface: a hybrid QM/MM molecular dynamics study. J Phys Chem A 113:7218–7226

    Article  Google Scholar 

  30. Garton DJ, Minton TK, Alagia M, Balucani N, Casavecchia P, Gualberto Volpi G (2000) Comparative dynamics of Cl(2P) and O(3P) interactions with a hydrocarbon surface. J Chem Phys 112:5975–5984

    Article  CAS  Google Scholar 

  31. Zhang J, Garton DJ, Minton TK (2002) Reactive and inelastic scattering dynamics of hyperthermal oxygen atoms on a saturated hydrocarbon surface. J Chem Phys 117:6239–6251

    Article  CAS  Google Scholar 

  32. Zhang J, Upadhyaya HP, Brunsvold AL, Minton TK (2006) Hyperthermal reactions of O and O2 with a hydrocarbon surface: direct C-C bond breakage by O and H-atom abstraction by O2. J Phys Chem B 110:12500–12511

    Article  CAS  Google Scholar 

  33. Perkins BG Jr, Nesbitt DJ (2006) Quantum-state-resolved CO2 scattering dynamics at the gas-liquid interface: incident collision energy and liquid dependence. J Phys Chem B 110:17126–17137

    Article  CAS  Google Scholar 

  34. Zolot AM, Harper WW, Perkins BG, Dagdigian PJ, Nesbitt DJ (2006) Quantum-state resolved reaction dynamics at the gas-liquid interface: direct absorption detection of HF(v, J) product from F(2P) + squalane. J Chem Phys 125:021101/1–021101/4

    Article  CAS  Google Scholar 

  35. Zolot AM, Dagdigian PJ, Nesbitt DJ (2008) Quantum-state resolved reactive scattering at the gas-liquid interface: F + squalane (C30H62) dynamics via high-resolution infrared absorption of nascent HF(v, J). J Chem Phys 129:194705/1–194705/11

    CAS  Google Scholar 

  36. Wu BH, Zhang JM, Minton TK et al (2010) Scattering dynamics of hyperthermal oxygen atoms on ionic liquid surfaces: emim NTf2 and C(12)mim NTf2. J Phys Chem C 114:4015–4027

    Article  CAS  Google Scholar 

  37. Yockel S, Schatz GC (2010) Modeling O(3P) and Ar scattering from the ionic liquid [emim][NO3] at 5 eV with hybrid QM/MM molecular dynamics. J Phys Chem B 114:14241–14248

    Article  CAS  Google Scholar 

  38. Krebs T, Nathanson GM (2010) Reactive collisions of sulfur dioxide with molten carbonates. PNAS 107:6622–6627

    Article  CAS  Google Scholar 

  39. Muenter AH, DeZwaan JL, Nathanson GM (2007) Interfacial interactions of DO with salty glycerol solutions of KI, NaI, LiI, and NaBr. J Phys Chem C 111:15043–15052

    Article  CAS  Google Scholar 

  40. Waring C, Bagot PAJ, Slattery JM, Costen ML, McKendrick KG (2010) O(P-3) atoms as a probe of surface ordering in 1-alkyl-3-methylimidazolium-based ionic liquids. J Phys Chem Lett 1:429–433

    Article  CAS  Google Scholar 

  41. Waring C, Bagot PAJ, Slattery JM, Costen ML, McKendrick KG (2010) O(P-3) atoms as a chemical probe of surface ordering in ionic liquids. J Phys Chem A 114:4896–4904

    Article  CAS  Google Scholar 

  42. Jay William Ponder (2010) TINKER – software tools for molecular design. Accessed at http://dasher.wustl.edu/tinker/

  43. Bredow T, Geudtner G, Jug K (2006) MSINDO (version 3.2)

    Google Scholar 

  44. Ahlswede B, Jug K (1999) Consistent modifications of SINDO1: I. approximations and parameters. J Comp Chem 20:563–571

    Article  CAS  Google Scholar 

  45. Ahlswede B, Jug K (1999) Consistent modifications of SINDO1: II. Applications to first and second row elements. J Comp Chem 20:572–578

    Article  CAS  Google Scholar 

  46. Kerdcharoen T, Rodes BM (2000) What is the solvation number of Na + in ammonia? An ab initio QM/MM molecular dynamics study. J Phys Chem A 104:7073–7078

    Article  CAS  Google Scholar 

  47. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  48. Bowman JM, Kuppermann A (1971) Classical and quantum reaction probabilities and thermal rate constants for the collinear H + H2 exchange reaction with vibrational excitation. Chem Phys Lett 12:1–4

    Article  CAS  Google Scholar 

  49. Porter RN, Raff LM, Miller WH (1975) Quasiclassical selection of initial coordinates and momenta for a rotating morse oscillator. J Chem Phys 63:2214–2218

    Article  CAS  Google Scholar 

  50. Canongia Lopes JN, Deschamps J, Padua AAH (2004) Modelling ionic liquids using a systematic all-atom force field. J Phys Chem B 108:2038–2047

    Article  Google Scholar 

  51. Jug K, Chiodo S, Calaminici P, Avramopoulos A, Papadopoulos MG (2003) Electronic and vibrational polarizabilities and hyperpolarizabilities of azoles: a comparative study of the structure − polarization relationship. J Phys Chem A 107:4172–4183

    Article  CAS  Google Scholar 

  52. Raabe G, Wang Y, Fleischhauer J (2000) Calculation of the proton affinities of primary, secondary, and tertiary amines using semiempirical and ab initio methods. Z Naturforsch A 55:687–694

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by AFSOR Grant FA9550-10-1-0205 and by the CENECI CCI NSF grant CHE-0943639.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George C. Schatz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yockel, S., Schatz, G.C. (2011). Dynamic QM/MM: A Hybrid Approach to Simulating Gas-Liquid Interactions. In: Kirchner, B., Vrabec, J. (eds) Multiscale Molecular Methods in Applied Chemistry. Topics in Current Chemistry, vol 307. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_130

Download citation

Publish with us

Policies and ethics