Skip to main content

Cationic Liposome–Nucleic Acid Complexes for Gene Delivery and Silencing: Pathways and Mechanisms for Plasmid DNA and siRNA

  • Chapter
  • First Online:
Nucleic Acid Transfection

Abstract

Motivated by the promises of gene therapy, there is great interest in developing non-viral lipid-based vectors for therapeutic applications due to their low immunogenicity, low toxicity, ease of production, and the potential of transferring large pieces of DNA into cells. In fact, cationic liposome (CL) based vectors are among the prevalent synthetic carriers of nucleic acids (NAs) currently used in gene therapy clinical trials worldwide. These vectors are studied both for gene delivery with CL–DNA complexes and gene silencing with CL–siRNA (short interfering RNA) complexes. However, their transfection efficiencies and silencing efficiencies remain low compared to those of engineered viral vectors. This reflects the currently poor understanding of transfection-related mechanisms at the molecular and self-assembled levels, including a lack of knowledge about interactions between membranes and double stranded NAs and between CL–NA complexes and cellular components. In this review we describe our recent efforts to improve the mechanistic understanding of transfection by CL–NA complexes, which will help to design optimal lipid-based carriers of DNA and siRNA for therapeutic gene delivery and gene silencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Chol:

Cholesterol

CL:

Cationic liposome

DL:

Lipid with dendritic headgroup

DOPC:

1,2-Dioleoyl-sn-glycero-3-phosphatidylcholine

DOPE:

1,2-Dioleoyl-sn-glycero-3-phosphatidylethanolamine

DOTAP:

1,2-Dioleoyl-3-trimethylammonium-propane

FF:

Firefly

MEF:

Mouse embryonic fibroblast

MVL:

Multivalent lipid

NA:

Nucleic acid

NL:

Neutral lipid

PEG:

Poly(ethylene glycol)

RL:

Renilla

RNAi:

RNA interference

SE:

Silencing efficiency

siRNA:

Short interfering RNA

TE:

Transfection efficiency

UVL:

Univalent lipid

XRD:

X-ray diffraction

References

  1. Safinya CR, Koltover I (1999) Self assembled structures of lipid–DNA nonviral gene delivery systems from synchrotron X-ray diffraction. In: Huang L, Hung M-C, Wagner E (eds) Non-viral vectors for gene therapy. Academic, San Diego

    Google Scholar 

  2. Ewert KK, Slack NL, Ahmad A, Evans HM, Lin A, Samuel CE, Safinya CR (2004) Cationic lipid–DNA complexes for gene therapy: understanding the relationship between complex structures and gene delivery pathways at the molecular level. Curr Med Chem 11:1241–1253

    Article  Google Scholar 

  3. Ewert K, Evans H, Ahmad A, Slack L, Lin A, Martin-Herranz A, Safinya CR (2005) Lipoplex structures and their distinct cellular pathways. In: Huang L, Hung M-C, Wagner E (eds) Non-viral vectors for gene therapy, 2nd edn. Part I (Advances in genetics 53). Elsevier, San Diego

    Google Scholar 

  4. Ewert K, Ahmad A, Evans H, Safinya CR (2005) Cationic lipid–DNA complexes for non-viral gene therapy: relating supramolecular structures to cellular pathways. Expert Opin Biol Ther 5:33–53

    Article  PubMed  CAS  Google Scholar 

  5. Safinya CR, Ewert KK, Ahmad A, Evans HM, Raviv U, Needleman DJ, Lin AJ, Slack NL, George CX, Samuel CE (2006) Cationic liposome–DNA complexes: from liquid crystal science to gene delivery applications. Phil Transact Royal Soc A 364:2573–2596

    Article  CAS  Google Scholar 

  6. Ewert KK, Samuel CE, Safinya CR (2008) Lipid–DNA interactions: structure-function studies of nanomaterials for gene delivery. In: Dias R, Lindman B (eds) Interaction of DNA with surfactant and polymers. Blackwell, Boston, MA

    Google Scholar 

  7. Ewert KK, Ahmad A, Bouxsein NF, Evans HM, Safinya CR (2008) Non-viral gene delivery with cationic liposome–DNA complexes. In: Le Doux J (ed) Gene therapy protocols, 3rd edn. Humana, Totowa, NJ

