Skip to main content

First-Principles-Based Multiscale, Multiparadigm Molecular Mechanics and Dynamics Methods for Describing Complex Chemical Processes

  • Chapter
  • First Online:
Multiscale Molecular Methods in Applied Chemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 307))

Abstract

We expect that systematic and seamless computational upscaling and downscaling for modeling, predicting, or optimizing material and system properties and behavior with atomistic resolution will eventually be sufficiently accurate and practical that it will transform the mode of development in the materials, chemical, catalysis, and Pharma industries. However, despite truly dramatic progress in methods, software, and hardware, this goal remains elusive, particularly for systems that exhibit inherently complex chemistry under normal or extreme conditions of temperature, pressure, radiation, and others. We describe here some of the significant progress towards solving these problems via a general multiscale, multiparadigm strategy based on first-principles quantum mechanics (QM), and the development of breakthrough methods for treating reaction processes, excited electronic states, and weak bonding effects on the conformational dynamics of large-scale molecular systems. These methods have resulted directly from filling in the physical and chemical gaps in existing theoretical and computational models, within the multiscale, multiparadigm strategy. To illustrate the procedure we demonstrate the application and transferability of such methods on an ample set of challenging problems that span multiple fields, system length- and timescales, and that lay beyond the realm of existing computational or, in some case, experimental approaches, including understanding the solvation effects on the reactivity of organic and organometallic structures, predicting transmembrane protein structures, understanding carbon nanotube nucleation and growth, understanding the effects of electronic excitations in materials subjected to extreme conditions of temperature and pressure, following the dynamics and energetics of long-term conformational evolution of DNA macromolecules, and predicting the long-term mechanisms involved in enhancing the mechanical response of polymer-based hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Broglie L (1924) Recherches sur la théorie des quanta

    Google Scholar 

  2. Schrodinger E (1926) Quantification of the eigen-value problem. Ann Phys 79(6):489–527

    Google Scholar 

  3. Messiah A (ed) (1999) Quantum mechanics, vol 1. Reprinted by Dover Publications, Mineola, NY

    Google Scholar 

  4. Anderson JB (1976) Quantum chemistry by Random-Walk – H2p, H+3d3h1a'1, H-23-Sigma+U, H-41-Sigma+G, Be1s. J Chem Phys 65(10):4121–4127

    CAS  Google Scholar 

  5. Williamson AJ, Hood RQ, Grossman JC (2001) Linear-scaling quantum Monte Carlo calculations. Phys Rev Lett 8724(24):246406-(4)

    Google Scholar 

  6. Reboredo FA, Williamson AJ (2005) Optimized nonorthogonal localized orbitals for linear scaling quantum Monte Carlo calculations. Phys Rev B 71(12):121105-(4)

    Google Scholar 

  7. Morokuma K et al (2001) Model studies of the structures, reactivities, and reaction mechanisms of metalloenzymes. Ibm J Res Dev 45(3–4):367–395

    CAS  Google Scholar 

  8. Fisher DR et al (2008) An optimized initialization algorithm to ensure accuracy in quantum Monte Carlo calculations. J Comput Chem 29(14):2335–2343

    CAS  Google Scholar 

  9. Anderson AG, Goddard WA, Schroder P (2007) Quantum Monte Carlo on graphical processing units. Comput Phys Commun 177(3):298–306

    CAS  Google Scholar 

  10. Anderson AG, Goddard WA (2010) Generalized valence bond wave functions in quantum Monte Carlo. J Chem Phys 132(16):164110-(10)

    Google Scholar 

  11. Born M, Oppenheimer R (1927) Quantum theory of molecules. Ann Phys 84(20):0457–0484

    CAS  Google Scholar 

  12. Frisch MJ et al (2004) Gaussian. Gaussian, Inc., Wallingford CT

    Google Scholar 

  13. Schmidt MW et al (1993) General atomic and molecular electronic-structure system. J Comput Chem 14(11):1347–1363

    CAS  Google Scholar 

  14. Jaguar (1991–2000) Jaguar. Schrodinger, Inc., Portland, OR

    Google Scholar 

  15. Kresse G, Hafner J (1993) Ab initio molecular-dynamics for liquid-metals. Phys Rev B 47(1):558–561

    CAS  Google Scholar 

  16. Dovesi R et al (2006) Crystal, U.o. Torino, Editor. 2006: Torino

    Google Scholar 

  17. Segall MD et al (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14(11):2717–2744

    CAS  Google Scholar 

  18. Schultz PA (2007) SeqQuest electronic structure code. Sandia National Laboratories, Albuquerque

    Google Scholar 

  19. Harvey J (2001) Molecular electronic structure. Available from: http://www.chm.bris.ac.uk/pt/harvey/elstruct/beyond_hf.html

  20. Moller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46(7):0618–0622

    CAS  Google Scholar 

  21. Carter EA, Goddard WA (1988) Correlation-consistent configuration-interaction – accurate bond-dissociation energies from simple wave-functions. J Chem Phys 88(5):3132–3140

    CAS  Google Scholar 

  22. Friesner RA (2005) Ab initio quantum chemistry: methodology and applications. Proc Natl Acad Sci U S A 102(19):6648–6653

    CAS  Google Scholar 

  23. Goddard WA et al (1973) Generalized valence bond description of bonding in low-lying states of molecules. Acc Chem Res 6(11):368–376

    CAS  Google Scholar 

  24. Greeley BH et al (1994) New pseudospectral algorithms for electronic-structure calculations – length scale separation and analytical 2-electron integral corrections. J Chem Phys 101(5):4028–4041

    CAS  Google Scholar 

  25. Tannor DJ et al (1994) Accurate first principles calculation of molecular charge-distributions and solvation energies from ab-initio quantum-mechanics and continuum dielectric theory. J Am Chem Soc 116(26):11875–11882

    CAS  Google Scholar 

  26. Bredow T, Jug K (2005) Theory and range of modern semiempirical molecular orbital methods. Theor Chem Acc 113(1):1–14

    CAS  Google Scholar 

  27. Hohenberg P, Kohn W (1964) Phys Rev B 136(3):864

    Google Scholar 

  28. Kohn W, Sham LJ (1965) Phys Rev A 140(4):1133

    Google Scholar 

  29. Li ZY, He W, Yang JL (2005) Recent progress in density functional theory and its numerical methods. Prog Chem 17(2):192–202

    CAS  Google Scholar 

  30. Foulkes WMC et al (2001) Quantum Monte Carlo simulations of solids (review article). Rev Mod Phys 73:33

    CAS  Google Scholar 

  31. Chen XJ, Langlois JM, Goddard WA (1995) Dual-space approach for density-functional calculations of 2-dimensional and 3-dimensional crystals using Gaussian-basis functions. Phys Rev B 52(4):2348–2361

    CAS  Google Scholar 

  32. Liu Y, Goddard WA (2009) A universal damping function for empirical dispersion correction on density functional theory. Mater Trans 50(7):1664–1670

    CAS  Google Scholar 

  33. Dobson JC, Meyer TJ (1988) Redox properties and ligand loss chemistry in aqua hydroxo complexes derived from CIS-(BPY)2RU2(OH2)2 2+ and TRANS- (BPY)2RUII(OH2)2 2+. Inorg Chem 27(19):3283–3291

    CAS  Google Scholar 

  34. Hill T (1960) An introduction to statistical thermodynamics. Addison-Wesley, Reading

    Google Scholar 

  35. Tissandier MD et al (1998) The proton’s absolute aqueous enthalpy and Gibbs free energy of solvation from cluster-ion solvation data. J Phys Chem A 102(40):7787–7794

    CAS  Google Scholar 

  36. Kelly CP, Cramer CJ, Truhlar DG (2006) Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J Phys Chem B 110(32):16066–16081

    CAS  Google Scholar 

  37. Srnec M et al (2008) Effect of spin-orbit coupling on reduction potentials of octahedral ruthenium(II/III) and osmium(II/III) complexes. J Am Chem Soc 130(33):10947–10954