    Google Scholar 

  8. Edelstein ML, Abedi MR, Wixon J, Edelstein RM (2004) Gene therapy clinical trials worldwide 1989–2004 – an overview. J Gene Med 6:597–602

    Article  PubMed  Google Scholar 

  9. Edelstein ML, Abedi MR, Wixon JJ (2007) Gene therapy clinical trials worldwide to 2007: an update. Gene Med 9:833–842

    Article  Google Scholar 

  10. The journal of gene medicine clinical trial site. http://www.wiley.co.uk/genetherapy/clinical Accessed 5 Nov 2009

  11. Huang L, Hung M-C, Wagner E (eds) (1999) Nonviral vectors for gene therapy. Academic, San Diego, pp 91–117

    Book  Google Scholar 

  12. Huang L, Hung M-C, Wagner E (2005) Non-viral vectors for gene therapy, 2nd edn, Advances in genetics. Elsevier, San Diego

    Google Scholar 

  13. Mahato RI, Kim SW (eds) (2002) Pharmaceutical perspectives of nucleic acid-based therapeutics. Taylor & Francis, London and New York

    Google Scholar 

  14. Chesnoy S, Huang L (2000) Structure and function of lipid–DNA complexes for gene delivery. Annu Rev Biophys Biomol Struct 29:27–47

    Article  PubMed  CAS  Google Scholar 

  15. Byk G, Dubertret C, Escriou V, Frederic M, Jaslin G, Rangara R, Pitard B, Crouzet J, Wils P, Schartz B, Scherman D (1998) Synthesis, activity, and structure-activity relationship studies of novel cationic lipids for DNA transfer. J Med Chem 41:224–235

    Article  Google Scholar 

  16. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeniex B, Behr J-P (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301

    Article  PubMed  CAS  Google Scholar 

  17. Haensler J, Szoka FC (1993) Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem 4:372–379

    Article  PubMed  CAS  Google Scholar 

  18. Tang MX, Redemann CT, Szoka FC Jr (1996) In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem 7:703–714

    Article  PubMed  CAS  Google Scholar 

  19. Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358

    Article  PubMed  CAS  Google Scholar 

  20. Tranchant I, Thompson B, Nicolazzi C, Mignet N, Scherman D (2004) Physicochemical optimisation of plasmid delivery with cationic lipids. J Gene Med 6:S24–S35

    Article  PubMed  CAS  Google Scholar 

  21. Ahmad A, Evans HM, Ewert K, George CX, Samuel CE, Safinya CR (2005) New multivalent lipids reveal bell-curve for transfection versus membrane charge density: nonviral lipid–DNA complexes for gene delivery. J Gene Med 7:739–748

    Article  PubMed  CAS  Google Scholar 

  22. Rädler JO, Koltover I, Salditt T, Safinya CR (1997) Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275:810–814

    Article  PubMed  Google Scholar 

  23. Koltover I, Salditt T, Rädler JO, Safinya CR (1998) An inverted hexagonal phase of cationic liposome–DNA complexes related to DNA release and delivery. Science 281:78–81

    Article  PubMed  CAS  Google Scholar 

  24. Ewert KK, Evans HM, Zidovska A, Bouxsein NF, Ahmad A, Safinya CR (2006) A columnar phase of dendritic lipid-based cationic liposome–DNA complexes for gene delivery: hexagonally ordered cylindrical micelles embedded in a DNA honeycomb lattice. J Am Chem Soc 128:3998–4006

    Article  PubMed  CAS  Google Scholar 

  25. Lin AJ, Slack NL, Ahmad A, George CX, Samuel CE, Safinya CR (2003) Three-dimensional imaging of lipid gene-carriers: membrane charge density controls universal transfection behavior in lamellar cationic liposome–DNA complexes. Biophys J 84:3307–3316

    Article  PubMed  CAS  Google Scholar 

  26. Ewert K, Ahmad A, Evans HM, Schmidt H-W, Safinya CR (2002) Efficient synthesis and cell-transfection properties of a new multivalent cationic lipid for non-viral gene delivery. J Med Chem 45:5023–5029

    Article  PubMed  CAS  Google Scholar 

  27. Zidovska A, Evans HM, Ahmad A, Ewert KK, Safinya CR (2009) The role of cholesterol and structurally related molecules in enhancing transfection by cationic liposome–DNA complexes. J Phys Chem 113:5208–5216