    CAS  Google Scholar 

  38. Car R, Parrinello M (1985) Unified approach for molecular-dynamics and density-functional theory. Phys Rev Lett 55(22):2471–2474

    CAS  Google Scholar 

  39. Mayo SL, Olafson BD, Goddard WA III (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94:8897–8909

    CAS  Google Scholar 

  40. Ding HQ, Karasawa N, Goddard WA (1992) Atomic level simulations on a million particles – the cell multipole method for Coulomb and London nonbond interactions. J Chem Phys 97(6):4309–4315

    CAS  Google Scholar 

  41. Ding HQ, Karasawa N, Goddard WA (1992) The reduced cell multipole method for Coulomb interactions in periodic-systems with million-atom unit cells. Chem Phys Lett 196(1–2):6–10

    CAS  Google Scholar 

  42. Ponder JW, Case DA (2003) Force fields for protein simulations. Protein Simul 66:27–85

    CAS  Google Scholar 

  43. Weiner SJ et al (1986) An all atom force-field for simulations of proteins and nucleic-acids. J Comput Chem 7(2):230–252

    CAS  Google Scholar 

  44. MacKerell AD et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    CAS  Google Scholar 

  45. Jorgensen WL, Maxwell DS, TiradoRives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236

    CAS  Google Scholar 

  46. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9(9):646–652

    CAS  Google Scholar 

  47. Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery (vol 7, p 339, 2008). Nat Rev Drug Discov 7(6):542

    Google Scholar 

  48. Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7(4):339–357

    Google Scholar 

  49. Kam VWT, Goddard WA (2008) Flat-bottom strategy for improved accuracy in protein side-chain placements. J Chem Theory Comput 4(12):2160–2169

    Google Scholar 

  50. van Duin ACT et al (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105(41):9396–9409

    Google Scholar 

  51. Su JT, Goddard WA (2007) Excited electron dynamics modeling of warm dense matter. Phys Rev Lett 99(18):185003

    Google Scholar 

  52. Strachan A et al (2005) Thermal decomposition of RDX from reactive molecular dynamics. J Chem Phys 122(5):054502

    Google Scholar 

  53. van Duin ACT et al (2003) ReaxFF(SiO) reactive force field for silicon and silicon oxide systems. J Phys Chem A 107(19):3803–3811

    Google Scholar 

  54. Han SS et al (2005) Optimization and application of lithium parameters for the reactive force field, ReaxFF. J Phys Chem A 109(20):4575–4582

    CAS  Google Scholar 

  55. Zhang Q et al (2004) Adhesion and nonwetting-wetting transition in the Al/alpha-Al2O3 interface. Phys Rev B 69(4):045423-(11)

    Google Scholar 

  56. Nielson KD et al (2005) Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. J Phys Chem A 109(3):493–499

    CAS  Google Scholar 

  57. Cheung S et al (2005) ReaxFF(MgH) reactive force field for magnesium hydride systems. J Phys Chem A 109(5):851–859

    CAS  Google Scholar 

  58. Chen N et al (2005) Mechanical properties of connected carbon nanorings via molecular dynamics simulation. Phys Rev B 72(8):085416-(9)

    Google Scholar 

  59. Su HB et al (2007) Simulations on the effects of confinement and Ni-catalysis on the formation of tubular fullerene structures from peapod precursors. Phys Rev B 75(13):134107-(5)

    Google Scholar 

  60. Chenoweth K et al (2005) Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. J Am Chem Soc 127(19):7192–7202

    CAS  Google Scholar 

  61. Strachan A et al (2003) Shock waves in high-energy materials: the initial chemical events in nitramine RDX. Phys Rev Lett 91(9):098301-(4)

    Google Scholar 

  62. van Duin ACT et al (2005) Atomistic-scale simulations of the initial chemical events in the thermal initiation of triacetonetriperoxide. J Am Chem Soc 127(31):11053–11062