    CAS  Google Scholar 

  28. Song YK, Liu F, Chu S, Liu D (1997) Characterization of cationic liposome-mediated gene transfer in vivo by intravenous administration. Hum Gene Ther 8:1585–1594

    Article  PubMed  CAS  Google Scholar 

  29. Liu Y, Mounkes LC, Liggitt HD, Brown CS, Solodin I, Heath TD, Debs RJ (1997) Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery. Nat Biotechnol 15:167–173

    Article  PubMed  CAS  Google Scholar 

  30. Audouy S, Molema G, de Leij L, Hoekstra D (2000) Serum as a modulator of lipoplex-mediated gene transfection: dependence of amphiphile, cell type and complex stability. J Gene Med 2:465–476

    Article  PubMed  CAS  Google Scholar 

  31. Crook K, Stevenson BJ, Dubouchet M, Poreous DJ (1998) Inclusion of cholesterol in DOTAP transfection complexes increases the delivery of DNA to cells in vitro in the presence of serum. Gene Ther 5:137–143

    Article  PubMed  CAS  Google Scholar 

  32. Li S, Tseng WC, Stolz DB, Wu SP, Watkins SC, Huang L (1999) Dynamic changes in the characteristics of cationic lipidic vectors after exposure to mouse serum: implications for intravenous lipofection. Gene Ther 6:585–594

    Article  PubMed  CAS  Google Scholar 

  33. Ilies MA, Johnson BH, Makori F, Miller A, Seitz WA, Thompson EB, Balaban AT (2005) Pyridinium cationic lipids in gene delivery: an in vitro and in vivo comparison of transfection efficiency versus a tetraalkylammonium congener. Arch Biochem Biophys 435:217–226

    Article  PubMed  CAS  Google Scholar 

  34. Kim CK, Haider KH, Choi SH, Choi EJ, Ahn WS, Kim YB (2002) Nonviral vector for efficient gene transfer to human ovarian adenocarcinoma cells. Gynecol Oncol 84:85–93

    Article  PubMed  CAS  Google Scholar 

  35. Kim CK, Choi EJ, Choi SH, Park JS, Haider KH, Ahn WS (2003) Enhanced p53 gene transfer to human ovarian cancer cells using the cationic nonviral vector, DDC. Gynecol Oncol 90:265–272

    Article  PubMed  CAS  Google Scholar 

  36. Epand RM, Hughes DW, Sayer BG, Borochov N, Bach D, Wachtel E (2003) Novel properties of cholesterol-dioleoylphosphatidylcholine mixtures. Biochim Biophys Acta Biomembr 1616:196–208

    Article  CAS  Google Scholar 

  37. Huang JY, Buboltz JT, Feigenson GW (1999) Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers. Biochim Biophys Acta Biomembr 1417:89–100

    Article  CAS  Google Scholar 

  38. Koltover I, Salditt T, Safinya CR (1999) Phase diagram, stability, and overcharging of lamellar cationic lipid–DNA self-assembled complexes. Biophys J 77:915–924

    Article  PubMed  CAS  Google Scholar 

  39. Rädler JO, Koltover I, Jamieson A, Salditt T, Safinya CR (1998) Structure and interfacial aspects of self-assembled cationic lipid–DNA gene carrier complexes. Langmuir 14:4272–4283

    Article  Google Scholar 

  40. Slotte JP, Jungner M, Vilcheze C, Bittman R (1994) Effect of sterol side-chain structure on sterol-phosphatidylcholine interactions in monolayers and small unilamellar vesicles. Biochim Biophys Acta Biomembr 1190:435–443

    Article  CAS  Google Scholar 

  41. Tristram-Nagle S, Petrache HI, Nagle JF (1998) Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers. Biophys J 75:917–925

    Article  PubMed  CAS  Google Scholar 

  42. Israelachvili JN (1992) Intermolecular and surface forces, 2nd edn. Academic, London

    Google Scholar 

  43. Hed G, Safran SA (2004) Attractive instability of oppositely charged membranes induced by charge density fluctuations. Phys Rev Lett 93:138101(1–4)

    Article  Google Scholar 

  44. Petrache HI, Harries D, Parsegian VA (2004) Alteration of lipid membrane rigidity by cholesterol and its metabolic precursors. Macromol Symp 219:39–50