    Google Scholar 

  63. Buehler MJ, van Duin ACT, Goddard WA (2006) Multiparadigm modeling of dynamical crack propagation in silicon using a reactive force field. Phys Rev Lett 96(9):095505-(4)

    Google Scholar 

  64. Goddard WA et al (2006) Development of the ReaxFF reactive force field for mechanistic studies of catalytic selective oxidation processes on BiMoOx. Top Catal 38(1–3):93–103

    CAS  Google Scholar 

  65. Ludwig J et al (2006) Dynamics of the dissociation of hydrogen on stepped platinum surfaces using the ReaxFF reactive force field. J Phys Chem B 110(9):4274–4282

    CAS  Google Scholar 

  66. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    CAS  Google Scholar 

  67. Endo M, Strano MS, Ajayan PM (2008) Potential applications of carbon nanotubes. Carbon Nanotubes 111:13–61

    CAS  Google Scholar 

  68. Kreupl F (2008) Carbon nanotubes in microelectronic applications. In: Hierold C (ed) Carbon nanotube devices, 2nd edn. Wiley VCH, Weinheim

    Google Scholar 

  69. Stampfer C (2008) Electromechanical carbon nanotube transducers. In: Hierold C (ed) Carbon nanotube devices, 2nd edn. Wiley VCH, Weinheim

    Google Scholar 

  70. Roman C (2008) Modeling the properties of carbon nanotubes for sensor-based devices. In: Hierold C (ed) Carbon nanotube devices, 2nd edn. Wiley VCH, Weinheim

    Google Scholar 

  71. Robertson J (2008) Carbon nanotube field emission devices. In: Hierold C (ed) Carbon nanotube devices, 2nd edn. Wiley VCH, Weinheim

    Google Scholar 

  72. Yeow JT (2008) Carbon nanotube gas sensors. In: Hierold C (ed) Carbon nanotube devices, 2nd edn. Wiley VCH, Weinheim

    Google Scholar 

  73. Joselevich E (2008) Carbon nanotube synthesis and organization. In: Jorio A, Dresselhaus G, Dresselhaus M (eds) Carbon nanotubes, 2nd edn. Springer, Berlin

    Google Scholar 

  74. Bolton K et al (2009) Density functional theory and tight binding-based dynamical studies of carbon-metal systems of relevance to carbon nanotube growth. Nano Res 2(10):774–782

    CAS  Google Scholar 

  75. Gavillet J et al (2001) Root-growth mechanism for single-wall carbon nanotubes. Phys Rev Lett 87(27):275504-(4)

    Google Scholar 

  76. Huang SM et al (2004) Growth mechanism of oriented long single walled carbon nanotubes using “fast-heating” chemical vapor deposition process. Nano Lett 4(6):1025–1028

    CAS  Google Scholar 

  77. Li YM et al (2001) Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J Phys Chem B 105(46):11424–11431

    CAS  Google Scholar 

  78. Helveg S et al (2004) Atomic-scale imaging of carbon nanofibre growth. Nature 427(6973):426–429

    CAS  Google Scholar 

  79. Hofmann S et al (2007) In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett 7(3):602–608

    CAS  Google Scholar 

  80. Raty JY, Gygi F, Galli G (2005) Growth of carbon nanotubes on metal nanoparticles: a microscopic mechanism from ab initio molecular dynamics simulations. Phys Rev Lett 95(9):096103-(4)

    Google Scholar 

  81. Abild-Pedersen F et al (2006) Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations. Phys Rev B 73(11):115419-(13)

    Google Scholar 

  82. Amara H et al (2009) Tight-binding potential for atomistic simulations of carbon interacting with transition metals: application to the Ni-C system. Phys Rev B 79(1):014109-(17)

    Google Scholar 

  83. Ohta Y et al (2008) Rapid growth of a single-walled carbon nanotube on an iron cluster: density-functional tight-binding molecular dynamics simulations. Acs Nano 2(7):1437–1444