    Article  CAS  Google Scholar 

  45. Ewert KK, Evans HM, Zidovska A, Bouxsein NF, Ahmad A, Safinya CR (2006) Dendritic cationic lipids with highly charged headgroups for efficient gene delivery. Bioconjug Chem 17:877–888

    Article  PubMed  CAS  Google Scholar 

  46. Zidovska A, Evans HM, Ewert KK, Quispe J, Carragher B, Potter CS, Safinya CR (2009) Liquid crystalline phases of dendritic lipid–DNA self-assemblies: lamellar, hexagonal and DNA bundles. J Phys Chem B 113:3694–3703

    Article  PubMed  CAS  Google Scholar 

  47. Bosman AW, Janssen HM, Meijer EW (1999) About dendrimers: structure, physical properties, and applications. Chem Rev 99:1665–1688

    Article  PubMed  CAS  Google Scholar 

  48. Boger DL, Fink BE, Brunette SR, Tse WC, Hedrick MP (2001) A simple, high-resolution method for establishing DNA binding affinity and sequence selectivity. J Am Chem Soc 123:5878–5891

    Article  PubMed  CAS  Google Scholar 

  49. Takahashi T, Harada A, Emi N, Kono K (2005) Preparation of efficient gene carriers using a polyamidoamine dendron-bearing lipid: improvement of serum resistance. Bioconjug Chem 16:1160–1165

    Article  PubMed  CAS  Google Scholar 

  50. Veprek P, Jezek J (1999) Peptide and glycopeptide dendrimers. Part I. J Pept Sci 5:5–23

    Article  CAS  Google Scholar 

  51. Veprek P, Jezek J (1999) Peptide and glycopeptide dendrimers. Part II. J Pept Sci 5:203–220

    Article  PubMed  CAS  Google Scholar 

  52. Choi JS, Lee EJ, Choi YH, Jeong YJ, Park JS (1999) Poly(ethylene glycol)-block-poly(l-lysine) dendrimer: novel linear polymer/dendrimer block copolymer forming a spherical water-soluble polyionic complex with DNA. Bioconjug Chem 10:62–65

    Article  PubMed  CAS  Google Scholar 

  53. Brabender-van den Berg EMMD, Meijer EW (1993) Poly(propylene imine) dendrimers–large-scale synthesis by heterogeneously catalyzed hydrogenations. Angew Chem Int Ed Engl 32:1308–1311

    Article  Google Scholar 

  54. Wörner C, Mülhaupt R (1993) Polynitrile-functional and polyamine-functional poly(trimethylene imine) dendrimers. Angew Chem Int Ed Engl 32:1306–1308

    Article  Google Scholar 

  55. Behr J-P (1989) Photohydrolysis of DNA by polyaminobenzenediazonium salt. Chem Commun 101:101–103

    Google Scholar 

  56. Schulze U, Schmidt HW, Safinya CR (1999) Synthesis of novel cationic poly(ethylene glycol) containing lipids. Bioconjug Chem 10:548–552

    Article  PubMed  CAS  Google Scholar 

  57. Farago O, Ewert KK, Ahmad A, Evans HM, Grønbech-Jensen N, Safinya CR (2008) Transitions between distinct compaction regimes in complexes of multivalent cationic lipids and DNA. Biophys J 95:836–846

    Article  PubMed  CAS  Google Scholar 

  58. Zidovska A, Ewert KK, Quispe J, Carragher B, Potter CS, Safinya CR (2009) Block liposomes from curvature-stabilizing lipids: connected nanotubes, –rods or –spheres. Langmuir 25:2979–2985

    Article  PubMed  CAS  Google Scholar 

  59. Vroege GJ, Lekkerkerker HNW (1992) Phase transitions in lyotropic colloidal and polymer liquid crystals. Rep Prog Phys 55:1241–1309

    Article  CAS  Google Scholar 

  60. Vasilevskaya VV, Khokhlov AR, Matsuzawa Y, Yoshikawa K (1995) Collapse of single DNA molecule in poly(ethylene glycol) solutions. J Chem Phys 102:6595–6602

    Article  CAS  Google Scholar 

  61. Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  62. Napoli CA, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    PubMed  CAS  Google Scholar 

  63. Jorgensen RA, Cluster PD, English J, Que Q, Napoli CA (1996) Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs antisense constructs and single-copy vs complex T-DNA sequences. Plant Mol Biol 31:957–973