    CAS  Google Scholar 

  84. Moors M et al (2009) Early stages in the nucleation process of carbon nanotubes. Acs Nano 3(3):511–516

    CAS  Google Scholar 

  85. Mueller JE, van Duin ACT, Goddard WA (2010) Application of the ReaxFF reactive force field to reactive dynamics of hydrocarbon chemisorption and decomposition. J Phys Chem C 114(12):5675–5685

    CAS  Google Scholar 

  86. Mueller JE, van Duin ACT, Goddard WA (2010) Development and validation of ReaxFF reactive force field for hydrocarbon chemistry catalyzed by nickel. J Phys Chem C 114(11):4939–4949

    CAS  Google Scholar 

  87. Mora E et al (2008) Low-temperature single-wall carbon nanotubes synthesis: feedstock decomposition limited growth. J Am Chem Soc 130(36):11840–11841

    CAS  Google Scholar 

  88. Hofmann S et al (2005) Surface diffusion: the low activation energy path for nanotube growth. Phys Rev Lett 95(3):036101-(4)

    Google Scholar 

  89. Henkelman G, Jonsson H (2001) Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table. J Chem Phys 115(21):9657–9666

    CAS  Google Scholar 

  90. Jaramillo-Botero A et al (2010) Large-scale, long-term non-adiabatic electron molecular dynamics for describing material properties and phenomena in extreme environments. J Comput Chem. epub ahead of print.

    Google Scholar 

  91. Su JT, Goddard WA (2009) The dynamics of highly excited electronic systems: applications of the electron force field. J Chem Phys 131(24):244501-(20)

    Google Scholar 

  92. Gillis HP et al (1995) Low-energy electron-enhanced etching of Si(100) in hydrogen helium direct-current plasma. Appl Phys Lett 66(19):2475–2477

    CAS  Google Scholar 

  93. Su JT, Goddard WA (2009) Mechanisms of Auger-induced chemistry derived from wave packet dynamics. Proc Natl Acad Sci U S A 106(4):1001–1005

    CAS  Google Scholar 

  94. Goddard W III (1998) Nanoscale theory and simulation: a critical driver for and a critical challenge to commercial nanotechnology. In: WTEC workshop. World Technology Evaluation Center, Arlington, VA

    Google Scholar 

  95. Jaramillo-Botero A et al (2008) Multiscale-multiparadigm modeling and simulation of nanometer scale systems and processes for nanomedical applications. In: Zhang M, Xi N (eds) Nanomedicine: a systems engineering approach. Pan Stanford Publishing, Singapore

    Google Scholar 

  96. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical-integration of Cartesian equations of motion of a system with constraints – molecular-dynamics of n-alkanes. J Comput Phys 23(3):327–341

    CAS  Google Scholar 

  97. Van Gunsteren WF, Berendsen HJC (1977) Algorithms for macromolecular dynamics and constraint dynamics. Mol Phys 34(5):1311–1327

    Google Scholar 

  98. Andersen HC (1983) Rattle – a velocity version of the shake algorithm for molecular-dynamics calculations. J Comput Phys 52(1):24–34

    CAS  Google Scholar 

  99. Krautler V, Van Gunsteren WF, Hunenberger PH (2001) A fast SHAKE: algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J Comput Chem 22(5):501–508

    CAS  Google Scholar 

  100. Hess B et al (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472

    CAS  Google Scholar 

  101. Miyamoto S, Kollman PA (1992) Settle – an analytical version of the shake and rattle algorithm for rigid water models. J Comput Chem 13(8):952–962

    CAS  Google Scholar 

  102. Bae DS, Haug EJ (1987) A recursive formulation for constrained mechanical system dynamics. 1. Open loop-systems. Mech Struct Mach 15(3):359–382

    Google Scholar 

  103. Abagyan RA, Mazur AK (1989) New methodology for computer-aided modeling of biomolecular structure and dynamics. 2. Local deformations and cycles. J Biomol Struct Dyn 6(4):833–845

    CAS  Google Scholar 

  104. Mazur AK, Abagyan RA (1989) New methodology for computer-aided modeling of biomolecular structure and dynamics. 1. Non-cyclic structures. J Biomol Struct Dyn 6(4):815–832