    Article  PubMed  CAS  Google Scholar 

  64. Cogoni C, Macino G (2000) Post-transcriptional gene silencing across kingdoms. Curr Opin Genet Dev 10:638–643

    Article  PubMed  CAS  Google Scholar 

  65. Hammond SM, Caudy AA, Hannon GJ (2001) Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet 2:110–119

    Article  PubMed  CAS  Google Scholar 

  66. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  67. Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA (2001) Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci USA 98:9742–9747

    Article  PubMed  CAS  Google Scholar 

  68. Samuel CE (2004) Knockdown by RNAi—proceed with caution. Nat Biotechnol 22:280–282

    Article  PubMed  CAS  Google Scholar 

  69. McAllister CS, Samuel CE (2009) The RNA-activated protein kinase enhances the induction of interferon-beta and apoptosis mediated by cytoplasmic RNA sensors. J Biol Chem 284:1644–1651

    Article  PubMed  CAS  Google Scholar 

  70. McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747

    Article  PubMed  CAS  Google Scholar 

  71. Elbashir SM, Harborth J, Weber K, Tuschl T (2002) Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26:199–213

    Article  PubMed  CAS  Google Scholar 

  72. Martinez LA, Naguibneva I, Lehrmann H, Vervisch A, Tchenio T, Lozano G, Harel-Bellan A (2002) Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proc Natl Acad Sci USA 99:14849–14854

    Article  PubMed  CAS  Google Scholar 

  73. Hannon GJ, Rossi JJ (2004) Unlocking the potential of the human genome with RNA interference. Nature 431:371–378

    Article  PubMed  CAS  Google Scholar 

  74. Karagiannis TC, El-Osta A (2005) RNA interference and potential therapeutic applications of short interfering RNAs. Cancer Gene Ther 12:787–795

    Article  PubMed  CAS  Google Scholar 

  75. Sioud M (2004) Therapeutic siRNAs. Trends Pharmacol Sci 25:22–28

    Article  PubMed  CAS  Google Scholar 

  76. Caplen NJ (2003) RNAi as a gene therapy approach. Expert Opin Biol Ther 3:575–586

    Article  PubMed  CAS  Google Scholar 

  77. Spagnou S, Miller AD, Keller M (2004) Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochemistry 43:13348–13356

    Article  PubMed  CAS  Google Scholar 

  78. Yin JY, Ma ZY, Selliah N, Shivers DK, Cron RQ, Finkel TH (2006) Effective gene suppression using small interfering RNA in hard-to-transfect human T cells. J Immunol Meth 312:1–11

    Article  CAS  Google Scholar 

  79. Bouxsein NF, McAllister CS, Ewert KK, Samuel CE, Safinya CR (2007) Structure and gene silencing activities of monovalent and pentavalent cationic lipid vectors complexed with siRNA. Biochemistry 46:4785–4792

    Article  PubMed  CAS  Google Scholar 

  80. Faneca H, Simoes S, Pedroso de Lima MC (2004) Association of albumin or protamine to lipoplexes: enhancement of transfection and resistance to serum. J Gene Med 6:681–692

    Article  PubMed  CAS  Google Scholar 

  81. Yang J-P, Huang L (1997) Overcoming the inhibitory effect of serum on lipofection by increasing the charge ratio of cationic liposome to DNA. Gene Ther 4:950–960

    Article  PubMed  CAS  Google Scholar 

  82. Plank C, Mechtler K, Szoka FC, Wagner E (1996) Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum Gene Ther 7:1437–1446

    Article  PubMed  CAS  Google Scholar 

  83. Martin-Herranz A, Ahmad A, Evans HM, Ewert K, Schulze U, Safinya CR (2004) Surface functionalized cationic lipid–DNA complexes for gene delivery: PEGylated lamellar complexes exhibit distinct DNA–DNA interaction regimes. Biophys J 86:1160–1168

    Article  PubMed  CAS  Google Scholar 

  84. Hong K, Zheng W, Baker A, Papahadjopoulos D (1997) Stabilization of cationic liposome-plasmid DNA complexes by polyamines and poly(ethylene glycol)-phospholipid conjugates for efficient in vivo gene delivery. FEBS Lett 400:233–237

    Article  PubMed  CAS  Google Scholar 

  85. Kostarelos K, Miller AD (2005) Synthetic, self-assembly ABCD nanoparticles; a structural paradigm for viable synthetic non-viral vectors. Chem Soc Rev 34:970–994