    CAS  Google Scholar 

  105. Bae DS, Kuhl JG, Haug EJ (1988) A recursive formulation for constrained mechanical system dynamics. 3. Parallel processor implementation. Mech Struct Mach 16(2):249–269

    Google Scholar 

  106. Bae DS, Haug EJ (1988) A recursive formulation for constrained mechanical system dynamics. 2. Closed-loop systems. Mech Struct Mach 15(4):481–506

    Google Scholar 

  107. Jaramillo-Botero A, Lorente ACI (2002) A unified formulation for massively parallel rigid multibody dynamics of O(log(2) n) computational complexity. J Parallel Distrib Comput 62(6):1001–1020

    Google Scholar 

  108. Vaidehi N, Jain A, Goddard WA (1996) Constant temperature constrained molecular dynamics: The Newton-Euler inverse mass operator method. J Phys Chem 100(25):10508–10517

    CAS  Google Scholar 

  109. Jain A, Vaidehi N, Rodriguez G (1993) A fast recursive algorithm for molecular-dynamics simulation. J Comput Phys 106(2):258–268

    Google Scholar 

  110. Mathiowetz AM et al (1994) Protein simulations using techniques suitable for very large systems – the cell multipole method for nonbond interactions and the Newton-Euler inverse mass operator method for internal coordinate dynamics. Proteins Struct Funct Genet 20(3):227–247

    CAS  Google Scholar 

  111. Jaramillo-Botero A, Liu Y, Goddard WA (2006) The computational materials design facility: CMDF. Available from: http://www.wag.caltech.edu/multiscale

  112. Featherstone R (1983) The calculation of robot dynamics using articulated-body inertias. Int J Rob Res 2(1):13–30

    Google Scholar 

  113. Fijany A et al (1998) Novel algorithms for massively parallel, long-term, simulation of molecular dynamics systems. Adv Eng Softw 29(3–6):441–450

    Google Scholar 

  114. Shelley J et al (2001) A coarse grain model for phospholipid simulations. J Phys Chem B 105(19):4464–4470

    CAS  Google Scholar 

  115. Groot RD (2000) Mesoscopic simulation of polymer-surfactant aggregation. Langmuir 16(19):7493–7502

    CAS  Google Scholar 

  116. Groot RD, Rabone KL (2001) Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophys J 81(2):725–736

    CAS  Google Scholar 

  117. Jedlovszky P (1998) Investigation of the orientational correlation of the molecules in liquid H2S with reverse Monte Carlo simulation. Mol Phys 93(6):939–946

    CAS  Google Scholar 

  118. Jedlovszky P et al (1996) Investigation of the uniqueness of the reverse Monte Carlo method: studies on liquid water. J Chem Phys 105(1):245–254

    CAS  Google Scholar 

  119. Lopez CF et al (2002) Computer simulation studies of biomembranes using a coarse grain model. Comput Phys Commun 147(1–2):1–6

    Google Scholar 

  120. Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108(2):750–760

    CAS  Google Scholar 

  121. Marrink SJ, Mark AE (2003) Molecular dynamics simulation of the formation, structure, and dynamics of small phospholipid vesicles. J Am Chem Soc 125(49):15233–15242

    CAS  Google Scholar 

  122. Marrink SJ, Mark AE (2004) Molecular view of hexagonal phase formation in phospholipid membranes. Biophys J 87(6):3894–3900

    CAS  Google Scholar 

  123. Marrink SJ et al (2007) The MARTINI force field: Coarse grained model for biomolecular simulations. J Phys Chem B 111(27):7812–7824

    CAS  Google Scholar 

  124. Molinero V, Goddard WA (2004) M3B: a coarse grain force field for molecular simulations of malto-oligosaccharides and their water mixtures. J Phys Chem B 108(4):1414–1427

    CAS  Google Scholar 

  125. Vaidehi N, Goddard WA (2000) Domain motions in phosphoglycerate kinase using hierarchical NEIMO molecular dynamics simulations. J Phys Chem A 104(11):2375–2383

    CAS  Google Scholar 

  126. Cagin T et al (2001) Multiscale modeling and simulation methods with applications to dendritic polymers. Comput Theor Polym Sci 11(5):345–356

    CAS  Google Scholar 

  127. Elezgaray J, Laguerre M (2006) A systematic method to derive force fields for coarse-grained simulations of phospholipids. Comput Phys Commun 175(4):264–268

    CAS  Google Scholar 

  128. Hunger J, Huttner G (1999) Optimization and analysis of force field parameters by combination of genetic algorithms and neural networks. J Comput Chem 20(4):455–471

    CAS  Google Scholar 

  129. Hunger J et al (1998) How to derive force field parameters by genetic algorithms: modelling tripod-Mo(CO)(3) compounds as an example. Eur J Inorg Chem 6:693–702

    Google Scholar 

  130. Jaramillo-Botero A et al (2010) First-principles based approaches to nano-mechanical and biomimetic characterization of polymer-based hydrogel networks for cartilage scaffold-supported therapies. J Comput Theor Nanosci 7(7):1238–1256

    CAS  Google Scholar 

  131. Varghese S, Elisseeff JH (2006) Hydrogels for musculoskeletal tissue engineering. In: Polymers for regenerative medicine. Springer-Verlag, Berlin, pp 95–144

    Google Scholar 

  132. Butler DL, Goldstein SA, Guilak F (2000) Functional tissue engineering: the role of biomechanics. J Biomech Eng Trans Asme 122(6):570–575

    CAS  Google Scholar 

  133. Guilak F (2000) The deformation behavior and viscoelastic properties of chondrocytes in articular cartilage. Biorheology 37(1–2):27–44

    CAS  Google Scholar 

  134. Guilak F, Butler DL, Goldstein SA (2001) Functional tissue engineering – the role of biomechanics in articular cartilage repair. Clin Orthop Relat Res 391:S295–S305

    Google Scholar 

  135. Gong JP et al (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15(14):1155–1158

    CAS  Google Scholar 

  136. Lorenz CD, Ziff RM (2001) Precise determination of the critical percolation threshold for the three-dimensional “Swiss cheese” model using a growth algorithm. J Chem Phys 114(8):3659–3661

    CAS  Google Scholar 

  137. Kremer K, Grest GS (1990) Dynamics of entangled linear polymer melts – a molecular-dynamics simulation. J Chem Phys 92(8):5057–5086

    CAS  Google Scholar 

  138. Blanco M, Jaramillo-Botero A, Goddard W III (2010) The percolation limit near the Flory-Stockmayer transition in polymer hydrogel networks. California Institute of Technology, Pasadena

    Google Scholar 

Download references

Acknowledgements

The material on single shock Hugoniot is based upon work supported by the Department of Energy’s National Nuclear Security Administration under Award Number DE-FC52-08NA28613. The material on hydrogel mechanics for tissue engineering scaffolding is based upon work supported by the National Science Foundation (CMMI 0727870). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author/s and do not necessarily reflect the views of the National Science Foundation. The early developments of these multiscale multiparadigm methods were initiated with support by DOE under the ECUT program (Prog. Mgr. Minoo Dastoor) and continued DAPRA under the PROM and ONR programs (Prog. Mgr. Carey Swartz, Judah Goldwasser, and Steve Wax). Substantial support was provided by ARO-MURI, ONR-MURI, DURIP, and ASCI projects along with Chevron, Dow-Corning, Aventis, Asahi Kasei, Intel, PharmSelex, and many other industrial labs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andres Jaramillo-Botero or William A. Goddard III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jaramillo-Botero, A. et al. (2011). First-Principles-Based Multiscale, Multiparadigm Molecular Mechanics and Dynamics Methods for Describing Complex Chemical Processes. In: Kirchner, B., Vrabec, J. (eds) Multiscale Molecular Methods in Applied Chemistry. Topics in Current Chemistry, vol 307. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2010_114

Download citation

Publish with us

Policies and ethics