    Article  PubMed  CAS  Google Scholar 

  86. Maeda H, Greish K, Fang J (2006) The EPR effect and polymeric drugs: a paradigm shift for cancer chemotherapy in the 21st century. Adv Polym Sci 193:103–121

    Article  CAS  Google Scholar 

  87. Choi JS, MacKay A, Szoka FC Jr (2003) Low-pH-sensitive PEG-stabilized plasmid-lipid nanoparticles: preparation and characterization. Bioconjug Chem 14:420–429

    Article  PubMed  CAS  Google Scholar 

  88. Wheeler JJ, Palmer L, Ossanlou M, MacLachlan I, Graham RW, Zhang YP, Hope MJ, Scherrer P, Cullis PR (1999) Stabilized plasmid-lipid particles: construction and characterization. Gene Ther 6:271–281

    Article  PubMed  CAS  Google Scholar 

  89. Ruoslahti E, Duza T, Zhang L (2005) Vascular homing peptides with cell-penetrating properties. Curr Pharm Des 11:3655–3660

    Article  PubMed  CAS  Google Scholar 

  90. Ruoslahti E (2004) Vascular zip codes in angiogenesis and metastasis. Biochem Soc Trans 32:397–402

    Article  PubMed  CAS  Google Scholar 

  91. Laakkonen P, Åkerman ME, Biliran H, Yang M, Ferrer F, Karpanen T, Hoffman RM, Ruoslahti E (2004) Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells. Proc Natl Acad USA 101:9381–9386

    Article  CAS  Google Scholar 

  92. Walker GF, Fella C, Pelisek J, Fahrmeir J, Boeckle S, Ogris M, Wagner E (2005) Toward synthetic viruses: endosomal pH-triggered deshielding of targeted polyplexes greatly enhances gene transfer in vitro and in vivo. Mol Ther 11:418–425

    Article  PubMed  CAS  Google Scholar 

  93. Boomer JA, Thompson DH (1999) Synthesis of acid-labile diplasmenyl lipids for drug and gene delivery applications. Chem Phys Lipids 99:145–153

    Article  PubMed  CAS  Google Scholar 

  94. Zhu J, Munn RJ, Nantz MH (2000) Self-cleaving ortho ester lipids: a new class of pH-vulnerable amphiphiles. J Am Chem Soc 122:2645–2646

    Article  CAS  Google Scholar 

  95. Bangham AD, Hill MW, Miller NGA (1973) Preparation and use of liposomes as models of biological membranes. Methods Membr Biol 1:1–68

    Google Scholar 

  96. Zidovska A, Ewert KK, Quispe J, Carragher B, Potter CS, Safinya CR (2009) The effect of salt and pH on block liposomes studied by cryogenic transmission electron microscopy. Biochim Biophys Acta Biomembr 1788:1869–1876

    Article  CAS  Google Scholar 

  97. Zidovska A, Ewert KK, Quispe J, Carragher B, Potter CS, Safinya CR (2009) Block liposomes: vesicles of charged lipids with distinctly shaped nanoscale sphere-, pear-, tube-, or rod-segments. Meth Enzymol 465:111–128

    Google Scholar 

  98. Helfrich W (1973) Elastic properties of lipid bilayers – theory and possible experiments. Z Naturforsch C 28:693–703

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

KKE, AZ, AA, NFB, HME, and CRS were supported primarily by NIH GM-59288-11 and in part, by DOE-BES grant DE-FG02-06ER46314 (lipid microstructure) and NSF-DMR 0803103 (lipid phase behavior). CSM and CES were supported by NIH AI-12520 and AI-20611. Cryo-TEM experiments were conducted at the National Resource for Automated Molecular Microscopy which is supported by the National Institutes of Health though the National Center for Research Resources’ P41 program (RR17573). The X-ray diffraction work was carried out at the Stanford Synchrotron Radiation Laboratory which is supported by the Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrus R. Safinya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ewert, K.K. et al. (2010). Cationic Liposome–Nucleic Acid Complexes for Gene Delivery and Silencing: Pathways and Mechanisms for Plasmid DNA and siRNA. In: Bielke, W., Erbacher, C. (eds) Nucleic Acid Transfection. Topics in Current Chemistry, vol 296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2010_70

Download citation

Publish with us

Policies and ethics